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Activation Energy Based Extreme Value Statistics and

Size Effect in Brittle and Quasibrittle Fracture

Zdeněk P. Bažant1 and Sze-Dai Pang2

Abstract: Because the current empirical safety factors for structural strength are far larger than
the relative errors of structural analysis, improvements in statistics offer great promise. One
improvement, proposed here, is that, for quasibrittle structures of positive geometry, the under-
strength factors for structural safety cannot be constant but must be increased with structures
size. The statistics of safety factors has so far been generally regarded as independent of mechan-
ics, but further progress requires the cumulative distribution function (cdf) to be derived from the
mechanics and physics of failure. To predict failure loads of extremely low probability (such as 10−6

to 10−7) on which structural design must be based, the cdf of strength of quasibrittle structures
of positive geometry is modelled as a chain (or series coupling) of representative volume elements
(RVE), each of which is statistically represented by a hierarchical model consisting of bundles
(or parallel couplings) of only 2 long sub-chains, each of them consisting of sub-bundles of 2 or
3 long sub-sub-chains of sub-sub-bundles, etc., until the nano-scale of atomic lattice is reached.
Based on Maxwell-Boltzmann distribution of thermal energies of atoms, the cdf of strength of a
nano-scale connection is deduced from the stress dependence of the interatomic activation energy
barriers, and is expressed as a function of absolute temperature T and stress-duration τ (or loading
rate 1/τ). A salient property of this cdf is a power-law tail of exponent 1. It is shown how the
exponent and the length of the power-law tail of cdf of strength is changed by series couplings
in chains and by parallel couplings in bundles consisting of elements with either elastic-brittle or
elastic-plastic behaviors, bracketing the softening behavior which is more realistic, albeit more dif-
ficult to analyze. The power-law tail exponent, which is 1 on the atomistic scale, is raised by the
hierarchical statistical model to an exponent of m = 10 to 50, representing the Weibull modulus
on the structural scale. Its physical meaning is the minimum number of cuts needed to separate
the hierarchical model into two separate parts, which should be equal to the number of dominant
cracks needed to break the RVE. Thus the model indicates the Weibull modulus to be be governed
by the packing of inhomogeneities within an RVE. On the RVE scale, the model yields a broad core
of Gaussian cdf (i.e., error function), onto which a short power-law tail of exponent m is grafted at
the failure probability of about 0.0001 to 0.01. The model predicts how the grafting point moves
to higher failure probabilities as structure size increases, and also how the grafted cdf depends
on T and τ . The model provides a physical proof that, on a large enough scale (equivalent to
at least 500 RVEs), quasibrittle structures must follow Weibull distribution with a zero threshold.
The experimental histograms with kinks, which have so far been believed to require the use of a
finite threshold, are shown to be fitted much better by the present chain-of-RVEs model. For not
too small structures, the model is shown to be essentially a discrete equivalent of the previously
developed nonlocal Weibull theory, and to match the type 1 size effect law previously obtained
from this theory by asymptotic matching. The mean stochastic response must agree with the
cohesive crack model, crack band model and nonlocal damage models. The chain-of-RVEs model
can be verified and calibrated from the mean size effect curve, as well as from the kink locations
on experimental strength histograms for sufficiently different specimen sizes.
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Nature of Problem

The type of probability distribution function (pdf) of structural strength has so far been
studied separately from the mechanics of structural failure, as if these were independent
problems. For quasibrittle structures, however, such a separation is unjustified because the
type of pdf depends on structure size and geometry, and does so in a way that can be
determined only by cohesive fracture or damage analysis. Structural safety dictates that the
design must be based on extremely small failure probability, about 10−6 to 10−7 (Duckett
2005, Melchers 1987, NKB 1978).

Since part of the uncertainty stems from the randomness of load, which is in structural
engineering taken into account by the load factors (Ellingwood et al. 1982; CIRIA 1977),
the knowledge of the far-left tail of pdf of strength need not extend that far. Based on
integrating the product of load and strength distributions (Freudenthal et al. 1966, Haldar
and Mahadevan 2000), joint probability computations show that the probability cut-off up
to which the pdf tail must be known need not be as small as 10−6 to 10−7, but must still
be about one order of magnitude larger, i.e. about 10−5 to 10−6 (Bažant 2004a), provided
that, as usual, the load and resistance factors do not differ by more than about 3 : 1 (this
requirement is more stringent if the structural strength distribution has a Weibull, rather
than Gaussian, tail).

In the far-left tail, the pdf type makes a huge difference. For example, the difference of
load with failure probability 10−6 from the mean failure load will almost double when the
pdf changes from Gaussian to Weibull (with the same mean and same coefficient of variation;
see Fig. 1).

The importance of the problem is clear from the large values of safety factors. Defined as
the ratio of mean load capacity to the maximum service load, they are about 2 in the case of
steel structures, aeronautical and naval structures, while in the case brittle failures (e.g., shear
failures) of normal size concrete structures they are about 4 for design code formulas and
about 3 for finite element simulations (Bažant and Yu 2006). Consequently, improvements in
the stochastic fracture mechanics underlying the safety factors have the potential of bringing
about much greater benefits than improvements in the methods of deterministic structural
analysis. It makes no sense at all to strive for a 5% to 10% accuracy improvement by more
sophisticated computer simulations or analytical solutions and then scale down the resulting
load capacity by an empirical safety factor of 2 to 4 which easily could have an error over
50%.

Background and Objectives

While the mean statistical size effect in failures at macro-crack initiation is by now understood
quite well (e.g., Bažant and Planas 1998, chpt. 12), and its combination with the deterministic
size effect has recently also been clarified (Bažant and Xi 1991; Bažant and Novák 2000a,b;
Bažant and Novák 2001; Bažant 2004a,b; Carmeliet 1994; Carmeliet and Hens 1994; Gutiérez
1999, Breysse 1990; Frantziskonis 1998), little is known about the type of pdf to be assumed
once the mean structural response has been calculated. What is clear is that the strength of
brittle structures made, e.g., of fine-grained ceramics and fatigue-embrittled steel, must follow
the Weibull distribution—by virtue of the weakest-link (or series coupling) model (because
one small material element will trigger failure), and that (except in the far-out tails) the
strength of ductile (or plastic) structures must follow the Gaussian distribution—by virtue

2



of the central limit theorem of the theory of probability (because the limit load is a sum of
contributions from all the plasticized material elements along the failure surface, as in parallel
coupling).

Statistical models with parallel and series couplings have been extensively analyzed, e.g.,
by Phoenix (1974, 1983), Phoenix and Smith (1983), McCartney and Smith (1983), McMeek-
ing and Hbaieb (1999), Phoenix et al. (1997), Phoenix and Beyerlein (2000); Harlow and
Phoenix (1978a,b); Harlow et al. (1983), Rao et al. (2001), Mahesh et al. (2002), Smith
(1982) and Smith and Phoenix (1981). However, what seems to have been unappreciated and
has been brought to light only recently (Bažant 2004a,b), on the basis of nonlocal Weibull
theory (Bažant and Xi 1991), is that the pdf of strength of a quasibrittle structure must
gradually change with increasing size and shape (or brittleness) from Gaussian to Weibull
(Bažant 2004a). Consequently, the size effect impacts not only the mean structural strength
but also the type of distribution, and thus the understrength part of safety factor.

It might seem that any consideration of failure probabilities as small as 10−6 or 10−5

would be purely speculative because direct determination of failure load histogram in that
probability range would require at least 108 tests of identical laboratory specimens. However,
there are plenty of physical theories that cannot be directly verified by experiments but are
well established because they have been experimentally verified through their predictions.
The most important prediction from the tail pdf of material strength is the mean statistical
size effect. This can be observed experimentally even though it depends only on the far-left
tail of pdf. When structural failure is caused by only one representative volume element
(RVE) of the material, a structure consisting of 1003 RVEs in fact samples the far-left tail of
material strength pdf in the 10−6 probability range. Another feasible way of verification, of
course, is to conduct computer simulations based on a more fundamental theory, for example,
the random lattice model (Cusatis et al. 2003).

This article (which expands a recent conference presentation, Bažant and Pang 2005b,
and is briefly summarized, without derivations, in Bažant and Pang 2006) has three goals:
(i) To present a rational physical argument for the evolution of pdf of strength with the size
of quasibrittle structures; (ii) to deduce the pdf of strength of the RVE from the statistics of
interatomic bond breaks; and (iii) to relate the pdf to activation energy, temperature, load
duration and material characteristic length l0. At a recent conference (Bažant and Pang
2005a), the implications for structural reliability analysis, and particularly for generalizing
the Cornell (1969) and Hasofer-Lind (Madsen et al. 1986) reliability indices to incorporate
the size and shape dependence, have been pointed out.

Quasibrittle Behavior and Size Effect

The tail probabilities and the associated size effect have doubtless played a significant in many
disasters of very large civil engineering structures. These disasters have been at least three
orders of magnitude more frequent than than the failures of small structures (Duckett 2005,
Melchers 1987, NKB 1978), and about ten-times more frequent than estimated by recent
state-of-art analysis. Reanalysis of the 1959 failure of Malpasset Dam (Bažant et al. 2005)
revealed that if this dam were designed today, with the knowledge of the statistical-energetic
size effect on mean structural strength and of the change of pdf from Gaussian to Weibull
to be analyzed here, the tolerable displacement of the abutment (which is what doomed this
record-breaking structure) would have been about 4-times smaller than what was considered
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safe in 1950 when this ill-fated dam was designed.
The effect of size (and brittleness) on reliability of quasibrittle structures was clarified by

numerical simulations (Bažant and Novák 2000a,b) and asymptotic approximations (Bažant
1997, 2004a,b) based on the nonlocal generalization of Weibull theory (Bažant and Xi 1991)—
a theory that can capture both the energetic (deterministic) and statistical size effects (see
the reviews in Bažant 2002, 2004a,b; Bažant and Planas 1998). For not too small failure
probabilities (Pf ≥ 0.05), Monte Carlo simulations with this theory have been shown to fit
well the histograms of extensive tests of flexural strength (modulus of rupture) of concrete
(Koide 1998, 2000). An asymptotic-matching formula for the combined statistical-energetic
size effect was shown to match well Jackson’s (1992) flexural strength tests of laminates at
NASA.

Quasibrittle structures, consisting of quasibrittle materials, are those in which the frac-
ture process zone (FPZ) is not negligible compared to the cross section dimension D (and
may even encompass the entire cross section). Depending on the scale of observation or ap-
plication, quasibrittle materials include concrete, fiber composites, toughened ceramics, rigid
foams, nanocomposites, sea ice, consolidated snow, rocks, mortar, masonry, fiber-reinforced
concretes, stiff clays, silts, grouted soils, cemented sands, wood, paper, particle board, filled
elastomers, various refractories, coal, dental cements, bone, cartilage, biological shells, cast
iron, grafoil, and modern tough alloys. In these materials, the FPZ undergoes softening dam-
age, such as microcracking, which occupies almost the entire nonlinear zone. By contrast,
in ductile fracture of metals, the FPZ is essentially a point within a non-negligible (but still
small) nonlinear zone undergoing plastic yielding rather than damage.

The width of FPZ is typically about the triple of the dominant inhomogeneity size. Its
length can vary enormously; it is typically about 50 cm in normal concretes; 5 cm in high-
strength concretes; 10 to 100 µm in fine-grained ceramics; 10 nm in a silicon wafer; 100 m
in a mountain mass intersected by rock joints; 1 to 10 m in an Arctic sea ice floe; and about
20 km in the ice cover of Arctic Ocean (consisting of thick floes a few km in size, connected
by thin ice). If the the cross section dimension (size) of structures is far larger than the
FPZ size, a quasibrittle material becomes perfectly brittle, i.e., follows linear elastic fracture
mechanics (LEFM). Thus concrete is quasibrittle on the scale of normal beams and columns,
but perfectly brittle on the scale of a large dam. Arctic Ocean cover, fine-grained ceramic or
nanocomposite are quasibrittle on the scales of 10 km, 0.1 mm or 0.1 µm, but brittle on the
scales of 1000 km, 1 cm or 10 µm, respectively.

This paper will deal exclusively with unnotched structures of positive geometry (i.e.,
structures in which the stress intensity factor at constant load increases with the crack length).
In this case, a large crack cannot grow stably and the size effect is of Type 1, for which the
maximum load is reached only after a full FPZ, triggering a macro-crack, develops. If a large
notch exists, or large crack develops stably before the maximum load, the size effect is of
Type 2. Then the failure probability must be essentially Gaussian. The transition from Type
1 to 2 size effect is a complex problem.

