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Abstract: The problem of calculating the overall elastic moduli of a microcracked material
is now understood relatively well, however, only under the assumption that the cracks are
fixed, that is, neither grow nor shorten during loading. Such a calculation yields the secant
moduli for the response stress-strain curves of microcracked materials. The present paper
shows how this existing knowledge can be extended to calculate the tangential moduli for
incremental deformations of the material during which the cracks are allowed to grow and
remain critical, or shorten. For this purpose, the conditions that the energy release rate of
several families of cracks in the material must on the average be in balance with the energy
dissipation rate characterized by the fracture energy of the material are formulated. The
results of preliminary numerical studies still in progress are reported. It is found that the
self-consistent scheme for the calculation of elastic constants of a microcracked material
does not give realistic results except for deformations up to shortly after the peak load.
On the other hand, the differential scheme yields realistic stress-strain curves and it also
gives a ratio of uniaxial tensile to compression strengths that is approximately correct for
initially highly microcracked materials such as concrete. A comprehensive report on the
computation of tangent moduli will be given in a separate paper.

1. INTRODUCTION

Prediction of the response of structures made of damaging materials requires modeling
of the effect of microcracks on the constitutive law. The basic problem is the effect
of a random crack system, statistically uniform in space, on the elastic constants of the
material. The spatial orientation of the cracks within the system may be assumed to be
sufficiently random and statistically uniform in space to render the body isotropic or, on
the contrary, it may be assumed that the cracks are arbitrarily distributed, with a certain
number of crack families oriented along some particular directions, thus rendering the
body globally anisotropic. For both types of crack distributions, the effect on the overall
elastic properties has been studied extensively, and many important results have been
achieved in fields ranging from plain and high-performance concrete to soil and rock
mechanics and geophysical research [1-15].  However, the existing results are limited
to elastic solids in which the cracks are stationary, that is, neither grow nor shorten. The
objective of the present paper is to formulate the problem of response of materials in which



56

the cracks can grow or shorten during loading. The method of solution will be proposed
and some results from a numerical study in progress will be reported. A comprehensive
numerical study will be left to a subsequent paper [16].

2. LIMITATIONS OF CURRENT KNOWLEDGE AND EXTENSIONS NEEDED

2.1 Problem 1. Effective Secant Moduli

During the last two decades, calculation of the stiffness tensor of a material inter-
sected by various types of random crack systems statistically uniform in space has been
systematically explored. Effective methods of calculation of the elastic moduli of such
materials have been developed, based on application of various methods for composite
materials, such as the self consistent scheme and the differential scheme [1, 17, 18]. Crack
arrays of various configurations have been analyzed. Variational bounds on the effective
elastic moduli of crack materials have also been obtained [8, 19]. Highly accurate nu-
merical solutions for various examples of bodies with various examples of specific crack
configurations have been presented [8].

There is, however, one serious limitation of the current knowledge. All the studies so
far have dealt with fixed cracks, that is cracks that neither propagate nor shorten (Fig. 1).
This means that, in the context of response of a material with growing damage illustrated
by the curve in Fig. 1, the existing formulations predict only the secant elastic moduli
(such as E; in Fig. 1). Such information does not suffice for calculating the response of a
body with progressing damage due to cracking.

2.2 Problem 2. Effective Tangential Moduli

To calculate the response of a material with cracks that can grow or shorten, it is also
necessary to determine the tangential moduli, exemplified by E; in Fig. 2. Knowledge
of such moduli makes it possible, for a given strain increment, to determine the inelastic
stress drop Ao, (Fig. 2). This is obviously a harder problem than the calculation of the
secant moduli, because additional conditions must be introduced to express the fact that
the growing cracks must remain critical, i.e., their energy release rate must remain equal
to fracture energy Gy of the material, and that, for shortening cracks in which the crack
faces are coming into contact, the energy release rate must be 0. The method to deal with
this problem will be addressed here under the assumption that, despite the growth of the
cracks, their statistical distribution in space remains uniform. In other words, it will be
assumed that the cracks do not localize into bands or some other domains. In that case, the
material properties on a uniformly deforming specimen can be regarded as local material
properties, and so the calculation yields the local effective moduli.

