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REPLY TO HILSDORF AND MULLER'S DISCUSSION 
OF "COMMENTS ON THE USE OF ROSS' HYPERBOLA AND 

RECENT COMPARISONS OF VARIOUS PRACTICAL 
CREEP PREDICTION MODELS"* 

Zden~k P. Ba~ant and J. C. Chern 
Northwestern University, Evanston, Illinois 60201, USA 

Hilsdorf and MUller's detailed discussion is deeply appreciated. They 
raise several interesting points which call for further analysis. 

The discussers claim that a plot of t/C versus ~ (Eq. 3) is preferable 
to the plot of I/C versus i/~ (Eq. 2). This is not true, for three reasons: 

i) As one can verify by numerical examples, both plots yield essentially 
the same values of a and b. 

2) It is not true that determination of the "final" creep value from the 
plot of I/C versus I/~ gives too little weight to the long time creep data 
and too much weight to the short-time creep data. The opposite appears to be 
true. The y-intercept (i.e., point_i/~ ÷ 0) is very close (in the horizontal 
direction) to the points for high t (Fig. 4) and is, therefore, influenced 
by an error, e I, at points for large t (small l/T) much more than by an error, 
e~, at points for small ~ (large i/t) which lie far from the intercept (see 
Fig. 4). 

3) The plot of E/C versus E (Eq. 3) may be misleading since it gives an 
impression that the error is less than it actually is (compare Fig. 7a-d 
with Fig. 7e-h discussed later). The reason is that this plot, unlike the 
other one, does not become a horizontal line in the special limit case when 
C does not vary with time (C = const.); rather, it reduces to a plot of 
versus ~, i.e., a straight line of slope I. Therefore z when C increases with 
time, a large part of the variation in the plot of t/C versus ~ is of 
deterministic nature (~ as a function of t) and is not due to a variation of 
C. Thus, the reason that the plot of ~/C versus t appears to give a better 
fit is that it superimposes upon the random scatter of creep strain as a 
function of time a deterministic dependence of t versus t, thereby hiding the 
misfit of the creep formula and creating an illusion of a good agre~ent (such 
as that apparent from Fig. 7a-d below). 

The plot which matters most for comparing a creep prediction formula 
with test data is the plot of J(t,t') versus log (t-t'). Such plots were 
shown in Fig. 3, and from these plots (as well as Fig. 7) it is clear that, 
regardless of which plot is used for linear regression, the shape of Ross' 
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hyperbola  does not  agree  a t  a l l  wi th  the  a v a i l a b l e  l ong - t ime  creep da ta  and 
r e p r e s e n t s  J u s t  about  the  worst  p o s s i b l e  cho ice  among the  p r e v i o u s l y  
proposed formulas .  Although the  use of  any empir ica l  fo . r ~ a  i n t roduces  
some degree  of  b i a s ,  the  power law, J ( t , t ' )  - a + b ( t - t ' )  l i e  would have been 
c l e a r l y  p r e f e r a b l e  to c a r r y  out  t h e 8 e x t r a p e l a t i o n s  (which could be accomplished 
by. plotting J(t,t') versus (t-t') II . The statistics that Hilsdorf and 
Muller [1, 2] obtained would then change substantially. 

The discussers try to argue against the power law. They say that it 
tends "to overestimate creep after long periods of loading". However, from 
their phrase "functions such as those suggested by Shank or Balant et al." 
it seems that they might be unaware of an important difference between the 
original form of the power law, as suggested by Straub and Shank, and the 
new form, as suggested by Be@ant et al., in the double power law [23]. Long- 
time creep is considerably overestimated by the original form in which the 
power function is not applied to the total creep strain C(t,t') (per unit 
stress), but only to that part of the creep strain Cl(t,t') that accumulates 
after an initial short-time loading of approx~,~tely 1 hour duration (Figs. 5,6) 
[23]. These two parts are defined by C(t,t') ffi J(t,t') - I/E 0 (see Refs. 23, 24) 

Cl(t,t') ffi J(t,t') - 1/E where E - conventional elastic modulus and E 0 = 

instantaneous (true) elastic modulus which corresponds to loading applied 
at infinitely high rate; E 0 is close to the usual dynamic modulus, and is 

obtained as the left-hand side horizontal asymptote in the plot of J(t,t') 
versus log (t-t') (Fig. 6). The so-called short-time strain I/E contains 
much creep strain, usually over 30Z of 1/E value (Fig. 5). Exclusion of 
this creep strain from the original form of power law greatly reduces the 
range of applicability. The fact that the left-hand side asymptotic value 
1/E of the power curve (t-t') n in Fig. 8b is placed too high forces one to 
give the power curve a large curvature, i.e., use a higher exponent n, in 
order to fit the short-tlme creep data. Exponent n here comes to be about 
1/3, while the correct exponent obtainedwith the correct left-hand side 
asymptotic value I/E 0 (Fig. 6) is about 1/8. The excessively large curvature 

causes the original form of the power law to pass high above the creep data 
for longer creep durations (Fig. 6). It was for this reason that power law 
was Judged in older works to be inapplicable to long-time creep. Now it is 
well known, however, that the power law works quite well (and far better than 
Ross' hyperbola) even for very large creep durations provided that all short- 
time creep strain is included in the power law [23]. (The power law is not 
perfect, of course, and improvements appear to be poeslble - one is the log- 
double power law, presently under study by J. C. Chern at Northwestern 
University). 