The FPZ width may be regarded as the size of the representative volume element (RVE) of
material. The RVE definition cannot be the same as in the homogenization theory of elastic
structures. The RVE is here defined as the smallest material element whose failure causes the
failure of the whole structure (of positive geometry). From experience with microstructural
simulation and testing, the size of RVE is roughly the triple of maximum inhomogeneity size
(e.g., the maximum aggregate size in concrete or grain size in a ceramic).
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According to the deterministic theories of elasticity and plasticity, geometrically similar
structures exhibit no size effect, i.e., their nominal strength, defined as

σN = Pmax/bD (1)

is independent of characteristic structure size D (Pmax = maximum load of the structure or
parameter of load system; b = structure thickness in the third dimension). The size effect is
defined as the dependence of σN on D. Structures whose material failure criterion is determin-
istic and involves only the stress and strain tensors exhibit no size effect. The classical cause
of size effect, proposed by Mariotte around 1650 and mathematically described by Weibull
(1939), is the randomness of strength of a brittle material. Quasibrittle structures, whose
material failure criterion involves a material characteristic material length l0 (implied by the
material fracture energy or the crack softening curve), exhibit, in addition, the energetic size
effect (Bažant 1984, 2002), caused by energy release due to stress redistribution engendered
by a large FPZ or by stable growth of large growth before reaching the maximum load).

Two basic types of energetic size effect must be distinguished. The type 1 size effect, the
only one studied here, occurs in positive geometry structures failing at macro-crack initiation.
Type 2 occurs in structures containing a large notch or a large stress-free (fatigued) crack
formed prior to maximum load (there also exists a type 3 size effect, but it is very similar to
type 2); Bažant 2002. For type 2, material randomness affects significantly only the scatter
of σN but not its mean (Bažant and Xi 1991), while for type 1 it affects both, and so is more
important. Type 1 is typical of flexural failures, in which the RVE size coincides with the
thickness of the boundary layer of cracking. This layer causes stress redistribution and energy
release before the maximum load is reached. This, in turn, engenders the type 1 energetic
size effect which dwarfs the statistical Weibull-type size effect when the structure is small.
The statistical size effect on mean σN occurs only for type 1.

Hypotheses of Analysis

Hypothesis I. The failure of interatomic bonds is governed by the Maxwell-Boltzmann
distribution of thermal energies of atoms and the stress dependence of the activation energy
barriers of the interatomic potential.

Hypothesis II. Quasibrittle structures (of positive geometry) that are at least 1000-times
larger than the material inhomogeneities, as well as laboratory specimens of sufficiently fine-
grained brittle materials, exhibit random strength that follows the Weibull distribution.

Hypothesis III. The cumulative probability distribution function (cdf) of strength of an
RVE of brittle or quasibrittle material may be described as Gaussian (or normal) except in
the far-left power-law tail that reaches up to the failure probability of about 0.0001 to 0.01
(this hypothesis is justified, e.g., by Weibull’s tests of strength histograms of mortar discussed
after Eq. (69)).

Fundamental Questions to Answer

In the weakest-link statistical theory of strength, there remain four unanswered fundamental
questions:

1) What is the physical reason for the tail of the pdf of strength to be a power law?
2) Why the threshold of power-law tail must be zero?
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3) What is the physical meaning of Weibull modulus m?
4) Why is the power law exponent so high, generally 10 to 50?
A physical justification of Weibull distribution of structural strength was proposed by

Freudenthal (1968), who assumed an inverse power law distribution of material flaw sizes,
neglecting flaw interactions and material heterogeneity. However, this did not amount to a
physical proof because his assumptions were themselves simplifications subjected to equal
doubt. Besides, for some quasibrittle materials such as Portland cement concretes, the rele-
vant distribution of material flaws is hardly quantifiable, because the microstructure is totally
disordered and saturated with flaws all the way down to nanometers. As will be shown here,
the physical proof can be based on Hypothesis I, which is exposed to no doubt.

Strength Distribution Ensuing from Stress Dependence of Activa-
tion Energy Barriers and Maxwell-Boltzmann Distribution

The basic idea, stated in Hypothesis I, is that the failure probability must, in some way, be
controlled by interatomic bond breaks. The fraction of atoms (or frequency) at which the
thermal energy of an atom at absolute temperature T exceeds E is known to be given by the
Maxwell-Boltzmann distribution: Φ(E) = e−E/kT , (e.g., Hill 1960, Mayer 1940, Cottrell 1964,
McClintock and Argon 1966); k = Boltzmann constant. The cumulative density function
(cdf) of E is then 1− e−E/kT , and the corresponding pdf is φ(E) = e−E/kT /kT . If the energy
of an atom exceeds its activation energy Q (Fig. 2), its bond gets broken. The frequency, or
rate, of interatomic bond breaks is f0 =

∫∞
Q e−E/kT dE/kT or

f0 = e−Q/kT (2)

(which is also known as the Arrhenius equation). Aside from phenomena such as melting,
evaporation, desorption, diffusion, chemical reactions, creep and dislocations, bond breaks
are what causes fracture.

Because stress is the gradient of potential energy, a macro-continuum applied stress, σ,
causes the activation energy barrier to change from Q to Q − κσ for bond breaking (in
the sense of stress), and from Q to Q + κσ for bond restoration (in the sense opposite to
stress); Fig. 2; κ is a positive constant depending on the type and geometry of atomic lattice
(Glasstone et al. 1941). So, the frequency of interatomic bond breaks becomes e−(Q−κσ)/kT ,
and the frequency of interatomic bond restorations becomes e−(Q+κσ)/kT . Hence, the net
frequency, fb, of permanent bond breaks under stress σ at temperature T is e−(Q−κσ)/kT−
e−(Q+κσ)/kT , which may be rewritten as

fb = 2 e−Q/kT sinh(κσ/kT ) (3)

It might be objected that this equation does not take into account the transfer of load
from broken to unbroken interatomic bonds and the gradual exhaustion of interatomic bonds
carrying the applied macroscopic stress σ. However, this load transfer will be captured
separately—by parallel couplings in the statistical strength model connecting the nano- and
macro-scales.

A continuous crack within an RVE will occur when the broken bonds create a contiguous
surface of atomic bond breaks separating the atomic lattice into two parts. This will occur
when the fraction of broken bonds in the lattice reaches a certain critical value φb (the
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calculation of which is a problem of percolation theory, different from the classical problem
of continuous passage channel through the solid). That critical value will be attained after a
certain critical duration τ of exposure of the RVE to stress σ, and so φb = φb(τ). As a crude
approximation, one may assume proportionality, i.e., φb(τ) ≈ φ0τ where φ0 is a constant
depending on the type and geometry of the atomic lattice. So, the cumulative probability of
creating a continuous crack on the nano-scale may be expressed as

F (σ) = min [ Cb sinh(κσ/kT ), 1 ] for σ ≥ 0 (4)
where Cb = 2φb(τ) e−Q/kT (5)

The “min” serves here to ensure that F (σ) terminate at 1. The stress at which F (σ) = 1
is σ1 = (kT/κ) sinh−1(1/Cb), which is a function of temperature T as well as the stress
duration, τ (thus the time or rate dependence of strength is included in the formulation).
The corresponding pdf is (Fig. 3): pb = (Cbκ/kT ) cosh(κσ/kT ) for σ ∈ (0, σ1); else pb = 0.
Of main interest here is the left tail of F (σ). Since sinhx ≈ x for small x, the cdf tail is a
power law with exponent 1 and a zero threshold;

for σ → 0 : F (σ) ≈ (Cbκ/kT ) σ ∝ σp with p = 1 (6)

The important point to note is that the tail is a power law with exponent 1 (thus, for
example, the strength of a chain, or a series coupling, of many potential break surfaces on
the nano-scale would have a Weibull cdf with m = 1, which is the exponential distribution,
i.e. F (σ) = 1 − e−cσ in which c = Cbκ/kT ; however, the exponential distribution is not
needed for our purpose and probably would anyway be an oversimplification, because the
break surfaces do not interact as simply as the links in a chain).

Review of Weibull Weakest-Link Model and Its Nonlocal Generalization

To make the statistical connection from the nano-scale of atoms to the macro-scale of the
FPZ or the structure, various probabilistic models of strength need to be discussed. First we
discuss the simplest, which is the weakest-link model (Fig. 4a). This model is applicable if
the FPZ is so small in comparison to structure size D that it can be treated as a point. For
geometrically similar structures of various sizes, the stress distribution as a function of relative
coordinate vector ξ = x/D of material points is then independent of D (x = actual coordinate
vector). The structure may be considered as an assembly of small material elements, the size
of which is the same as the size of the laboratory test specimens. Conveniently (but not
necessarily, for the purpose of statistics alone), these material elements will be assumed to
coincide with the RVE, whose volume is V0 and size is l0 = V 1/nd

0 = material characteristic
length.

Denote Pk = failure probability of the kth RVE (k = 1, 2, ...N) of structure, and Pf =
failure probability of the structure. In structures of positive geometry, to which this study is
restricted, the failure of one RVE causes the whole structure to fail. Then the probability of
survival of the structure is the joint probability of survival of all the RVEs. Assuming that
all Pk are statistically uncorrelated, we thus have 1− Pf = (1− P1)(1− P2) · · · (1− PN), or

ln(1− Pf ) =
N

∑

k=1

ln(1− Pk) ≈ −
N

∑

k=1

Pk (7)
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where we set ln(1 − Pk) ≈ −Pk because normally Pk � 1. Based on experiments, Weibull
(1939, 1951) realized that, to fit test data, the left (low probability) tail of the cdf of RVE
strength (i.e., failure probability of one RVE) must be a power law, i.e.,

Pk = [σ(xk)/s0]m for small σ(xk) (8)

where s0 and m are material constants called the scale parameter and Weibull modulus (or
shape parameter); and σ(xk) is the positive part of the maximum principal stress at a point
of coordinate vector xk (the positive part is taken because negative normal stresses do not
cause tensile fracture). Substituting this into (7) and making a limit transition from discrete
sum to an integral over structure volume V , one gets the well-known Weibull probability
integral;

− ln(1− Pf ) =
∑

k

(

σ(xk)
s0

)m

≈
∫

V

(

σ(x)
s0

)m dV (x)
l0nd

(9)

The integrand [σ(xk)/s0]m/l0nd = cf (x) is called the spatial concentration of failure proba-
bility and is the continuum equivalent of Pk per volume l0nd . Because the structure strength
depends on the minimum strength value in the structure, which is always small if the structure
is large, the validity of Eq. (9) for large enough structures is unlimited.

Consider now geometrically similar structures of different sizes D in which the dimension-
less stress fields σ̄(ξ) are the same functions of dimensionless coordinate vector ξ = x/D,
i.e., depend only on structure geometry but not on structure size D. In Eq. (9), we may
then substitute σ(x) = σN σ̄(ξ) where σN = nominal stress = P/bD; P = applied load or
a conveniently defined load parameter, and b = structure width (which may but need not
be scaled with D). Further we may set dV (x) = DnddV (ξ) where nd = number of spatial
dimensions in which the structure is scaled (nd = 1, 2 or 3). After rearrangements, Eq. (9)
yields − ln(1− Pf ) = (σN/S0)m, or

Pf = 1− e−(σN/s0)mΨ(D/l0)nd = 1 − e−(σN/S0)m
(10)

where S0 = s0(l0/D)nd/mΨ−1/m, Ψ =
∫

V
[σ̄(ξ)]m dV (ξ) (11)

According to Eq. (10), the tail probability is a power law:

Pf ≈ (σN/S0)m (for σN → 0) (12)

For Pf ≤ 0.02 (or 0.2), its deviation from Eq. (10) is < 1% (or < 10 %) of Pf .
The effect of structure geometry is embedded in integral Ψ, independent of structure size.

Because exponent m in this integral is typically around 25, the regions of structure in which
the stress is less than about 80% of material strength have a negligible effect. Note that Pf

depends only on the parameter
s∗0 = s0l0nd/m (13)

and not on s0 and l0 separately. So, the material characteristic length l0 is used here only
for convenience, to serve as a chosen unit of measurement. The Weibull statistical theory of
strength, per se, has no characteristic length (which is manifested by the fact that the scaling
law for the mean strength is a power law; Bažant 2002). However, in the generalization
to the probabilistic-energetic theory of failure and size effect (Eq. (25), the use of material
characteristic length is essential, which is why introducing l0 is here convenient.
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The last expression in Eq. (10) is the Weibull cdf in standard form, with scale parameter
S0. From Eq. (11) one finds that

σN = C0 (l0/D)nd/m (14)
where C0 = CfΨ−1/m, Cf = s0[− ln(1− Pf )]1/m (15)

This equation, in which C0 and S0 are independent of D, describes the scaling of nominal
strength of structure for a given failure probability Pf . The mean nominal strength is calcu-
lated as σ̄N =

∫∞
0 σNpf (σN)dσN where pf (σN) = dPf (σN)/dσN = pdf of structural strength.