2.3 Problenr 3. Tangential Stiffness of Material with Localizing Cracks

Knowledge of the secant and tangential moduli (Problems 1 and 2) is stiil not sufficient
to predict the response of a structure with growing cracks. It is now well known that
softening damage caused by cracking tends to localize into cracking bands or other
regions. The localization of cracking is caused and governed mainly by interactions among
propagating cracks. The interactions cause that the average behavior of a representative
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uniform

Figure 1. Effective Secant Moduli.

volume of the material with cracks does not follow the local stress-strain curve for growing
cracks but follows a slope that is either smaller or larger, as shown in Fig. 3. This problem
has recently been analyzed and an integral equation in space governing the nonlocal
behavior of such material has been formulated [20-22] on the basis of smoothing of
crack interactions. A complete solution of this problem obviously requires as input the
information about the secant and tangential moduli from (Problems 1 and 2). Discussion

of Problem 3 is beyond the scope of the present paper but will need to receive attention in
the future.
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Figure 2. Effective Secant Moduli.

3. METHOD OF CAL.CULATION OF TANGENTIAL COMPLIANCE TENSOR

In terms of the secant compliance tensor C, the constitutive relation of an elastic
material with many random cracks that are statistically uniform in space may be written
as

e=C:o (1)

in which €, & = macroscopic (average) strain and stress tensor, C = fourth-rank tensor,
and the colon denotes a doubly contracted tensor product.

Consider now that the elastic body is intersected by N families of random cracks,
labeled by subscripts u = 1,2, ..., N. Each crack family may be characterized by the
average crack radius a,,, and the number of cracks per unit volume of the material in
each family may be denoted as n u- All the cracks may approximately be considered as
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Figure 3. Tangential stiffness of material with localizing cracks.

circular, with radius a, in family . Thus, the compliance tensor may be considered as
the function:
C=C(a1,a2,...,a,,; nl,nzv...,nN) 2)

Approximate estimation of this function has been extensively reviewed by Kachanov and
co-workers [8, 19, 23, 24]. .
The incremental constitutive law can be obtained by differentiation of Eq. 1, which
yields
aC

N
=C: — :0ha 3)
Ae =C M+;Bau olay,
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where the symbol A denotes small increments over a loading step. The crack radius
increments Aay, cannot be determined from the dependence of C on a,, (Eq. 2).

The growth of the cracks must conform to the laws of fracture mechanics. Let us
assume that the cracks (actually microcracks) follow linear elastic fracture mechanics
(LEFM). This means that the energy release rates must be equal to the fracture energy of
the material, G¢. Strictly speaking, each of the random microcracks in the material should
follow LEFM, which means that its energy release rate should be equal to G;. To make
the problem tractable, we impose the energy balance condition only in the overall, weak
sense, namely that the combined energy release rate of each crack family must agree with
the energy dissipation according to the material fracture energy Gy, but the individual
cracks do not need to satisfy this energy balance condition. This means that we have the
following N conditions:

aIt*
da,

=2ma,N,Gy forAa, >0  (n=12,....np) )

in which n, is the number of families of growing cracks, and IT* is the complementary
energy of the cracked material per unit volume of the material. Repetition of subscript
in this and subsequent equations does not imply summation unless specifically indicated.
When the cracks are shortening, their faces are coming in contact, which requires no
energy; therefore, for shortening cracks,

ar-
— =0 forAa, <0
day

(u=n8+1....,n,) (3)

where n, is the number of all the families of growing and shortening cracks.
The complementary energy per unit volume of the microcracked material is expressed

® 1
IT':—Z-U:C:U (6)

Differentiating Eq. 6 we thus obtain

alfn* a ; d
=UZC!—(L+—IJ’:—IO' =12 ...N) N
day, da, 2 day,
Substituting here Eq. 4 or 5, and considering also that cracks i = n, + 1, ... , N neither

shorten nor grow (i.e., are fixed), we finally obtain the following incremental relations
which must be satisfied by the crack radius increments (positive or negative or 0):

1 dC
o:C:A0 + (5 gio—io - 2rraun,u6f) Aa, =0 (A2, >0, p=1,...,n;)
n
1 aC
G’ZCJAO'-FEO'ZEE;ZG'ACI# =0

Ag,=0"

(Aa“<0, ,u,=ng+1,...,ns)

(M=n,+1,..., N)
®)
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Figure 4. Uniaxial stress-strain curve for a macroscopically isotropic randomly cracked
body under uniaxial tension, using the self-consistent and differential schemes.

