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By assembling the largest database so far, the authors have
made a useful contribution, The data selection, however, is not
unbiased and the procedure proposed for the use of the data-
base in model evaluation is not correct. This would lead to
deceptive conclusions on the size effect, which is the focus of
this discussion. The points that follow briefly explain why.

1. Statistics of model errors—In an apparent effort to
bypass the least-square regression, the authors use some
peculiar statistics. The problem of evaluating or minimizing the
errors of the model, which représents a statistical regression
problem necessitating the use of the method of least-squares,
is treated by means of population (or ensemble) statistics.

This is done in Eq. (15) by defining the so-called model- -

safety factor y=Y;/y;(i=1, 2, ...n). For the sake of brevity,
the authors’ notation is here simplified as y,,,,y= Yi» Vi est = ¥,
and V, .1 = y;, and subscript i is attached to label the indi-
vidual data points in the database; Y; = beam shear strength
for test number i, and y, = the corresponding value calculated
from the model (design code formula). In Eq. (16) to (18),
Fig. 7 10 9, and Table 5 and 6, the authors introduce and
evaluate the standard deviation s and coefficient of variation
v of the set (or population) of all y; values, which are defined
as follows
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where m = (1/n)Z}_; (¥;/y;) = mean of all y;. Consider now

that the model formula giving y; = V, .,; as a function of

beam size, concrete strength, and steel ratio is multiplied by
any constant factor c, that is, all y; are replaced by cy;. Then
the standard deviation and the coefficient of variation of the
set of vy; values change as follows
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This shows that, according to the  authors’ strange
approach to statistics, the standard deviation s of model
safety factors 7y; can be made as small as desired if the
formula of the model is multiplied with a large enough factor
¢, and that the coefficient of variation y; does not change with
such multipfication. Such statistics are incorrect and
misleading. No model can be fitted to the database by mini-
mizing such an expression for s (or 2, or v2). The authors’
statement “A statistical evaluation of the distribution of ¥y,,4
can be used to evaluate the safety and accuracy of these
empirical relationships [that is, those for shear capacity]
in design practice” is generally not true;

2. Special case of constant model—The aforementioned
problem is not manifested conspicuously in the authors’ Fig. 7
to 9 because the model is represented in each interval of the
varied parameter by an independent constant value (horizonta]
line) of the existing formula V, = 2\f{ b,.d in Eq. (11-3) of
ACI 318, Because the valge of the model is considered as an
independent constant within each interval, it is not necessm}r
to conduct least-square regression based on minimizing s°.
Only in this special case, but not in general, can one simply
use population statistics, determining the optimum fit by the
model as the mean of the ordinates, separately within each
interval. But this is impossible for fitting a smooth formula to
the statistical trend of data as a function of some variable;

Consequently, in the special case of a model representing
a horizontal line (as shown in each interval in the authors’ Fig. 7
to 9), the aforementioned problem with an arbitrary multiplier
does not arise. In that case, the authors’ definitions of s and v are
not meaningless. Neither are they meaningless if these
definitions are used to evaluate s and v after the optimum fit
by the model has already been determined by the standard
method of least squares. Nevertheless, even in those cases,
these definitions are generally not unbiased because they are
not based on the method of least squares—a method shown
by Gauss to be the only method ensuring that the optimum
fit and standard error agree with the actual mean and
standard deviation of the statistical distribution of the fitted
variable. Consequently, the estimates of the 5 and 95%
probability cutoffs in Eq. (16) and (18) do not generally give
the correct values;

3. The way to deal with relative errors—The authors’
motivation for introducing the ratio yYhas apparently been the
view that what matter are not the absolute errors AV, but the
relative errors AV./V,.. While this view is justified, it is
generally appropriate, even in that case (and especially in the
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Fig. A—Top: Example of fallacious statistical analysis:
(a,c) Hypothetical perfect data generated so as to match
exactly the size effect law for four different concretes; and (b,d)
incorrect inference made by regression of the combined data set.
Bottom: Histogram of the number of tests in ACI 445 database
as a function of beam depth d, demonstrating necessity of
extrapolating on the basis of a sound theory.