Substituting Eq. (10), one gets, after rearrangements, the well-known Weibull scaling law
for the mean nominal strength as a function of structure size D and geometry parameter Ψ;

σ̄N(D, Ψ) = s0Γ(1 + 1/m) = Cs(Ψ) D−nd/m (16)

where Cs(Ψ) = Γ(1 + 1/m) l0nd/ms0/Ψ1/m (17)

in which one may use the approximation Γ(1 + 1/m) ≈ 0.63661/m for 5 ≤ m ≤ 50 (Bažant
and Planas 1998, Eq. 12.1.22).

The coefficient of variation (CoV) of σN is calculated as ωN
2 = [

∫∞
0 σN

2 dPf (σN)]/σ̄ 2
N −1.

Substitution of Eq. (10) gives, after rearrangements, the following well-known expression:

ωN =

√

√

√

√

Γ (1 + 2/m)
Γ2 (1 + 1/m)

− 1 (18)

which is independent of structure size as well as geometry. Approximately, ωN ≈ (0.462 +
0.783m)−1 for 5 ≤ m ≤ 50 (Bažant and Planas 1998, Eq. 12.1.28).

It is conceptually useful to introduce the equivalent number, Neq, of RVEs for which a
chain with Neq links gives the same cdf. For a chain under the same tensile stress σ = σN in
each element, we have

Pf = 1− e−Neq(σN/s0)m
(19)

Setting this equal to (10) and solving for N , we obtain

Neq = (s0/S0)m = (D/l0)ndΨ (20)

Neq is here a more convenient alternative to what is called the Weibull stress (Beremin,
1983), σW , which is defined by setting

Pf = 1 − e−(σW /s0)m
= 1 − e−(Veff /V0)(σN/s0)m

(21)

where Veff/V0 = (D/l0)ndΨ. Equating this to (10), we see that

σW = σN Ψ1/m(D/l0)nd/m (22)

i.e., the Weibull stress is the nominal stress corrected for the size and geometry factors.
Eq. (21) is a popular way to express the statistical size effect to structure volume V as

a ‘volume effect’. But this term may be misleading. In Eq. (20) the integration over V of a
three-dimensional structure must be made two-dimensionally (nd = 2) if the structure must
fail, for reasons of mechanics, simultaneously through its entire width b (i.e., the initiating
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fracture front is not short segment within the beam width but a line trough the entire
width). Otherwise, widening a narrow beam, which increases the structure volume V , would
be predicted to reduce the strength of the beam, but this would contradict experience. For
this reason, calling the statistical size effect the volume effect is not quite accurate.

Eq. (10) can alternatively be deduced from the stability postulate of extreme value statis-
tics, expressed by the following functional equation for survival probability Φ(σ) (Fréchet
1927);

ΦN(σ) = Φ(aNσ + bN), Φ(σ) = 1− Pf (σ) (23)

To derive it, one imagines the chain to be subdivided into N sub-chains, each with survival
probability Φ(σ). Because the chain survives only if all sub-chains survive, the survival
probability of the chain must be the joint probability of survival of all sub-chains, which
is ΦN(σ). The survival probability Φ(σ) of each sub-chain must obviously be similar, i.e.,
related to ΦN(σ) by linear transformation, characterized in Eq. (23) by coefficients aN and
bN . Substitution of Eq. (10) verifies that Eq. (23) is indeed satisfied, and that aN = N1/m

and bN = 0.
The domain of attraction of Weibull distribution includes all elemental distributions

P1(σ1) which asymptotically approach a power law. This is mathematically expressed by
the condition limσ1→0[σ1/P1(σ1)]dP1(σ1)/dσ1 = m = a positive constant (e.g., Gumbel 1958,
Ang and Tang 1984). Eq. (10) is such a distribution because, for small σm, 1−e−σm ≈ σm,
i.e., the Weibull cdf (as well as pdf) has a power-law left tail.

Fisher and Tippett (1928) proved that Eq. (23) can be satisfied by three and only three
distributions. Aside from Eq. (10), they are Pf (σ) = 1−e−eσ/sN for σ ∈ (−∞,∞), which
later came to be known as the Gumbel (1958) (minimum) distribution, and 1− e−(−sN/σ)m

for σ ∈ (−∞, 0), known as the Fréchet (1927) (minimum) distribution (sN = constant); Ang
and Tang (1984), Soong (2004). Gumbel and Fréchet distributions cannot apply to strength
because they govern the minimum as σ → −∞ and have infinite negative tails.

Thus, the Weibull distribution appears to be the only one mathematically acceptable for
brittle structures as well as large enough quasibrittle structures, in which the failure of one
small elementary volume of material causes the whole structure to fail. By contrast, the
ductile (or plastic) failures must exhibit the Gaussian distribution. This follows by applying
the central limit theory to the plastic limit state in which the load is a sum of many random
contributions from all the material elements along the failure surface. The Gaussian (normal)
distribution has sometimes been replaced with lognormal, citing the impossibility of negative
strength values. However, this argument is false since, according to the central limit theorem,
the negative strength values must always lie beyond the reach of the Gaussian core of pdf.
Besides, the lognormal distribution has the wrong skewness, opposite to Weibull. Moreover,
a lognormal distribution would mean that the load is a product, rather than a sum, of the
contributions from all the elements along the surface, an obvious impossibility. Thus, the
log-normal distribution has no place strength statistics.

Note that all the extreme value distributions presume the elemental properties to be sta-
tistically independent (uncorrelated). This is always a good enough hypothesis for structures
sufficiently larger than the autocorrelation length la of the strength field, although a rescaled
mean strength of RVE is needed. But if la can be taken equal to the RVE size l0, which
seems to be quite logical, no rescaling is needed.

Eq. (19) is contingent upon the assumption that the brittle failure of material occurs in
tension (rather than shear or a shear-tension combination), and that the random material
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strength is the same for each spatial direction, i.e., that the strengths in the three principal
stress directions are perfectly correlated. Then it is justified to interpret σ in Eq. (19) as the
positive part maximum principal nonlocal stress at each continuum point. However, if the
random strengths in the principal directions at the same continuum point were statistically
independent, then σ in Eq. (19) would have to be replaced by

∑3
I=1 σ̄I where σ̄I are the

positive parts of the principal nonlocal stresses at that point.
If the material characteristic length l0 is not negligible compared to D, then the structure

inevitably exhibits a combined statistical-energetic size effect, and if D is not � l0 then
the energetic part will dominate. This can generally be captured by the nonlocal Weibull
theory (Bažant and Xi 1991), in which the material failure probability depends not on the
continuum stress at a given point x but on the nonlocal strain ε̂(x) at that point, defined
by spatial averaging of the positive part of the maximum principal local strain ε(x) over a
neighborhood of size ` surrounding point x. Eq. (10) is then generalized as

Pf = 1− exp
[

−
∫

V

(

Eε̂(x)
s0

)m

dV (x)/l0nd

]

(24)

This formulation becomes essentially equivalent to the classical Weibull theory, Eq. (10),
when ` ≤ l0, and becomes identical when D � l0 and D � `. The nonlocal averaging
makes the spatial concentration of failure probability an autocorrelated random field with
autocorrelation length la equal to `. Although la could, in theory, differ from `, it seems
reasonable to assume that la ≈ `.

The statistical-energetic size effect on the mean of σN can be approximately described as
(Bažant 2004 a,b; Bažant and Novák 2001; Bažant et al. 2005)

σN = A
(

ϑrnd/m + rκϑ
)1/r

, ϑ = B (1 + D/ηl0)
−1 (25)

where nd, m, r, κ, η, A, B, l0 = constants. This formula was derived by asymptotic matching
of the first two terms of the large-size asymptotic expansion of Eq. (24) in powers of 1/D
with the first two terms of the small-size asymptotic expansion of the cohesive crack model
in powers of D (Bažant 2004a,b).

Strength Distribution of Fiber Bundle (Parallel Coupling) Model

Another basic statistical model is the fiber bundle (or parallel coupling) model (Fig. 4b).
Various hypotheses of load sharing after fiber break are found in the literature, but the only
physically meaningful approach is to deduce load sharing from the physical fact that all the
fibers are subjected to the same strain ε. The fibers are numbered as k = 1, 2, ...n in the order
of increasing random values of their strengths σk. Each fiber is assumed to have the same
cross section Af , same elastic modulus Ef , same cdf F (σ) of its strength, and to respond
elastically until its strength limit is reached. Two types of fiber behavior after reaching the
strength limit are easy to analyze—a) brittle, in which case the stress drops suddenly to zero,
and b) plastic, in which case the fiber extends at constant stress σ◦ (Fig. 5). A more realistic
post-peak behavior is gradual softening, but it is harder to analyze.

a) Brittle Bundle. When the jth fiber is about to break, fibers k = 1, 2, ...j − 1
are already broken. Because the unbroken fibers k = j, j + 1, j + 2, ...n (whose number is
n − j + 1) have the same strain ε, the load applied on the bundle is shared equally among
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all the unbroken fibers and their stress is σk = Efε (for this reason, the brittle fiber bundle
is also called the equal-load-sharing model). Consequently, the average stress carried by the
whole bundle is (n− j + 1)σj/n, and its maximization yields the bundle strength:

σ =
1
n

max
ε

n
∑

k=1

H(σk − Efε)Efε =
1
n

max
j

[(n− j + 1)σj] (26)

where H = Heaviside step function. The bundle strength can also be written as σ =
n−1 ∑n

k=u Efε = (1− (u− 1)/n) Efε, in which u = j-value for which the last expression is
maximized. This shows that the randomness of bundle strength is caused by randomness of
the maximizing ratio λ = u/n and of the corresponding strain ε. The cdf of strength σ of a
bundle with n fibers can be exactly computed from Daniels’ (1945) recursive formula:

Gn(σ) =
n

∑

k=1

(−1)k+1
(

n
k

)

F k(σ)Gn−k

( nσ
n− k

)

, where
(

n
k

)

=
n!

k!(n− k)!
(27)

where F k(σ) = [F (σ)]k; σ ≥ 0, G0(σ) = 1, Gn(σ) is the cdf of strength σ of the whole bundle
with n fibers (this equation, though, is unusable for about n > 75 because of accumulation
of round-off errors).

For large n, the fiber strength values are almost continuously distributed. So, for n →∞,
the area fraction occupied by unbroken fibers when the fiber of strength σ is breaking is
1 − F (σ), and the stress carried by the bundle is σ = Efε[1 − F (Efε)]. From the condition
dσ/dε = 0, the value σ = σ∗ = Efε∗ for which this expression attains a maximum can be
easily determined. Since the pdf of infinite bundle is symmetric (Daniels 1945), the maximum
must be equal to the mean strength of the bundle, which is µσ = σ∗[1− F (σ∗)].

Daniels (1945) proved that, for large n, the variance of the total load on the bundle
approaches nσ∗2F (σ∗)[1 − F (σ∗)]. It follows that the coefficient of variation (CoV) of the
strength of a large bundle has the asymptotic approximation

ωσ ≈ ρ0 n−1/2, with ρ0 ≈
√

F (σ∗)/[1− F (σ∗)] (for large n) (28)

where ρ0 = constant. Hence, ωσ vanishes for n → ∞. In other words, the strength of
an infinite bundle is deterministic. So (unlike the chain of many elements), the number of
elements (or fibers) in the bundle must be finite and the question is how many of them should
be considered. It will be shown that this number cannot exceed the value of Weibull modulus
m of a RVE.

A question crucial for reliability of very large structures is the shape of the far-left tail
lying outside the Gaussian core of the pdf of bundle strength when n is finite. Obviously, the
left tail cannot be Gaussian because a Gaussian cdf (i.e., the error function) has an infinite
negative tail whereas the bundle strength cannot be negative. The distance from the mean
µσ to the point σ = 0, which is a point sure to lie beyond the Gaussian core, may be written
as ∆σnG = µσ = δσ/ωσ = (δσ/ρ0)

√
n where δσ = ωσµσ = standard deviation of bundle

strength. The spread ∆σG of the Gaussian core (i.e., the distance from the mean to the end
of Gaussian core) must obviously be smaller than this; it is found to be also proportional to√

n, i.e.
∆σG = γGδσ

√
n (29)

where γG is some constant less than 1/ρ0. Smith (1982) showed that Daniels’ Gaussian
approximation to the cdf of bundle has the convergence rate of at least O(n−1/6), which is
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a rather slow convergence, and proposed an improved Gaussian approximation with a mean
depending on n, for which the convergence rate improves but still is not guaranteed to be
better than O(n−1/3(log n)2).