Let us now examine practical use of discussers' Eq. 3 to extrapolate to 
50 years some very consistent and careful creep measurements, such as those 
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by Rostasy, et el. [17] (Fig. 7), the duration of which is ~ = 3.7 years. 
The regression line obtained according to the discussers' method is shown 
in FiR. 7, and the correspondin~ Ross' hyperbola in Fig. 7. Accordin~ 
to Ross' advice emphasized by the discussers, this hyperbola is made to 
fit closely the terminal segment of the measured data curve, as seen from 
Fig. 7g. Suppose now that the measurements terminate either at ~ -- i month 
or at t ~ 6 months, instead of 3.7 years. Applying the discussers' method 
to such limited data and ignoring the data points beyond I month or 6 months, 
respectively, one obtains the regression lines shown in Fig. 7a, b, with the 
corresponding Ross' hyperbolas shown in Fig. 7e, f (and coefficients a, b of 
Eq. 3 listed in Figs. 7a-d). 

If the discussers' method (Eq. 3) were valid, the Ross' hyperbolas_in 
these three figures would have to yield essentially the same value at t = 
18260 days = 50 years. They do not, and the discrepancies are huge. Ex- 
trapolation of the full 3.7-year data yields a 50 year value that is 2.63 
times larger than the value obtained by extrapolation of the I month data. 
The long-time extrapolations drastically change with the duration of 
measurements, regardless of the manner in which Ross' hyperbola is applied. 
Therefore, Ross' hyperbola does not appear to be an acceptable approach 
even when discussers' Eq. 3 is used. 

For comparison, Fig. 7 also shows extrapolations with the best formula 
that the writers presently know (it is called the log-double power law, and 
represents a gradual transition from the double power law for short and 
medium times to a logarithmic law for very long times). With this formula, 
the 50-year extrapolations obtained from the data terminating at 3.7 years, 
6 months and i month do not differ from each other by more than 9%. With 
the double power law, the consistency of extrapolations is not much worse. 
Fig. 7d, h also shows the least square fits of the complete data. The para- 
meters of the log-double power law and the coefficients of variation ~ are 
also listed in Fig. 7e-h. 

The discussers offer some justifications for having omitted many of the 
existing test data from their study. In the writers' opinion such omissions 
inevitably introduce subjective bias (which seems to have worked in favor of 
CEB-FIP Model in this case), and are unjustified. If some careful measure- 
ments by reputable experimentalists cover, e.g., only a 6 month duration but 
include, e.g., rather different ages at loading, or different humidity condi- 
tions, or different sizes, or different temperatures, or static and 
pulsating loads, etc., they are relevant and ought to be included. Even if 
some good data include, e.g., only one-month load duration, and if the creep 
prediction formula comes, e.g., 100% above this short-time curve, the error 
ought to be counted in the overall comparison. There exist well documented 
statistical examples demonstrating how subjective omissions from the data base, 
i.e., those not made by chance (e.g., by casting a-dice), can falsely reduce 
the coefficient of variation of errors [7]. 

The discussers further state that in "most experiments" (used by them to 
calibrate their formulas) "the relative humidity ranged between 50 and 70% 
at room temperature because this range is of particular practical significance" 
This premise is not true, however, because it ignores the fact that the 
humidity effect is very different for different thicknesses D of the cross 
section, as known from tests as well as theoretical analysis by diffusion 
theory [23]. A 6 inch (15cm) diameter cylinder in a drying environment loses 
moisture at about the same rate as a 5 inch (12.5cm) thick slab, but about 
4-times faster than a i0 inch (25cm) thick slab, and about 36-times faster 
than a 30 inch (75cm) thick slab (this fact is not adequately reflected in 
the CEB-FIP Model Code). Slabs of these thicknesses are quite typical for 
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structures to which the CEB-FIP Model Code is intended to apply, e.g., the 
critical cross sections of large span bridges. From the mean drying rate 
(rate of loss of water) of a member of any thickness D at a certain environ- 
mental humidity h one can easily determine an equivalent environmental 
humidity h which would give about the same creep for a 6 inch cylinder 

eq 
(see, e.g., Fig. 2 in Ref. 25). Thus, one can find that a I0 inch thick slab 
and a 30 inch thick slab exposed to h = 65% creep, over a long time period, 
about the same as a 6 inch diameter cylinder exposed to heq 77% and heq 

90%, respectively. For a 90% relative humidity, the creep of standard 6 inch 
cylinders is much closer to the creep of a sealed specimen than to the creep 
of a cylinder exposed to a 65% relative humidity, and for 77% the creep is 
roughly the average of these two cases. Thus, unless good creep data were 
available for very thick specimens (which is not the case), the discussers 
should not omit from their comparisons the creep data for high humidities 
and sealed specimens, even if they intend the CEB formulation to be used 
only for non-masslve structures, such as large span brid 8es. 
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