presence of a trend, as in the authors’ Fig. 5 to 7), to intro-
duce a logarithmic transformation of ‘the fitted variable and
consider the statistics of InV, instead of y (BaZant and Yu
2003); the reason is that AlnV_ = AV, /V, for small AV,. In
fact, the necessity of such a transformation is obvious from
the fact that the data on the size effect trend in the authors’
Fig. 4 are clearly heteroskedastic (that is, their variance
strongly depends in the regression coordinate—in this case,
d) but, after the logarithmic transformation of the regres-
sion ordinate, the data became approximately homoske-
dastic (for example, Ang and Tang [1976]; Mandel [1984];
Plackett [1984]). Only in such transformed coordinate can the
standard (unweighted) least-square regression of the data give
unbiased estimates of the mean trend, the standard error, and
the 5% probability cutoff (BaZant and Yu 2003);

4. Fallacy in limiting consideration to combined data—
The authors propose the model to be evaluated only by statistical
comparison to the database as a whole. This is fallacious. To
illustrate it, consider Fig. A (top), which shows the plots of
log v, versus log d (on the left) for two sets of four hypothetical
data series with the same range of beam depth d (in logscale),
generated so as to perfectly match the curves of the size
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effect law v, = vo(1 + dldg)"2, in which the empirical
parameters vg and dj depend on the type of concrete. The set
on top is obtained by a frugal investigator, who has modest
funding and must, therefore, test smaller (less expensive)
beams, and the set at the bottom is obtained by a wealthy
investigator, who has greater funding and can, thus, afford to
test larger beams. Each investigator conducts the size effect
tests for four different concretes, each of which is the same
for both investigators (and all other influencing parameters,
such as the steel ratio p and shear span a/d are also the same
for both). The curve of the size effect law for each concrete
is different, characterized by different values vg;, vy, dgy,
and dyy, of the size effect law parameters vg and dj. Assuming
that both of these investigators do not know the size effect
law and regard these perfect data as one combined database,
they see only the data pictures on the right of Fig. A (top).
Because of the high scatter of the combined database on the
right, each investigator, looking at his combined database,
can at best infer a straight line trend in the bilogarithmic plot,
which corresponds to a power-law size effect. By statistical
regression, the frugal investigator finds the means size effect
veee d 4 while the wealthy investigator finds the mean
size effect v, oc &~V 3, Thus, because of ignoring the trend
of each individual data series, both investigators are led to
erroneous conclusions. Their conclusions depend on subjective
factors, such as the choice of beam sizes that, in turn, depend on
the funding of their sponsors. By changing the size range of
their tests, they could have obtained a power law with any
exponent between 0 and —1/2;

5. Correct use of database—The foregoing example docu-
ments that it is incorrect to base the selection of a design
formula on statistical fitting of the entire database. It would
even be incorrect to use a combined set of the data with a
non-negligible size range (which are much fewer, numbering
about 10). Correctly, the selection of the basic form of the
size effect formula must be based on a sound theory verified
by comparisons to individual size effect test series,
geometrically scaled, spanning a broad enough size range,
and made with one and the same concrete. The entire database
should be used only for calibrating the formula after its basic
form has already been selectedyand .

6. Imperative of theoretical support—The large beam size of
main concern represents an enormous extrapolation of the bulk
of existing experimental evidence (refer to Fig. A [bettem]).
Such a huge extrapolation cannot be accomplished purely
empirically without any theoretical support. Selecting an
empirical model to extrapolate the existing test data without the
support of a sound theory would fly in the face of ACI
President J. M. Izquierdo-Encarnaci6én, whose inaugural address
(Izquierdo-Encarnaci6én 2003) had the motto: “Ars sine scientia
nihil est” (that is, “Art without science is nothing”).
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The authors deserve praise for compiling the largest data-
base up to now. The data selection, however, is not free of
bias and the proposed empirical statistical evaluation would
be misleading. The reasons are as follows.