The case of interest here is when the strength of each fiber has a power-law left tail, of
some exponent p. Then the cdf of strength of brittle bundle has also a power-law tail, and
its exponent is np.

This important property is revealed by Weibull-scale plots of computer simulations of
cumulative histograms according to Eq. (27) (Fig. 6a), and may be easily proven by induction
from Eq. (27). Set F (σ) = σp. For one fiber, n = 1, this property is true because G1(σ) =
(−1)2

(

1
1

)

F 1(σ)G0 = (σp)1. Now assume this property to be true for the cdf of all bundles
with up to n− 1 fibers, i.e. Gk(σ) = (σ/sk)kp for k = 1, 2, ...n− 1. Then use Eq. (27) for a
bundle with n fibers. Noting that F k(σ) = σkp, one gets from (27)

Gn(σ) =
n

∑

k=1

(−1)k+1

(

n
k

)

σkp Gn−k

( nσ
n− k

)

= (−1)n+1

(

n
n

)

σnpG0 +
n−1
∑

k=1

(−1)k+1

(

n
k

)

σkp

(

nσ
(n− k)sn−k

)(n−k)p

=



(−1)n+1G0 +
n−1
∑

k=1

(−1)k+1

(

n
k

) (

n
(n− k)sn−k

)(n−k)p


 σnp =
(σ

s n

)np
(30)

(because all the powers of σ are found to be the same); sn is a factor independent of σ.
Q.E.D. (by induction based on the set theory, this property was previously proven by Harlow
et al., 1983; see also the works of Phoenix et al.).

Now it is clear that parallel couplings can raise the power-law tail exponent from 1 on
the nano-scale to any value, m, on the RVE scale. But will this yield a realistic length of the
power-law tail?

To check it, let us use Taylor series expansion of the Weibull cdf; Fwb(σ) = (σ/s1)p(1 −
ξ/2!+ξ2/3!−ξ3/4!+ . . .) where ξ = (σ/s1)p. Taking only the first two terms of expansion, we
obtain F (σ) = (σ/s1)p(1−σp/t1) and Gk(σ) = (σ/sk)kp(1−σp/tk) for k = 1, 2, ...n−1 where
s1, sk, tk are constants and t1 = 21/ps1. Parameters t1/p

1 and t1/p
k describe the deviations from

power-law tail, with d1 = t1(ε)1/p and dk = tk(ε)1/p characterizing the length of tail up to the
deviation of (100ε)% from the power law.

One may now substitute these expressions into Eq. (27) and use binomial expansions for
powers of a sum; this yields

( σ
sn

)np [

1−
( σ

tn

)p]

≈
n−1
∑

k=1

(−1)k+1

(

n
k

)

(σ
s 1

)kp [

1− k
( σ

t1

)p]
(

nσ
jsj

)jp [

1−
(

nσ
jtj

)p]

+(−1)n+1
(σ

s 1

)np [

1 + n
( σ

t1

)p]

(31)

where j = n − k. For this equation to be valid for every small σ, the coefficients of the
combined terms with σnp and σnp+1 must vanish. The former yields Eq. (30), and the latter
yields:

t1
tn

=







n−1
∑

k=1

(−1)k+1

(

n
k

) (

n
j

s1

sj

)jp [

k +
(

n
j

t1
tj

)p]

+ (−1)n+1n







1/p
(sn

s1

)n
(32)
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This is a recursive linear equation for t1/tn. Numerical evaluation of ndn/d1 indicates that,
for n = 2 to 24 fibers, the total load of the whole bundle remains about constant for p ≥ 3
(Table 1). This conclusion is based on comparing dn/d1 for bundles with a different number
of fibers of the same tail exponent for each fiber (Table 1), e.g. (p = 3, n = 2), (p = 3, n = 3),
(p = 3, n = 4), etc., and not for bundles with the same tail exponent for the whole bundle
(Table 2), e.g. (p = 1, n = 24), (p = 2, n = 12), (p = 3, n = 8), etc.

Since dn is the average strength per one of n fibers, the extent of the power-law tail of dn

of the bundle strength must decrease, in terms of stress, roughly as 1/n.
b) Plastic Bundle. If the fibers deform plastically, the maximum load of the bundle

is the sum of n independent (uncorrelated) random variables σk (k = 1, 2, ...n). This is
a classical problem of statistics, which is completely understood (and is simpler than that
of a brittle bundle). The central limit theorem (CLT) of the theory of probability (e.g.,
Bulmer 1967; Feller 1957; Soong 2004) states that (if all σk have a finite variance) the sum
Y =

∑n
k=1 σk for n → ∞ converges, except in the tails, to the Gaussian pdf (and does so

with absolute error O(n−1/2)).
The distance from the mean of a sum to the tail is known to be proportional to δ

√
n

(e.g., Bouchaud and Potters 2000) where δ is the standard deviation of the sum. To simply
understand why, note that, by elementary rules (e.g., Haldar and Mahadevan, 2000, p. 150),
the mean and variance of the maximum load of the bundle are µn = nµσ and sn

2 = nsσ
2

where µσ and sσ
2 are the mean and variance of σk. If all σk are non-negative, µ must be

non-negative, too, even though the Gaussian pdf has an infinite negative tail. Of course,
the Gaussian pdf of tensile strength cannot apply within the range of negative σ; hence,
the Gaussian core cannot reach farther from the mean µn than to the distance of rsn where
r = nµσ/

√
nsσ

2 = ω−1
n = ω0

−1√n, with ω0 denoting the CoV of one fiber.
The tail outside the Gaussian core and the tails of σk are known to be of the same type

(Bouchaud and Potters, 2000); i.e., if the the tail of fibers is a power-law, so is the tail of the
mean. To explain this and other tail properties, consider a bundle of two plastic ‘fibers’ with
stresses y and z, and tail cdf of strength:

G(y) =
(

y
y0

)jp [

1−
(

y
tj

)p]

, H(z) =
( z

z0

)kp [

1−
( z

tk

)p]

(33)

where j, k, p, y0, z0 are positive constants, and parameter t defines the power-law tail length
such that (100ε)% deviations from each power-law tail occurs at d = tε1/p (note that when
j = k = 1, G(y) and H(z) describe the first two terms of the expansion of Weibull cdf). By
differentiation, the corresponding pdf tails are

g(y) =
jp
yo

(

y
y0

)jp−1 [

1−
(

y
t′j

)p]

, h(z) =
kp
z0

( z
z0

)kp−1
[

1−
(

z
t′k

)p]

(34)

where t′j = tj

(

jp
jp + p

)1/p

, t′k = tk

(

kp
kp + p

)1/p

(35)

The maximum load on the bundle is x = y + z. Load x can be obtained by all possible
combinations of forces y and z = x − y in the first and second fibers, which both must be
at their strength limit if the bundle load is maximum. So, according to the joint probability
theorem, the pdf of the sum x is

f(x) =
∫ x

0
g(y)h(x− y)dy
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= jkp2y−jp
0 z−kp

0

∫ x

0
yjp−1(x− y)kp−1

[

1−
(

y
t′j

)p] [

1−
(

x− y
t′k

)p]

dy (36)

Although the standard approach in the theory of probability would be to take the Laplace
transform of the above convolution integral and later invert it, a conceptually simpler power
series approach will suffice for our purpose. We expand (x− y)kp−1 and (x− y)p according to
the binomial theorem and, upon integrating, we retain only two leading terms of the power
series expansion of f(x). This yields:

f(x) ≈ jkp2C ′
0

yjp
0 zkp

0

[

1− C ′
p

(

x
t′j

)p

− C ′
q

(

x
t′k

)p]

xjp+kp−1 (error ∝ x(j+k+2)p−1) (37)

where C ′
0 =

Γ(jp)Γ(kp)
Γ(jp + kp)

, C ′
p =

Γ(jp + kp)Γ(p + jp)
Γ(jp)Γ(jp + kp + p)

, C ′
q =

Γ(jp + kp)Γ(p + kp)
Γ(kp)Γ(jp + kp + p)

(38)

The corresponding cdf of the maximum load on the bundle of two fibers is

F (x) ≈
( x

x0

)(j+k)p [

1−
( x

t∗

)p]

(39)

where x−(j+k)p
0 =

C ′
0

yjp
0 zkp

0

jkp
(j + k)

, (t∗)−p =
C ′

p(j + 1)(j + k)
jtpj(j + k + 1)

+
C ′

q(k + 1)(j + k)
ktpk(j + k + 1)

(40)

So we conclude that the exponents of fiber tails in a plastic bundle are additive, while the
length of the power-law tail of the cdf of the total load of the bundle decreases from d1 = t1ε1/p

to dtn = t∗ε1/p. In the case of fibers with p = 1, a bundle of 3 fibers is a coupling of 1 fiber
with a bundle of 2 fibers, which gives dtn/d1 = 0.667; a bundle of 4 fibers is a coupling of 1
fiber with a bundle of 3 fibers, which gives dtn/d1 = 0.625, etc., and for 24 fibers dtn/d1 =
0.521.

The cdf of the average strength of each fiber is simply a horizontal scaling of the cdf for
the total load on the bundle, and so Eq. (39) can be written in terms of σ;

F (σ) =
(nσ

x0

)(j+k)p [

1−
(nσ

t∗

)p]

=
( σ

sn

)np [

1−
( σ

tn

)p]

(41)

where sn = x0/n, tn = t∗/n and n = j + k. So we see that the total load, as well as the
average strength of the bundle, has a cdf tail with exponent np, which is the same as for a
brittle bundle. The length of the power-law tail of the cdf of the strength of a bundle (i.e.,
the load per fiber), which is dn = dtn/n, gets changed, for α = 0.15, by factors 0.667/3 =
0.222 and 0.521/24 = 0.022, respectively, with p = 1.

In general, the length of the power-law tail of the cdf for elastic-plastic bundle is about 2
to 3 times longer than the corresponding length for elastic-brittle bundle (Table 3).

c) Extent of Tail in Terms of Failure Probability. The shortening of power-law
tail with increasing number of fibers in a bundle may be modest in terms of stress, but in
terms of failure probability Pf it is drastic if n not very small. The Pf value at the terminal
point of power-law tail gets reduced in the ratio:

ρP =
Ptn

Pt1
=

(dn/sn)np

(d1/s1)
=

(tns1

t1sn

)np

(2ε)n−1 (42)

Thus, for the brittle or plastic case, respectively, we have, in terms of Pf , the following
reduction ratios for the tail terminal point:
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for 2 fibers and p = 12: ρP = 1.8 · 10−4 or 1.0 · 10−2

for 3 fibers and p = 8: ρP = 4.3 · 10−7 or 2.4 · 10−4

for 6 fibers and p = 4: ρP = 1.3 · 10−12 or 1.0 · 10−8 (42)
for 24 fibers and p = 1: ρP = 1.2 · 10−44 or 2.4 · 10−43

Obviously, for the same number of fibers, the shortening of the power-law tail is for brittle
fibers (Table 2) much stronger than for plastic fibers (Table 3) in small bundles, but not in
large bundles. For softening fibers (Fig. 5c), intermediate behavior may be expected.

According to the aforementioned values, not even two fibers with m = 24 power-law tail up
to Pt1 = 0.3 could produce a power-law tail of a bundle reaching up to Ptn = 0.003,which is the
tail length needed to satisfy Hypothesis II, because analysis of chains with various numbers of
RVEs shows that a power law-tail of one RVE reaching up to Pt1 = 0.003 produces a Weibull
cdf up to Ptn = 0.8, 0.9 and 0.95 for 500, 750 and 1000 RVEs, respectively. When the number
of RVEs > 500, the cdf on the Weibull probability paper is visually hardly distinguishable
from a straight line (Fig. 8b).

Therefore, if the tail of the bundle should extend up to Pf = 0.003, it is necessary for
the cdf of two plastic fibers in the bundle to be Weibull up to at least P1 = 0.3 (computer
simulations, too, confirm it). The power-law tail of the cdf of bundle strength, terminates at

Ptn ≈ εn
( tn

sn

)np

= P n
t1

(s1

sn

tn
t1

)np

(44)

where Pt1 = ε(t1/s1)p = failure probability at the terminal point of the power-law tail of
one fiber. For a bundle with plastic fibers, the ratio (tns1)/(t1sn) decreases approximately
as n−1/p, with an error of < 3%, which leads to a shrinking of Ptn as (Pt1/n)n. To wit, if
the power-law tail of one fiber ends at Pt1 = 0.3, the tails of bundles with a tail exponent
of m = np = 24 for 3 or 8 fibers, terminate at Pf ≈ 7.2x10−5 or 2.2x10−12. Obviously,
the power-law tail of the strength of any bundle with more than about 3 fibers is, from the
practical viewpoint, nonexistent. Exact computer simulations confirm that (see Table 3).