1. Ignoring previous database and its analysis—Docu-
menting the size effect on shear strength by the dimension-
free (that is, dimensionsfrei, or dimensionless) plots in Fig. 4
and 9 is important but not new. A 1984 study (BaZant and
Kim 1984), which escaped the authors’ notice, showed the
same size effect trend on a database of 296 data points, not
much smaller than the database assembled by the authors. A
database of 461 points, of which 296 were concerned with
beams without stirrups (and the rest with stirrups), was
published in detailed tables (with basic test parameters) on
pp. 264-267 of BaZant and Sun (1987), which apparently
went unnoticed by the authors. Despite the absence of some
more recent tests with a broad side range by Collins and
coworkers, Iguro et al. (1985), Walraven, and BaZant and
Kazemi (1991) the trend of the effect of beam size (as well as
concrete strength and reinforcement ratio), evidenced in these
two old studies, was the same as shown in the paper.

2. Ignoring the largest beams tested so far—The Japanese
tests (Iguro et al. 1985; Shioya and Akiyama 1994) (Fig. B),
in which the largest beam was 3 m deep (still a record), should
not have been omitted from the ACI 445 database. Aside from
BaZant and Kazemi (1991) (as well as one recent test by
Collins and coworkers in Toronto), these important data
provide the best experimental support for the fact that, in the
plot of log (V,./b,,d) versus log d, the mean size effect curve
attains a large-size asymptote of slope, —1/2 (this is so
despite the fact that the these data were originally interpreted
by a power law of exponent, —1/4, inspired by Weibull’s
statistical size effect theory that, however, has latter been
shown inapplicable). The objection against including these
Japanese data was that the load was distributed uniformly
over the beam while all the other tests in the database were
done under three-point loading. The design code formula
under study, however, is supposed to apply to both types of
loading, and the differences in arch action are much less signifi-
cant than other discrepancies among the tests included in the
database. The fact is the these remain the largest beams ever
tested, and that they provide strong support for the size effect
theory based on fracture mechanics and dimensional analysis
(including the aforementioned slope, —1/2).

3. Exclusion of test data of the highest brittleness—
Although the omission of a single size-effect test series
could not change the overall statistics significantly, the
omission of the reduced-scale test series from BaZant and
Kazemi (1991) (the second of two test series reported in that
study, in which the steel bars did not slip globally) is unjustified
for other reasons and appears to be motivated by bias.
Thanks to using small maximum aggregate size (5 mm),
reduced-scale standard deformed bars (procured from the
Portland Cement Association) and a concrete of relatively
high strength, this test series has achieved so far the highest
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brittleness number (BaZant and Planas 1998). This is
valuable information because high brittleness can engender,
on a small scale, the highly brittle response typical of very
large beams made with normal concrete, normal aggregate,
and normal reinforcement. The tests in BaZant and Planas
(1998) were statistically better designed than any other so
far—three identical tests made for each size, five sizes
covering the whole range in an unbiased manner (that is,
uniformly in the log-scale), and one of three broadest size
ranges achieved so far (the ratio of the smallest to the largest
beam depth was 1:16). The statistical scatter was the smallest
and the overall trend was very clear (it happened to agree
very well with the size effect law based on quasibrittle frac-
ture mechanics and dimensional analysis). When inclusion
of this data series in the ACI 445 database was recently
suggested to a subcommittee chaired by the first author, two
objections were raised:

a) One objection was that the beam width b must exceed
50 mm (criterion KON3 in Table 3). But why isn’t this
condition related to the aggregate size? It excludes reduced-
scale model testing, which is an indispensable tool for simu-
lating the size effect of very large normal concrete beams.
For an aggregate size of 5 mm, the beam width 38 mm
used in BaZant and Kazemi (1991) is perfectly adequate.
Besides, the beam width is known to have almost no
effect on shear strength v. = V_./b,d. Criterion KON3
would exclude all reduced-scale testing, the only means to
simulate the highly brittle behavior of extremely large beams
experimentally. This is a nihilistic position.

b) The second objection was that the reinforcement bars
were not precisely scaled geometrically and that they must
have slipped locally along part of the bar length. This,
however, was the case to the same or higher degree for
virtually all the other data in the ACI 445 database
(including the latest Toronto data).

4. Huge extrapolation necessitating theoretical support—
A further reason why the data from BaZant and Kazemi
(1991) should not have been excluded is that the large beam
sizes of main concern represent an enormous extrapolation
of the bulk of the existing experimental evidence. The size
effect is of main practical concern for beam depths ranging
from 1 m to many meters; however, 86% of all the tests in the
database pertain to beam depths less than 0.5 m, 98% less than
1.1 m, and 100% less than 1.9 m. Such enormous extrapolation
must be anchored in a rational theory, and the reduced-scale
tests in BaZant and Kazemi (1991) provide the most consistent
data available for verifying a theory in the range of high
brittleness, which is symptomatic of the large-size beams
of the greatest concern. These data happen to give the
clearest experimental evidence for the fracture mechanics
explanation of size effect. Their exclusion would skew the
results away from fracture mechanics.

5. Importance of fitting individual broad-range test
series—Another important reason why the data from BaZant
and Kazemi (1991) should not have been excluded is that the
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selection of the best code formula (or model) for the size
effect must not be based on the statistics for the entire data-
base, as proposed in the paper. This database is contaminated
by highly scattered influences caused by the variation of poorly
understood parameters other than size, and this obfuscates
the size effect trend (Fig. C). Rather, the selection must be
based on the ability of a (theoretically justified) formula to
closely fit each of those few available individual data series
that had a significant size range (Fig. B), with all other
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influencing parameters being constant or approximately
constant, and here the use of the data from BaZant and
Kazemi (1991) would make a significant difference. The
entire database is of course very useful, but it should be
employed only for calibrating the formula of the best form,
after that form has already been identified on the basis of a
theory verified by properly designed individual size effect test
series, which must include reduced-scale model tests, to
achieve high brittleness numbers (BaZant and Planas 1998).
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AUTHORS’ CLOSURE

The authors would like to thank the discussers for their
contributions and thus making public their jointly published
views, which were previously distributed widely in ACI prior to
the authors’ response. Therefore, this response jointly covers
similar statements of both discussers where applicable.

In their extensive discussions, the discussers focus on the

size effect, but they overlook that this was not the aim of the
paper. The main aim was to present the shear database for
members without shear reinforcement and to demonstrate its
relevance by comparing ACI 318 Eq. (11-3) with the
selected results derived from the database. Therefore, the
following response will concentrate on the points relevant for
the database.
- 1. The authors disagree with BaZant’s comments that the
authors’ model evaluation is “not correct” or “misleading,” and
that “they use peculiar statistics” or a “strange approach of
statistics.” Firstly, the ratio of test value to calculated value, that
is, the model safety factor Yo = V,, se5/Vy, car has traditionally
been used for a long time, as demonstrated by many peer-
reviewed papers in established technical journals. Secondly,
and likewise, it is a theoretically well-founded method in
statistics and safety theory of structures. The authors firstly
refer, for example, to MacGregor’s well-known textbook
(1988), Section 2-4, where the variability of resistance is dealt
with by “a histogram (Fig. 2-3) for the ratio of beam moment
capacities observed in tests M,,;, to the nominal strength M,
computed by the designer.” Subsequently, the resistance factor
¢ is then derived using this ratio. The model safety factor can be
understood as the reverse of an ¢-factor, whereby it only covers
a part of the uncertainty covered by the strength reduction
factor of ¢ = 0.75 for shear. If Y53 = V, sp5/V,, ca i less than
1.0, then a design equation does not attain the required safety
margin and the value ¢ is less than the required 0.75.