From this we may conclude that if the power-law tail of one fiber strength terminates
at Pt1 = 0.3, then the tail of bundle strength (total load per fiber) with tail exponent 24,
terminates at Pf = 3.0× 10−3, 7.2× 10−5 and 7.2× 10−44 respectively if n = 2, 3 or 24. The
last value is so small that the power-law tail can have no effect in reality.

d) Basic Properties of Softening, Brittle and Plastic Bundles. Of main prac-
tical interest is a bundle of softening fibers. Because the softening is intermediate between
plastic and brittle responses (Fig. 5c), those properties that are common to both brittle and
plastic bundles may be assumed to hold also for bundles with softening fibers. They may be
summarized as follows.
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Theorem I.—For brittle, plastic, and probably also softening, fibers, the exponents
of power-law tail of cdf of fibers in a bundle (or parallel coupling) are additive. The
power-law tail exponent of strength cdf of a chain is the smallest power-law tail
exponent among all links in the chain (or series coupling). Parallel coupling reduces
the length of power-law tail of cdf (within one order of magnitude for up to 10 fibers,
and up to two orders of magnitude for up to 24 fibers). But the extent of the tail in
terms of failure probability can decrease by many more orders of magnitude when
the power-law tail exponent of the bundle is high. If the power-law tail exponent
of each fiber is high (> 10), it is possible to couple in parallel no more than 2 non-
brittle (plastic or, probably, softening) fibers if a non-negligible power-law tail of a
bundle should be preserved.

Extreme Value Statistics of RVE and of Quasibrittle Structure

According to Eq. (19), the failure probability of a chain of Neq identical links with failure
probability P1(σ) can be exactly calculated as Pf (σ) = 1− [1− P1(σ)]Neq . Hence,

Neq =
log(1− Pf )
log(1− P1)

(45)

If the chain of N links is characterized by Weibull cdf up about Pf = 0.80, the whole
experimental cumulative histogram with typical scatter is, on the Weibull probability paper,
visually indistinguishable from Weibull cdf. If the limit of power-law tail of the cdf of one
link (one RVE) in a chain is Pt1 = 0.003 (which is a tail hardly detectable in experiments),
the equivalent number Neq of RVEs in the structure (or links in the chain) must be, according
to Eq. (45), approximately

Neq ≥ 500 (46)

in order to produce for the chain a cdf indistinguishable from Weibull. For concrete specimens,
as it appears, statistical samples with Neq > 500 do not exist. However, test data for fine-
grained ceramics cover this kind of size, and they show a distinctly Weibull cdf (e.g., Weibull
1939; Bansal et al. 1976a,b; Ito et al. 1981; Katayama and Hattori 1982; Matsusue et al.
1982; Soma et al. 1985; Ohji 1988; Amar et al. 1989; Hattori et al. 1989; Brühner-Foit and
Munz 1989; Quinn 1990; Quinn and Morrell 1991; Katz et al. 1993; Gehrke et al. 1993;
Danzer and Lube 1996; Sato et al. 1996; Lu et al. 2002a; Santos et al. 2003). This justifies
Hypothesis II. Therefore, it is logical to assume that a RVE of any quasibrittle material
that becomes brittle on the large scale of application should have a power-law tail extending
roughly up to Pt1 ≈ 0.003.

One microcrack in a RVE, or too few of them, would not cause the RVE, and thus the
whole structure, to fail (which is, of course, why the RVE cannot be assumed to behave
statistically as a chain). Rather, a certain number of separate microcracks must form to
cause the RVE to fail, which is statistically the same situation as in a bundle of parallel
fibers. This number, n, obviously depends on the packing of dominant aggregate pieces in
concrete, or the packing of dominant grains in a ceramic or rock, or generally the packing of
dominant heterogeneities in the material.

So, the RVE must be considered to behave statistically as a bundle (Fig. 4b), and the
structure (of positive geometry) as a chain of such bundles (Fig. 4d). However, can the RVE
be modelled by Daniels’ bundle of fibers, or is it necessary to consider that the elements of
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the bundle consist of chains, sub-bundles, sub-chains, sub-sub-bundles, etc.? It is argued
that the latter must be the case.

As additional support for the hypothesis that a RVE of quasibrittle material must behave
as a bundle (series coupling), two points should be noted: (i) If the alleged RVE behaved as a
chain (series) coupling, the failure would localize into an element of the chain and the actual
RVE would be smaller than the alleged RVE. (ii) Since concrete microstructure is brittle, the
cdf of strength of small laboratory specimens could not appear as Gaussian (Hypothesis III) if
parallel coupling statistics did not apply. Yet majority of experiments for concrete show this
cdf to be in fact approximately Gaussian, except possibly in the undetectable tails (Julian,
1955; Shalon and Reintz, 1955; Rüsch et al., 1969; Erntroy, 1960; Neaman and Laguros 1967;
Metcalf, 1970; Mirza et al., 1979; Bartlett and MacGregor, 1996; FHWA, 1998; Chmielewski
and Konopka, 1999).

Consider now a chain of RVEs (Fig. 4f). The cdf of strength of each RVE has a power-law
cdf tail, and so a long enough chain will follow the Weibull cdf. How many links (i.e., RVEs)
are needed to attain Weibull distribution for the whole chain (or structure)?

If the structural model were a chain of bundles (Harlow et al. 1983), each bundle would
have, for concrete, 24 parallel fibers of tail exponent 1, and, as has been shown, this would
yield for each bundle a tail extending only up to the probability Pf ≈ 10−45. This means
that the chain would have to consist of about 1047 bundles for the Weibull distribution to
get manifested (a chain of that many RVEs, each of the size of 0.1 m, would have to reach
beyond the most distant galaxies!). So, if each RVE were modelled by Daniels’ bundle of m
fibers with activation energy based cdf (p = 1), the Weibull cdf would never be observed in
practice. Yet it is (Weibull 1939).

Based on experience (Weibull 1939), it may be assumed (Hypothesis II) that the cdf of a
positive geometry structure in which the number N of RVEs is about 1000 should be much
closer to Weibull than to Gaussian distribution (whether N should rather be 104 is, of course,
debatable, but it definitely cannot be orders of magnitude larger). To obtain for such N a
cdf that is experimentally indistinguishable from Weibull, the power-law tail of cdf of each
RVE must, according to Eq. (45), extend up to at least Pf ≈ 0.003. To this end, the bundle
with m = 24 must contain no more than 2 parallel fibers (each of which, with tail exponent
12), must almost completely follow Weibull distribution, and must be of plastic or softening
type.

A tail below Pf = 0.003 does not get manifested in graphical cumulative histograms and
cannot be directly confirmed by any of the existing test data from small laboratory specimens
that are not much larger than a RVE (a cumulative histogram of at least 104 identical tests
would be needed to reveal such a tail on Weibull probability paper). Neither can the Weibull
cdf for 1000 RVEs be checked for concrete, because large enough specimens have not been
tested. Nevertheless, confirmation can be obtained from the existing experimental data for
specimens of fine-grained ceramics, which contain at least 1000 RVEs. Indeed, they follow the
Weibull distribution closely (Weibull 1939; Bansal et al. 1976a,b; Ito et al. 1981; Katayama
and Hattori 1982; Matsusue et al. 1982; Soma et al. 1985; Ohji 1988; Amar et al. 1989;
Hattori et al. 1989; Brühner-Foit and Munz 1989; Quinn 1990; Quinn and Morrell 1991;
Katz et al. 1993; Gehrke et al. 1993; Danzer and Lube 1996; Sato et al. 1996; Lu et al.
2002a; Santos et al. 2003).

The length of power-law tail of the cdf of RVE is found to strongly depend on whether
each of the parallel fibers is brittle or plastic. Brittle fibers never give a sufficiently long
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power-law tail for the cdf of a RVE, even for just 2 parallel fibers with tail exponent 12
(required to obtain m = 24). A long enough power-law tail of RVE, extending up to Pf

=0.003 (Hypothesis II), is obtained for a bundle of 2 plastic fibers, and doubtless also for a
bundle of softening fibers with a sufficiently mild softening slope. This has been verified by
computer simulations, and also follows from the aforementioned general rules for the length
of power-law cdf tails of bundles.

Based on Hypotheses II and III, and within the context of activation energy theory (Hy-
pothesis I), it follows from the foregoing analysis that a power-law tail of exponent such as
m = 24, extending up to Pf = 0.003, can be achieved for an RVE only with a hierarchical
statistical model involving both parallel and series couplings, as idealized in Fig. 4e. The first
bundle (parallel coupling) must involve no more than 2 parallel elements, and each of them
may then consist of a hierarchy of sub-chains of sub-bundles of sub-sub-chains of sub-sub-
bundles, etc. The load-deflection diagrams of the sub-chains, sub-sub-chains, etc., cannot be
perfectly brittle, i.e., can be plastic or softening. If the constituents of the RVE are not plas-
tic, as in the case of concrete, rocks or ceramics, elements behaving plastically are, of course,
unrealistic. Hence, the elements of the hierarchical statistical model should in reality be
softening. At any scale of microstructure, a softening behavior is engendered by distributed
microcracking on a lower-level sub-scale even if every constituent on that sub-scale is brittle.

In the hierarchical statistical model exemplified in Fig. 4e, the elements of identical power-
law tails, coupled in each sub-chain, serve to extend the power-law tail and, if long enough,
will eventually produce Weibull cdf while the tail exponent remains unchanged. On the next
higher scale, the parallel coupling of two or three of these sub-chains in a sub-bundle will raise
their tail exponent by summation but will shorten the power-law tail significantly. Then, on
the next higher scale of microstructure, a series coupling of many sub-bundles in a chain will
again extend the power-law tail, and a parallel coupling of two of these chains will again
raise the tail exponent and shorten the power-law tail significantly, until the macro-scale of
an RVE is reached.

The actual behavior of a RVE will, of course, correspond to some irregular hierarchical
model, such as that shown in Fig. 4g. In that case, according to the aforementioned basic
properties, the exponent of the power-law tail for the RVE, and thus the Weibull modulus of
a large structure, is determined by the minimum cross section, defined as the section with the
minimum number of cuts of elementary serial bonds that are needed to separate the model
into two halves.

Because random variations in the couplings of the hierarchical model for extreme value
statistics of RVE must be expected, it would make hardly any sense to compute the structural
failure probability directly from activation energy controlled interatomic bonds characterized
by power-law cdf tail of exponent 1. Nevertheless, establishing the hierarchical model that
provides a statistical connection of RVE strength to the stress dependence of activation energy
barriers of interatomic bonds has three benefits:

1. It proves that the cdf of RVE strength must have a power-law tail.

2. It proves that a sufficiently long tail, extending up to Pf ≈ 0.0001 to 0.01, and the
Weibull distribution of strength of a large enough structure, are physically justifiable.

3. It proves that the Weibull distribution must have a zero threshold.
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4. It provides the dependence of Weibull scale parameter s0 on temperature T and on
characteristic load duration τ (or on characteristic loading rate, which is characterized
by 1/τ).

5. It shows that the complicated transition between the power-law tail and the Gaussian
core can be considered to be short (because, with only 2 or 3 elements coupled in
parallel, the power-law tail reaches far enough).

Point 4, according to Eqs. (6) and (10), means that the scaling parameter S0 of the
Weibull cdf of structural strength must depend on absolute temperature T and on load
duration τ (or loading rate 1/τ), and that the dependence must have the form:

S0 = S0r
T
T0

φb(τ0)
φb(τ)

e( 1
T −

1
T0

)Q
k (47)

where T0 = reference absolute temperature (e.g., room temperature 298◦K), τ0 = reference
load duration (or time to reach failure of the specimen, e.g., 1 min.), and S0r = reference
value of S0 corresponding to T0 and τ0. The corresponding Weibull cdf of structural strength
at any temperature and load duration may be written as

Pf (σ) = 1− exp
{

−
[

σ
S0r

T0

T
φb(τ)
φb(τ0)

e( 1
T0
− 1

T )Q/k
]m}

(48)

Note, however, that this simple dependence on T is expected to apply only through
a limited range of temperatures and load durations. The reason is that the interatomic
potential surface typically exhibits not one but many different barriers Q and coefficients κ
for different atoms and bonds, with different Q and κ dominating in different temperature
ranges.

On the atomic scale, which is separated from the RVE scale of concrete by about 8
orders of magnitude, the breakage of a RVE must involve trillions of interatomic bond breaks
governed by activation energy. Lest one might have doubts about using the activation energy
theory to span so many orders of magnitude, it should be realized that there are many other
similar examples where the activation energy has been successfully used for concrete, rock,
composites and ceramics—e.g., the temperature dependence of fracture energy and of creep
rate of concrete (Bažant and Prat 1988), the effect of crack growth rate on fracture resistance
(Bažant and Jirásek 1993, Bažant 1995, Bažant and Li 1997), or the softening-hardening
reversal due to a sudden increase of loading rate (Bažant et al. 1995).