The authors also recommend Schneider’s (1997) “Intro-
duction to Safety and Reliability of Structures,” where in
Section 3.3.2 the model uncertainties are dealt with, and
where he would read the following:

“...deviations between analysis and tests are to be
expected. This fact is considered by a model variable M that
may be determined from tests. The test results Texp are
divided by the corresponding results 7,,,,; obtained using the
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resistance model: m = r,,,/r,,,45. From a number of tests a
histogram for M is obtained. Also the mean value and the
standard deviation s, may be calculated.”

The author’s approach is consistent with the above.

Many further references can be given that this is a theoret-
ically sound method for deriving code expressions for the
resistance of structures or structural members, especially due
to the work of several CEB and now fib Committees working
over many years on this topic: refer to, for example, CEB
Bulletins 219 (1993) and 224 (1995), and, specifically,
Konig and Fischer (1995) in this context of assessing design
relations for members without shear reinforcement.

From the final statements of Point 1 by BaZant, the
authors only can confirm the well-known fact that the
coefficient of variation does not change if the calculated
values are multiplied by a factor, and this allows a comparison
of relations with different average values. The authors reject
BaZant’s assertion that they falsified results by making “the
standard deviation of the model safety factor as small as
desired.” The standard deviation and the coefficient of
variation for Eq. (11-3) of ACI 318 were just calculated
according to well-known formula, and there is no mention at
all in the paper of applying a factor. Multiplying by a factor
of approximately 1.5 (not “a large enough factor”) may only
be required when different proposals are compared in order
to bring all proposals to the same level of, for example, the
average value. The statement, “No model can be fitted to the
database by minimizing such an expression” is clearly out of
place because nothing about “minimizing” and “fitting” can
be found in the paper.

Point 2 has also been answered by this because the authors
also did not “conduct least square regression” or “minimize”
anything or carry out an “optimum fit.” Figure 7 to 9 demon-
strate by simply carrying out separate statistical evaluations
for different ranges that the overall statistical values for the
whole dataset do not provide a sufficient insight into the
performance of a resistance model, for example, high model
safety factors for low d does not make up for unsafe values
for high d.

Point 3, again, has nothing to do with the paper because
the authors clearly did not deal with relative errors AV, but
looked at the model safety factor Y,z = Vi, ree/Vyy cap a5
explained previously.

Point 4 discusses at length a pretended proposal by the
authors (see first sentence), but this statement is obviously
not true, so that no detailed discussion is required. The
authors did not “only” look to the database as a whole but
also evaluated the performance of Eq. (11-3) in the selected
ranges. It needs no logarithmic plots to see that high safety
factors in the range of low d do not cover the deficiencies for
high d.

The authors also do not believe in statistical comparisons
only, but they wished to improve the basis for the empirical
methods, used until now in all codes for deriving code
expressions for especially the shear capacity of members
without shear reinforcement. Likewise, however, this
improved database can be used for comparisons with theories
and models for which experimental evidence is vital. The
authors are satisfied that at least this improvement of the
database for members without transverse reinforcement is
acknowledged by both discussers as “useful contribution” or
even “deserving praise.”

The necessity for theoretical support of a design formula
(expressed in Points 5 and 6 by BaZant and Point 4 by Yu) is
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surely undisputed in principle, but practically it only holds if
generally agreed models are available for the design of
members under the combined action of bending moments
and axial forces. Yet even this agreement on the flexural
design was only reached approximately 50 years ago, which
means that the big success of structural concrete in the first
50 years of its use was based more on empirical methods,
perhaps combined with some theoretical considerations.
Should the practitioners have waited these 50 years the
researchers obviously needed and should they have stopped
using concrete, only because of an “imperative of theoretical
support”? Both discussers should reconsider their absolute
demand on the primacy of theories and humbly accept that
the enormous success of concrete was in the first instance not
solely based on theories but perhaps rather more on engi-
neering judgement.

Especially in the case of models and theories for the ultimate
shear capacity of members without transverse reinforcement,
such an agreed state on the theoretical treatment is still not
reached today, as can be taken from the state-of-the-art
reports by Joint ACI-ASCE Committee 445 (1998) as well
as CEB TG 2.7 in CEB Bulletin 237 (1998). This was also
confirmed by the recent comparisons of design proposals for
ACI 318 carried out by ACI Subcommittee 445-F, which
yielded large discrepancies between different theoretically-
based proposals. Among these were the seven proposals of
both discussers themselves, which showed an enormous
scatter and encompassed almost the whole range of all other
proposals although only based on the one theory favored by
the discussers. In view of such variation within methods
based on only one theory, the absolute claim that design
proposals “must be based on a theory” cannot be justified,
and this is even more true in view of the fact that there are other
theories with contradictory relations and predictions.

Point 1 by Yu is not true because the tests reported in the
cited reference were considered in the database. The purpose
of the paper was not to write a historic review on earlier
published data collections.

In Point 2, Yu overlooks that all available design proposals
are based on tests of simple beams under one or two point
loads. The tests on beams under distributed loading were
then used to confirm the location of the section for which the
design is carried out. There are too few. tests under distributed
loading to justify a statistical and empirical approach. In
addition, the evaluation of such tests requires the determination
of the location of failure to realistically and safely assess
the loads carried by the shear transfer actions across the
failure crack. There are only a few proposals for this location,
which contradict each other; the usually-in-codes
assumed distance d from the support is not a realistic
value, although a safe assumption.

The authors strongly reject Yu’s accusation in his first
sentence of Point 3 that the authors were motivated by bias.
The reasons why any test should not be considered in the
evaluations are clearly explained in the paper, and for the
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beams by BaZant and Kazemi, it was solely the Point a) of 3
that the width of some tests was smaller than 50 mm (2 in.).
The selected lower limits for the dimensions b and ha of test
beams are practical limits for beams built according to ACI 318
or surely any code, as was agreed upon without much discus-
sion by the three committees in fib, ACI, and DIN, in which
the first author was a member of.

In Point 4, Yu addresses the extrapolation of an empirically
derived design proposal beyond the available data. This is
certainly a problem with all empirically derived design
formulae in codes and, therefore, code makers point out the
limits of the design equation and the range of data they are
based on in the code explanations or in accompanying hand-
books. If a designer faces a case beyond this range, he or she
will reconsider his design; if, for example, he or she wanted
to design a 5 m-thick slab without shear reinforcement,
which is highly unlikely to ever be tested, he will at least
consider to place minimum shear reinforcement.

Under Point 5, Yu firstly characterizes the authors’ database as
“contaminated by highly scattered influences”; the authors
wonder how Yu characterizes beams and slabs concreted in
structures outside the laboratories, for which codes are meant
and which surely exhibit even a far higher scatter of parameters
than the database? Secondly, the discusser seems to be
preoccupied by the dominance of the size effect, but the
influence, for example, of the reinforcement ratio is like-
wise important. This is a fairly well understood param-
eter because the longitudinal reinforcement controls the
crack widths and especially that of the failure crack in
members without shear reinforcement.

The proposal by Yu (and also BaZant, refer to Point 5) to
base a design formula on individual test series is simply
dangerous as can be taken from the scatter in the diagrams,
where different laboratories reported completely different test
results for beams with the same dimensions and materials. The
idea that only individual test series should support theories can
only be understood as such: that the discusser believes
strongly in only one or his own theory and ignores contradictory
theories and models, as already explained previously.
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