Activation energy concepts have been used by Zhurkov (1965) and Zhurkov and Kor-
sukov (1974) in a deterministic theory of structural lifetime as a function of T and σ, which
corresponds to replacing Eq. (4) by

F (σ) = min
[

(Cb/2) eκσ/kT , 1
]

for σ ≥ 0 (49)

The corresponding pdf, however, has a delta-function spike at σ = 0, which is objectionable.
The preceding derivation would lead to this formula if the bond restorations, governed by
activation energy barrier Q + κσ, were ignored, i.e., if fb =e−(Q−κσ)/kT instead of Eq. (3). As
a result, this theory incorrectly predicts a solid to disintegrate within a finite lifetime even if
σ = 0, and it also gives unrealistically short lifetimes for failures at low stress, i.e., for low
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failure probabilities and for large structures. Especially, Zhurkov’s theory is incompatible
with Weibull theory and could not be combined with the present analysis.

In a similar way as here, the activation energy concept has more recently been used in
probabilistic analysis of the lifetime distribution, based on models of the evolution of defects in
parallel coupling systems with various assumed simple load-sharing rules; see Phoenix (1978),
Phoenix and Tierney (1983), Phoenix and Smith (1983), Newman and Phoenix (2001), Curtin
and Scher (1997), Phoenix, Ibnabdeljalil and Hui (1997), and Newman and Phoenix (2001).
The temperature and stress dependence of lifetime has been related to the interatomic ac-
tivation energy through an argument traced to Eyring (1936; also Glasstone et al. 1941,
Tobolsky 1960).

Grafted Weibull-Gaussian cdf of One RVE

If the RVE of concrete (with m ≈ 24) were modelled as a bundle of more than 2 fibers, the
transition of its cdf from the Gaussian core to the Weibull (or power-law) tail would occupy
several orders of magnitude of Pf . The mathematical formulation of such transition region
would be complicated. However, as has already been argued, the bundles and sub-bundles
in the hierarchical model for RVE should contain only 2 parallel fibers (with more parallel
fibers allowed for scales close to nano, where the tail exponent is low). Consequently, the
transition region in terms of Pf must be relatively short, happening within one or two orders
of magnitude of Pf .

This permits us to assume, for the sake of simplicity, that the transition occurs within a
point, σN,gr. In other words, we may assume that a Weibull pdf tail φW is grafted at one
point on the left side onto a Gaussian pdf core φG (i.e., onto the error function). Such a
grafted pdf (Bažant and Pang 2005b), may be mathematically described as follows:

for σN < σN,gr : p1(σN) = rf (m/s1)(σN/s1)m−1e−(σN/s1)m
= rfφW (σN) (50)

for σN ≥ σN,gr : p1(σN) = rfe−(σN−µG)2/2δ2
G/(δG

√
2π) = rfφG(σN) (51)

where µG, δG = mean and standard deviation of Gaussian core; m, s1 = shape and scale
parameters of Weibull tail, the cdf of which is

for ς < ςgr : P1(ς) = rf

(

1− e−ςm
)

for ς ≥ ςgr : P1(ς) = rf

(

1− e−ςm
gr

)

+
rf

δGn
√

2π

∫ ς

ςgr

e−(ς′−µGn)2/2δ2
Gndς ′ (52)

and rf = [1− ΦG(ςgr) + ΦW (ςgr)]
−1 (53)

Here µGn = µG/s1; δGn = δG/s1; ςgr = σN,gr/s1. rf is a scaling factor ensuring that the cdf
of the Weibull-Gaussian graft be normalized;

∫∞
−∞ φ(σN)dσN = 1. The far-left tail of cdf of

P1 is a power law which can be expressed as:

P1 ≈ rf (σN/s1)m (for σN → 0) (54)

The scale parameter s1 used in the grafting method is related to s0 of Eq. (12) by s0 = r1/m
f s1.

The typical values for rf range between 1.00− 1.14, which means that s0 differs from s1 by
less than 0.5%. In practice, r1/m

f can be taken as 1, and s0 = s1, but rf should remain in the
formulation of P1 (Eq. 52), or else an error of up to 12% in the cdf of one RVE is likely.
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Both pdf’s, as defined in Eqs. 50 and 51, are matched to be continuous at the grafting
point, ςgr. This gives the compatibility condition:

η = ςgr − δGn{−2 ln[
√

2π m δGn ςm−1
gr e−ςm

gr ]}1/2 (55)

The probability at which the Weibull tail for one RVE ceases to apply lies within the range
Pgr = rfΦW (ςgr) ≈ 0.0001 to 0.01, and is used to determine the relative length of the Weibull
tail ςgr, to be grafted:

ςgr = [−ln(1− ΦW (ςgr))]
1/m (56)

If one knows the standard deviation of the Gaussian core δG and the scale parameter s1 of
the Weibull tail, one can calculate µGn from Eq. (55); δG can be easily determined from
the standard deviation of tensile strength for small-size specimens roughly equivalent to
one RVE. But determination of s1 requires tests of very large specimens failing in a brittle
manner, which are currently lacking, thus making the explicit approach in Eq. (52) futile.
Nevertheless, experimental determination of the CoV for small-size specimens can be used to
estimate β of one RVE based on numerical evaluation of the CoV of the grafted cdf defined
in Eqs. 52, as shown in Table 4 for ΦW (ςgr) ranging from 0.001 to 0.01. Alternatively, δGn

can be estimated (with error < 5%) from the following empirical equation, allowing explicit
determination of the cdf in Eq. (52):

δGn = exp
{

−3.254 + 11.566 ω0 − [1000ΦW (ςgr)/(108.8ΦW (ςgr) + 0.1334)] ω2
0

}

(57)

The cdf of an RVE has a Weibull tail, which appears as a straight line on the Weibull
probability paper (Fig. 7a,b), and a Gaussian core, which appears as a straight line on the
normal (or Gaussian) probability paper (Fig. 7c,d). Although, in normal testing, the grafted
Weibull tail for one RVE is too short to be detectable, it is nevertheless needed to ensure
that a Weibull cdf prevail for large enough quasi-brittle structures, such that Neq > 300 to
10,000.

The cdf of a RVE and the mean size effect depend on four parameters: m,ω0, s1 and
Pgr. The CoV of one RVE, ω0, governs the small-size mean behavior and the slope of the
Gaussian core on a normal probability paper (Fig. 7c,d). The Weibull modulus, m, dictates
the Weibull mean size effect for large structure sizes and the slope of Weibull tail on a Weibull
probability paper (Fig. 7a,b), while s1 scales the nominal strength of the structure and is
manifested as a horizontal displacement of the cdf in the normal probability paper. The
grafting point probability Pgr (i.e., the probability at which the Weibull pdf tail is grafted)
controls the structure size at which the full Weibull cdf and the Weibull power-law size effect
are attained (Fig. 8b). Knowing these 4 parameters allows determination of all the other
statistical properties of one RVE using Eqs. (55)–(57).

The plots in Weibull probability paper in Figs. 7a and 7b show the cdf of one RVE for
different grafting probabilities Pgr, and for different CoVs of the combined cdf.

Grafted Weibull-Gaussian cdf for Structures Equivalent to Many
RVEs

Since one RVE is defined as a material volume whose failure causes the whole structure to
fail, quasibrittle structures that consist of more than one RVE (and have positive geometry,
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no notches and no pre-existing large cracks) behave as a chain of RVEs (Fig. 4f). The chain
survives if and only if all the RVEs survive, 1−Pf = (1−P1)Neq , and so the failure probability
Pf for nominal stress σN , which is a common parameter for all the RVEs, is exactly:

Pf (σN) = 1− [1− P1(σN)]Neq (58)

where P1(σ) is the grafted distribution for one RVE. Because the cdf of each RVE must
normally be within the power-law tail, P1(σN) = (σN/s0)m (Theorem I). From Eq. (58) and
the well-known limit limN→∞(1 + x/N)N = ex, it follows that

Pf (σN) = 1−
[

1− Neq(σN/s0)m

Neq

]Neq

⇒
Neq →∞

1− e−Neq(σN/s0)m
(59)

i.e., the distribution in Eq. (58) becomes Weibull distribution for a structure with a large
enough equivalent number of RVEs.

The transition from Gaussian to Weibull cdf when passing from small to large sizes is
evident in Fig. 8. On a linear scale of σN and Pf (Fig. 8a), in which the CoV is proportional
to the maximum slope of the cdf curve, the CoV first decreases with increasing Neq, which is
typical of bundle (parallel-coupling) statistics, and then stabilizes at a constant value, which
is typical of chain (weakest-link) statistics. For Neq > 1000 and grafting probability Pgr =
0.001 of one RVE, the cdf is visually indistinguishable from Weibull cdf and an increase in
size causes merely a leftward shift of the cdf curve as a rigid body.

On the Weibull scale (i.e., Weibull probability paper), on which the Weibull cdf of σN

is a straight line, the straight segment lengthens with increasing Neq (Fig. 8b) while the
Gaussian core, appearing as a concave curve, shifts upwards. The transition shows up on the
histogram as a distinctive kink (Fig. 8b), the location of which may be precisely defined as
the intersection between the extensions of the Gaussian core and the Weibull tail.

On the normal probability paper, on which the Gaussian (normal) cdf of σN appears as
a straight line, the straight segment shortens with increasing Neq (Fig. 8c), while the tail
segment of Weibull cdf appears as a curve, shifting and changing shape with Neq.

The mean nominal strength (Fig. 9) for any number of RVEs can be determined as
follows:

σ̄N =
∫ ∞

0
σNNeq[1− P1(σN)]Neq−1p1(σN)dσN (60)

Analytical evaluation of Eq. (60), with p1(σN) and P1(σN) defined in Eqs. (50)–(51) and
(52) respectively, is impossible but the asymptotes can be determined. For large size, the
asymptote must be the Weibull size effect, due to the power-law tail of the cdf of each RVE
(Hypotheses I and II), which is given by the following expression on a logarithmic scale:

log(σ̄N,W ) = −(1/m)log(Neq) + log[s0Γ(1 + 1/m)] (61)

For small sizes (approximately for Neq ≤ 10), the cdf is predominantly Gaussian and the
mean nominal strength for a chain of Gaussian elements may then be calculated as follows:

σ̄N,G =
∫ ∞

−∞

σNNeq

δG
√

2π
e
−
(

σN−µG√
2δG

)2


1−
∫ σN

−∞

1
δG
√

2π
e
−
(

σ′N−µG√
2δG

)2

dσ′N





Neq−1

dσN (62)
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Note that if the tail of all elements were Gaussian rather than a power-law, then, according
to the stability postulate (Eq. (23), a long chain would asymptotically approach not the
Weibull but the Gumbel distribution. For a Gaussian cdf with a extremely remote power-law
tail, and for not too large Neq, the minimum elemental strength in the chain would more
likely occur in the Gaussian core rather than the power-law tail, and then the cdf would first
appear to approach with increasing Neq the Gumbel distribution, but for large enough Neq it
would eventually switch to converging the Weibull distribution. If such chain were short, the
deviation from Gumbel distribution would still be significant and the mean nominal strength
would then be expressed as:

log(σ̄N,G) = µG[1− χ(Neq)(ω0/
√

π)] (63)

where χ(Neq) = 1, 3
2 for Neq= 2, 3 respectively. For intermediate values, 3 < Neq < 10, an

analytical expression for parameter µs is unavailable (Ang and Tang 1984). Since even very
remote Weibull tails of RVEs spoil approach to Gumbel distribution, even for small Neq, it
is necessary that the mean size effect curve in Eq. (60) be obtained by nonlinear regression.

When the asymptotic Weibull strength of Eq. (61) is subtracted from the mean nominal
strength (Eq. 60) in logarithmic scale, the difference fits very well the following empirical
function:

log(σ̄N)− log(σ̄N,W ) = exp[−exp(a1 − a2 log(Neq))] (64)

where a1 = ln
[

− ln
(

log
µ0

s0Γ(1 + 1/m)

)]

(65)

Parameter a1 anchors the size effect curve for one RVE; µ0 is the mean for one RVE; a2 controls
the rate of transition to Weibull size effect and depends on the length of the Weibull tail for
one RVE. Calibrating the mean size effect curve requires identifying at least 4 parameters:
µ0, Pgr, m, and s0.

Equivalence to Nonlocal Weibull Theory

Fig. 9c demonstrates another interesting point: The 4 parameters for the mean size effect, i.e.,
µ0, Pgr, m, and s0, can be optimized to match very accurately the mean type 1 energetic-
statistical size effect law Eq. (25) for nonlocal theory, obtained by asymptotic matching
(Bažant 2004). This law, in turn, was further shown to match closely the Monte Carlo
simulations with the nonlocal Weibull theory (Bažant and Novák 2000a,b; Bažant 2002).
This match shows that, on the continuum scale, both theories are equivalent.

It would make no sense to use the present discrete model for structure sizes smaller than
one RVE. However, the nonlocal Weibull theory, being a continuum theory, can be extended
to structure size D → 0. Although such extension is a mathematical abstraction of no real
physical meaning, it has nevertheless been shown mathematically useful. The mean zero-size
asymptotic behavior can be easily determined by considering the FPZ to be perfectly plastic,
while the large size asymptotics follows from equivalent LEFM or the smeared-tip model
(Bažant 2002), in which the FPZ shrinks to a point. Thus the continuum theory makes it
possible to obtain mean analytical approximation for any D via asymptotic matching (Bažant
2004a,b) of the power series expansions, for D → 0 in terms of powers of D, and for →∞ in
terms of 1/D. Derivation of the type 1 size effect law in Eq. (25) (Bažant 2002, 1997) is an
example.+++
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The mean size effect behavior of the nonlocal Weibull theory is known to be well captured
by the cohesive crack model, crack band model or some of the nonlocal damage models for
concrete and other quasibrittle materials (Bažant 2002, Bažant and Planas 1998). For D → 0,
these models predict a linear approach in terms of D to a finite ’zero-size’ nominal strength of
structure. On a larger scale, all these models should approximately match the mean strength
predictions of the present discrete theory.

Consequently, the present theory provides another, statistical, explanation and justifica-
tion of nonlocal concepts for materials with softening damage or cohesive fracture. In the
nonlocal Weibull theory, however, the cdf of strength of the nonlocal averaging volume cannot
be predicted and must be assumed. On the basis of the present theory, it may be assumed
as the Weibull cdf with a grafted power-law tail.

Verification and Calibration

One way to calibrate the present theory is to observe the kink point locations on the exper-
imental histograms of strength of specimens with two sufficiently different Neq = Neq1 and
Neq2, corresponding to sufficiently different specimen sizes D = D1 and D2, and possibly to
different geometries characterized by Ψ = Ψ1 and Ψ2. The specimens must not be too large,
so that the kinks are clearly detectable on the histograms. Plotting the histogram on both
Weibull and normal probability papers, one can then obtain the Weibull and Gaussian seg-
ments of cdf by linear regression of the straight segments of the histograms on each of these
two papers. Each histogram may be approximated by a cdf consisting of two semi-infinite
segments, Weibull on the left and Gaussian on the right. These segments intersect at a pre-
cise kink point, labelled as (σN i, Pf i) where 1 = 1, 2, ... (Fig. 8b). The failure probability at
each kink point must be equal to the joint survival probability of all the RVEs subjected to
the same σN ; this yields:

1− Pf i = [1− P1(σN i)]
Neqi , Neqi = (Di/l0)Ψi (i = 1, 2) (66)

Because the stress at each kink point, and thus in each RVE, must be small enough to lie in
the power-law tail of cdf of one RVE, we also have P1(σN i) = rf (σN i/s1)m (i = 1, 2) where
rf is a known value, rf ≈ 1. Substituting this expression into the foregoing equation, one
gets two equations from which l0 can be eliminated. Thus one obtains, after rearrangements:

ln(1− Pf 1)
ln(1− Pf 2)

=
D1Ψ1 ln[1− (σN 1/s0)m]
D2Ψ2 ln[1− (σN 2/s0)m]

(67)

where s0 = r1/m
f s1 ≈ s1. This is a nonlinear equation, from which s1 can be solved by Newton

iterations, and l0 may then be easily solved from Eq. (66).
Alternatively, one may eliminate s0, and this yields for l0 the nonlinear equation:

1− (1− Pf 1)
l0/D1Ψ1

1− (1− Pf 2)
l0/D2Ψ2

=
(

σN 1

σN 2

)m

(68)

from which l0 can be solved by Newton iterations; s0 may then be easily solved from Eq.
(66).

The grafting point probability for one RVE is then obtained as

Pgr = (σN i/s0)m = rf (σN i/s1)m (i = 1 or 2) (69)
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According to experience with nonlocal models, the size l0 of one RVE can be roughly
estimated as the double or triple of the maximum size of material inhomogeneities. Then it
is sufficient to calibrate the model from an experimental strength histogram for one size only
(i = 1).

If the histogram is measured for more than two sizes D, the values of s0 and l0 obtained
from any pair of two sizes will not be the same, because of random errors of measurement.
Of course, if the values of s0 and l0 obtained from different pairs were grossly different, it
would disprove the present theory. On the other hand, if they are not too different, it will
corroborate the theory.

If histograms for more than two sizes are available, s0 and l0 may be obtained by nonlin-
ear least-square optimal fitting of the equation system (68) written for all the sizes tested,
i = 1, 2, ...nt. In this general case, the use of a nonlinear optimization algorithm such as
Marquardt-Levenberg automatically yields the estimates of standard deviations of s0 and l0.

Another way to calibrate the present theory is to fit Eq. (66) to a measured mean size
effect curve. This curve must include the smallest specimens that can be fabricated and also
specimens so large that Weibull size effect dominates. This way is doubtless more accurate
because the scatter of the mean is generally much smaller than the scatter of individual
measurements.

Even better results may be obtained by measuring both the histograms and the mean
strength for different sizes, and optimally fitting all these results simultaneously with the
Levenberg-Marquardt algorithm.

Quasi-Brittleness or Non-Zero Threshold

For highly homogeneous brittle materials such as fine-grained ceramics, experience shows that
their strength histograms can be perfectly fitted by the two-parameter Weibull cdf in Eq.
(10), for which the strength threshold vanishes (Weibull 1939; Bansal et al. 1976a,b; Ito et al.
1981; Katayama and Hattori 1982; Matsusue et al. 1982; Soma et al. 1985; Brühner-Foit and
Munz 1989; Katz et al. 1993; Lu et al. 2002b). However, for heterogeneous brittle materials,
such as concrete, or coarse-grained or transformation-toughened ceramics, the Weibull cdf
with zero threshold has been found insufficient, and it has generally been believed that one
must use a three-parameter Weibull cdf, having a non-zero threshold σu, i.e.

ΦW (σN) = 1− e−((σN−σu)/s0)m
(70)

The first indication of insufficiency of the two-parameter Weibull distribution came from
Weibull’s (1939) extensive tests of direct tensile strength of Portland cement mortar repro-
duced in Fig. 10, conducted for three different ages: 2, 7, and 28 days. Although complete
identification of the present theory from Weibull’s tests is impossible (because the specimen
sizes and grain sizes have not been reported), one can nevertheless see that these tests, as
well as many subsequent tests of coarse-grained ceramics, typically exhibit a kink separating
two segments, just like in Fig. 8 already discussed. These two segments cannot be fitted
by Weibull cdf with zero threshold. When the threshold is allowed to be non-zero, the long
lower segment of the histogram (straight on Weibull probability paper) can be fitted closely,
as shown by Weibull (1939); see Fig. 10a. However, the kink, and deviation of the upper
terminal segment from the extension of the straight lower segment, cannot be fitted. It
has been inferred that, for some unexplained reason, the Weibull theory cannot be applied
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to high probabilities of failure of coarse-grained brittle materials. This limitation has not
been regarded as serious because high failure probabilities are not of interest for safe design.
It should have been concluded, though, that the pure Weibull theory, even with non-zero
threshold, is not applicable.

The present theory explains this problem. Fig. 10b demonstrates that, unlike the three-
parameter Weibull distribution, the present theory allows an excellent fit of Weibull’s his-
tograms for mortar over the entire range, with both segments and the kink location matched
well. This confirms that the slope change at the kink is explained not by a non-zero threshold
but by quasibrittleness, i.e., the fact that l0, or the size of RVE, is not negligible compared
to cross the section dimension of the structure or specimen.

Even though Weibull did not report sufficient data on his tests of histograms of mortar,
one can make at least qualitative deductions. He used the German standard sand, probably
the same as today in Eurocode, whose maximum grain size is 2 mm. Accordingly, the RVE
size was probably between 0.6 and 1.0 cm, and since the tests were conducted in direct
tension, the specimens were almost certainly prisms or cylinders of volume between 100 and
3000 cm3. Thus his specimen most likely contained between 100 and 10,000 RVEs. From the
location of the kink point on his histograms (Fig. 10b), it thus follows that the power-law
tail of one RVE must have extended up to failure probability between 0.0001 and 0.01. This
confirms the soundness of Hypothesis III.

The increasing value of slope m seen in Weibull’s histograms for the ages of 2, 7 and 28
days can be explained by chemical hardening due to cement hydration. With increasing age,
the hardened cement paste binding the grains is getting stiffer and the bond to sand grains
stronger, which makes the material more homogeneous. Hence, one must expect a reduction
of scatter, which implies an increase of m. The shift of kink up and right (i.e., to larger
strength) is explained by increasing RVE strength caused by hardening of the cement paste
with age.

Note that the fitting of the present theory to strength histograms of not too large speci-
mens generally yields a higher value of Weibull modulus m than the fitting of three-parameter
cdf to the lower segment of the histogram. This matches (and thus reinforces) the earlier
finding of Bažant and Novák (2000a,b), namely that the fitting of size effect data with the
nonlocal Weibull theory (Eq. 9c), which is a continuum theory, yields a higher value of m
than the estimation of m by pure Weibull theory from the coefficient of variation (CoV) of
small specimen strengths, and that only this higher value matches the CoV of strength for
large sizes. Based on the CoV of strength tests for small concrete specimens, it used to be
believed that, for concrete, m ≈ 12. But the nonlocal Weibull theory showed that the con-
sistent and correct value is m ≈ 24 (Bažant and Novák 2000a,b). The present theory, which
is a discrete theory, leads to the same conclusion (see Fig. 10b), which is not unexpected.

Quasi-brittleness is a relative concept. With regard to the current emphasis on nano-
technology, note that moving toward the micrometer or nanometer scale, every brittle ma-
terial becomes quasibrittle. Thus, in micromechanics of MEMS, it must be expected that
modelling of a ceramic with the grain size of 1 µm would require the present chain-of-RVEs
model (or nonlocal Weibull theory) when the cross section dimension is 2 µm to 0.5 mm. On
the other hand, for the ice cover of the Arctic Ocean, in which the grains are represented by
ice floes about 3 km in size and 2 to 6 m thick, embedded in a matrix of refrozen water leads
about 0.3 m thick, one must expect the present theory to apply for two-dimensional floating
ice bodies larger than about 6 km, and the pure Weibull theory for bodies larger than about
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1000 km.
A finite threshold strength has recently been reported for laminar ceramics (Rao et al.

2002). But this is not the threshold strength in Weibull context. Rather, these tests involved
interlaminar failure of laminar ceramics subjected to tension along the lamina. However,
some lamina were preloaded in compression during fabrication and were still in compression
at failure, thus engendering an apparent residual strength in the laminar specimen as a whole
after some lamina have failed.

Tail of Distribution of Yield Strength of Plastic Materials

In plastic materials, the nucleation and glide of dislocations is also governed, on the atomic
scale, by activation energy barriers. So why the yield strength of plastic materials and
structures of any size follows a Gaussian rather than Weibull cdf?

The likely reason is twofold: 1) statistical behavior corresponding to parallel coupling of
more then about 4 elements, and 2) lack of softening in the elements of a hierarchical model,
allowing many elements to reach their random strength limits almost simultaneously. The
statistical sub-bundles that connect nano to macro are very wide, i.e., involve then not just
2 or 3 but many elements coupled in parallel. This has been shown to yield an absolutely
negligible power-law tail, so short that even a series coupling of many sub-bundles cannot
produce a Weibull cdf. Thus, even though the cdf of yield strength of a plastic material must
have a power-law tail, this tail is so remote from the mean that it can play no role at all.

Dependence of Grafted cdf on Temperature and Loading Rate or
Duration

The present model also predicts the dependence of the grafted distribution on T and τ . This
offers another possibility to verify the model experimentally.

The dependence on T and τ is simple for large enough quasibrittle structures perfectly
following the Weibull distribution; namely, the scaling parameter s0 must depend on T and
τ in the same way as indicated in Eq. (6), while the Weibull modulus (shape parameter) and
the coefficient of variation remain unaffected by T and τ .

Quasibrittle structures, and certainly specimens of quasibrittle materials, will typically
not be large enough to have a perfect Weibull distribution. For the grafted cdf, applicable
to smaller structural sizes, the dependence on T and τ , which can be figured out from the
present model, is more complicated. Not only s0 but also m of the Weibull segment, and
the mean and coefficient of variation of the combined grafted cdf, will be affected. This
problem and statistical experiments at various T and τ needed to justify the present theory
experimentally are planned for a subsequent study.

Conclusions

1. The understrength part of safety factors for quasibrittle structures cannot be constant,
as in use now, but must be increased with structure size and changed as a function of structure
geometry.

2. The four basic questions raised at the outset are answered:
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a) The physical reason why the tail of the cumulative density function (cdf) of strength
of RVE of any material (whether brittle or plastic) must be a power law, is that the
failure of interatomic bonds is a thermally activated process governed by stress-dependent
activation energy barriers. This further implies that the cdf of a large enough quasibrittle
structure must follow Weibull cdf.

b) The threshold of power-law tail and of the Weibull cdf of strength must be zero
because, according to Maxwell-Boltzmann distribution of atomic thermal energies, the
threshold stress for the net rate of interatomic bond breaks is zero.

c) The physical meaning of Weibull modulus m is the number of dominant bonds that
must be severed, or the number of matrix connections between adjacent major inhomo-
geneities that must fail, in order to cause failure of the representative volume of material
(RVE). This number must in some way depend on the spatial packing of inhomogeneities
in the RVE.

d) The reason why the exponent of the power-law tail (and the Weibull modulus) is so
high (ranging from 10 to 50), is that every parallel statistical coupling of bonds within a
RVE raises the exponent, beginning with the exponent of 1 at the atomic scale.
3. The multiplier (or amplitude) of the power-law tail of the cdf of strength of quasib-

rittle structures is the same function of absolute temperature T and load duration τ as that
indicated by Maxwell-Boltzmann distribution for the rate of breaks of interatomic bonds.

4. The statistical model for RVE can include parallel connections of no more than 2
elements on scales close to macroscales (with power-law tail exponent greater than about
6), and 3 elements on lower scales (with power-law tail exponent less than about 6), or else
the power-law tail of cdf of RVE strength would be so short that Weibull distribution would
never be observed in practice.

5. While the power-law tail exponent of a chain is equal to the lowest exponent among
its links, the power-law tail exponent of a bundle is equal to the sum of the power-law tail
exponents of all the parallel fibers in a bundle, regardless of whether they are brittle or plastic
(the same is probably true for softening fibers). While the length of power-law tail increases
with the length of a chain, it drastically decreases with the number of fibers in a bundle.

6. A sufficiently long power-law tail of RVE strength can be reconciled with the activation
energy concept only if the RVE is statistically modelled by a hierarchy of parallel and series
couplings, consisting of bundles of sub-chains of sub-bundles of sub-sub-chains of sub-sub-
bundles, etc., down to the atomic scale. The Weibull modulus is equal to the minimum
number of cuts of elementary bonds needed to separate the hierarchical model into two parts.
The elements of the sub-chains and sub-bundles in the hierarchical model may exhibit plastic
or softening behaviors, but not a perfectly brittle behavior because such behavior would not
allow a sufficiently long power-law tail of the cdf of RVE. The cdf of RVE strength cannot
be modelled by a bundle with a finite number of elements following the Maxwell-Boltzmann
distribution, and quasibrittle structures cannot be modelled as a chain of bundles. Otherwise
the power-law tail of RVE would be far too short for generating Weibull cdf for structural
strength.

7. For the sake of engineering computations, the cdf of random strength of a RVE may
be assumed to have Weibull left tail grafted at the failure probability of about 0.0001 to
0.01 onto a Gaussian core. With increasing structure size, the grafting point moves to higher
failure probabilities as a function of the equivalent number of RVEs, in a way than can be
described by treating the structure as a chain of finite RVEs. The mean and coefficient of
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variation of this grafted distribution are easy to calculate and are tabulated.
8. For not too small structures, the present chain-of-RVEs model give similar results

as the previously developed nonlocal Weibull theory, while for very small structures (not
much larger than a RVE) it allows predicting failure probability more rationally. The mean
behavior is, on not too small scales, essentially equivalent to that of the cohesive crack model,
crack band model and nonlocal damage models.

9. The theory explains why a nonzero threshold was found preferable in previous studies
of coarse-grained ceramics and concrete. The reason is that the strength histograms of these
materials exhibit a kink separating a lower Weibull segment from an upper Gaussian segment.
The lower segment up to the kink, important for safe design, can be fitted by Weibull cdf
with a finite threshold. But the upper segment cannot. The present theory removes this
problem. The predicted cdf fits both segments of the experimental histograms, along with
the kink location, very well. This is one experimental verification of the present theory.

10. Two ways of experimental calibration and verification are proposed. 1) Fit the mean
size effect curve, particularly its deviation from the Weibull size effect for small sizes. 2) Fit
the strength histograms with kinks for at least two significantly different sizes (and possibly
different shapes). Each way suffices to determine all the parameters. Still another check is
fitting of experimental strength histograms for different temperatures, loading rates or load
durations.
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Bažant, Z.P., Gu, Wei-Hwa, and Faber, K.T. (1995). “Softening reversal and other effects of a
change in loading rate on fracture of concrete.” ACI Materials Journal 92, 3–9.
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Rüsch, H., Sell, R., and Rackwitz, R. (1969). “Statistical analysis of concrete strength.” Deutscher
Ausschuss für Stahlbeton, Heft 206, Berlin, Germany.

Santos, C., Strecker, K., Neto, F.P., Silva, O.M.M., Baldacim, S.A., Silva, C.R.M. (2003). “Evalua-
tion of the reliability of Si3N4−Al2O3−CTR2O3 ceramics through Weibull analysis.” Materials
Research, 6 (4), 463–467.

Sato, S., Taguchi, K., Adachi, R., Nakatani, M. (1996) “A study on strength characteristics of Si3N4
coil springs.” Fatigue Fract. Engrg. Mater. Struct., 19 (5), 529–537.

Shalon, R., and Reintz, R. C. (1955). “Interpretation of strengths distribution as a factor in quality
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Fig. 1: Large difference between points of failure probability 10-6 for Gaussian and Weibull distributions 
with mean 1 and CoV = 5.2% in (a) linear scale; (b) log scale. 
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Fig. 2: a) Interatomic potential profile and change of activation energy Q caused by applied stress σ;  
b) potential break surfaces within a connection layer between hard inclusions 
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Fig. 3: Effect of temperature and stresses on the failure probability of interatomic bonds a) pdf; b) cdf 
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Fig. 4: Models of series and parallel couplings of brittle elements (chains of links and fiber bundles); a) 
chain; b) fiber bundle; c) bundle of chains; d) chain of bundles; e) hierarchy of sub-chains and sub-
bundles; f) a weakest link model made up of elements, each representing a RVE; g) example of a complex 
bundle with sub-chains and sub-bundles 
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Fig. 5: Post-peak behaviour of fibers a) Brittle; b) Plastic; c) Elastic Softening 
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Fig. 6: Strength cdf of elastic –brittle bundles with n fibers, in which each fiber has exponential strength 
distribution; (a) Curves of ln[−ln(1-Pf)] versus ln(σ/s1) for fiber bundles with increasing n, in which a 
straight line of slope p represents a power law of exponent p; (b) Exact cdfs of fiber bundle with 
increasing n, plotted on Gaussian probability paper (deviation from straight line is a deviation from 
Gaussian cdf) 
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Fig. 7: Effect of the probability at grafting point Pgr on the cdf of one RVE with CoV ω0 = 0.25 in a) 
Weibull probability paper; b) normal probability paper; and the effect of the CoV of one RVE ω0 with 
grafting probability Pgr = 0.003 in c) Weibull probability paper; d) normal probability paper. 
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Fig. 8: Size effect on the cdf of structural strength for Pgr = 0.003, ω0 = 0.25 in; a) linear scale b) Weibull 
probability paper; c) normal probability paper 
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Fig. 9: Size effect on mean nominal strength for different a) grafting probability Pgr; b) CoV of one RVE 
ω0; and c) optimum fit of "Chain of RVEs" model by asymptotic matching size effect. 
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Fig. 10: Optimum fits of Weibull (1939) tests of Portland cement mortar by a) Weibull cdf's, with finite 
threshold; b) chain of RVEs model, with zero threshold. 
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Table 1: Ratio of the length of power-law tail for total load distribution ndn/d1 of an elastic-brittle bundle 
 
 p=1 2 4 6 8 12 
 n=2 0.600 0.858 0.978 0.996 0.999 1.000 
 3 0.462 0.807 0.973 0.996 0.999 1.000 
 4 0.391 0.780 0.972 0.996 0.999 1.000 
 6 0.316 0.752 0.971 0.996 0.999 1.000 
 12 0.232 0.724 0.970 0.999 0.999 1.000 
 24 0.181 0.710 0.970 0.999 0.999 1.000 
 
 
Table 2: Extent of power-law tail probabilities for an elastic-brittle bundle with a tail exponent of 24  
 

s1/sn t1/tn p n dn/d1 Ptn/Pt1 Ptn 
1.00  1.00 24 1 1.000 1.00x10-00 3.00x10-01 
1.46  2.00 12 2 0.500 1.00x10-04 5.50x10-05 
1.78  3.00 8 3 0.333 1.00x10-07 1.30x10-07 
2.05  4.02 6 4 0.249 1.00x10-09 7.89x10-10 
2.53  6.18 4 6 0.162 1.00x10-12 3.76x10-13 
2.98  8.74 3 8 0.114 1.34x10-15 4.02x10-16 
3.83  16.57 2 12 0.060 9.43x10-22 2.83x10-22 
6.23  132.79 1 24 0.008 1.21x10-44 3.62x10-45 

 
 
Table 3: Extent of power-law tail probabilities for an elastic-plastic bundle with a tail exponent of 24  
 

s1/sn t1/tn p n dn/d1 Ptn/Pt1 Ptn 
1.00  1.00 24 1 1.000 1.00x10-00 3.00x10-01 
1.08  1.27 12 2 0.787 1.00x10-02 3.00x10-03 
1.15  1.49 8 3 0.672 2.40x10-04 7.20x10-05 
1.22  1.72 6 4 0.583 7.79x10-06 2.34x10-06 
1.35  2.27 4 6 0.440 1.00x10-08 3.01x10-09 
1.48  3.04 3 8 0.329 7.39x10-12 2.22x10-12 
1.73  5.65 2 12 0.177 8.37x10-19 2.51x10-19 
2.45  46.08 1 24 0.022 2.41x10-43 7.23x10-44 

 



Table 4: Mean µ, standard deviation δ, and CoV ω0 of the grafted distribution for one RVE for various 
grafting probabilities ΦW(αgr) 
 

Pgr rf ςgr µGn δGn µ0/s1 δ0/s1 ω0 

0.001 1.016 0.7493 3.584 1.335 3.640 1.275 0.350 
0.001 1.009 0.7496 2.723 0.850 2.746 0.825 0.300 
0.001 1.005 0.7496 2.095 0.535 2.103 0.525 0.250 
0.001 1.003 0.7499 1.649 0.344 1.653 0.331 0.200 
0.001 1.001 0.7499 1.324 0.200 1.325 0.199 0.150 
0.001 1.000 0.7499 1.084 0.109 1.085 0.108 0.100 
0.003 1.040 0.7838 2.512 0.993 2.599 0.911 0.350 
0.003 1.024 0.7843 2.112 0.686 2.152 0.645 0.300 
0.003 1.014 0.7846 1.776 0.468 1.793 0.449 0.250 
0.003 1.008 0.7848 1.497 0.309 1.504 0.301 0.200 
0.003 1.003 0.7850 1.266 0.192 1.268 0.190 0.150 
0.003 1.000 0.7851 1.079 0.108 1.080 0.108 0.100 
0.005 1.064 0.7999 2.160 0.896 2.275 0.796 0.350 
0.005 1.040 0.8007 1.894 0.638 1.951 0.585 0.300 
0.005 1.024 0.8012 1.651 0.446 1.677 0.419 0.250 
0.005 1.013 0.8015 1.432 0.301 1.443 0.289 0.200 
0.005 1.006 0.8018 1.241 0.191 1.245 0.187 0.150 
0.005 1.001 0.8020 1.074 0.107 1.075 0.107 0.100 
0.010 1.137 0.8212 1.751 0.823 1.940 0.680 0.350 
0.010 1.086 0.8227 1.632 0.600 1.730 0.519 0.300 
0.010 1.052 0.8238 1.491 0.427 1.538 0.385 0.250 
0.010 1.029 0.8246 1.344 0.292 1.363 0.273 0.200 
0.010 1.013 0.8251 1.202 0.189 1.209 0.182 0.150 
0.010 1.002 0.8255 1.069 0.108 1.070 0.107 0.100 

 
 
 
 
 
 
 
 
 
 