The first equation applies to the families of growing cracks, the second to the families of
shortening cracks, and the third to the families of stationary cracks.

Eqgs. 3 and 8 together represent a system of N + 6 equations for N increments of crack
radii and 6 increments of stress tensor components, Ac. If the strain increment A€ is
prescribed, these N + 6 unknowns can be soived from this system of equations.

The tangential stiffness tensor can be obtained by assigning a unit value to each
component of Ao, with the other components being 0, and solving the corresponding
stress increments for ail the cases.

4. COMMENTS ON NUMERICAL STUDIES IN PROGRESS

Obviously, the key to the application of the present method for caleulating the tangential
stiffness moduli of a damaging material is the dependence of the compliance tensor on
the average radii of all the crack families, as written in Eq. 2. This problem has recently
been extensively reviewed by Kachanov [8, 19] and considerable knowledge exists in
this regard. So far only the self-consistent scheme and the differential scheme for the
determination of C (Eq. 2) has been examined, and only for the simplest types of crack
arrays.

Calculations have been run for two types of crack geometries: the first consists of a
macroscopically isotropic randomly cracked body, while the second consists of a body
with one single family of parallel cracks at an angle with the applied stress. In both cases,
the body is subjected to a uniform stress field in tension or compression.
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Figure 5. Results for a macroscopically orthotropic material containing one family of
parallel cracks under uniaxial tension.
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Figure 6. Results for a macroscopically orthotropic material containing one family of
parallel cracks under uniaxial compression.
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Fig. 4 shows the calculated uniaxial stress-strain curve for a macroscopically isotropic
randomly cracked body, under uniaxial tension. The curves are shown for two calculation
schemes for C: the self-consistent scheme [1] and the differential scheme (see, e.g., [18]).
From this result it must be concluded that the self-consistent scheme is applicable only
up to early post-peak rgsponse; after that, it predicts the stress to decrease too rapidly,
at variance with test results for typical microcracking materials such as concrete. This
phenomenon may be explained by the fact that the self-consistent method always yields a
reduction of elastic stiffness, in terms of the crack density, that is excessive if compared
with existing experimental results for microcracking materials. It has been shown [1, 23]
that using this method, the elastic stiffness of the material vanishes for a finite value of the
crack density parameter equal to 9/16. The differential scheme, on the other hand, yields
realistically looking stress-strain curves.

Based on this result, the self-consistent scheme appears unsuitable for predicting dam-
age in densely microcracked materials, and the differential scheme may be recommended.

The evaluation of the compliance C (Eq. 2) in the calculations presented has been
conducted according to a technique described in [23]. The change of compliance due
to the presence of a system of cracks is evaluated by means of a symmetric second-rank
crack density tensor [4, 25], which is a tensorial generalization of the scalar crack density,
accounting for the particular crack orientations distribution. The parameters of the model
are then computed by equating the results for an isotropic body (with a randomly oriented
crack distribution) to the results obtained using the differential scheme.

Figs. 5 and 6 show the results for a macroscopically orthotropic material containing
one family of randomly located parallel cracks. The calculated stress-strain curves are
shown for uniaxial tension (Fig. 5) and uniaxial compression (Fig. 6) applied at angles
@ = 0°, 45° and 90° with the plane of the cracks. Recording the peak values of these
curves, one further finds that the ratio of the compression strength to the tensile strength
is about f//f/ = 8.6, which is reasonable for an initially highly microcracked material
such as concrete.

The numerical results presented in the preceding figures are a qualitative assessment of
the model, and no attempt of data fitting has been carried out. These preliminary results
show realistic trends, in good agreement with the observed behavior of the material.
Further numerical studies are in progress and will be reported separately [16].

5. CONCLUSION

The existing results on the overall elastic constants of bodies with various systems
of cracks need to be generalized to the case when the cracks grow (or shorten) during
loading. In that case, the condition that the cracks remain critical, i.e., that their energy
release rate remain equal to the fracture energy of the material, needs to be imposed. This
cendition can be written separately for several families of cracks in the material. Such
conditions, together with the differentiated form of the secant elastic stress-strain relation
of the microcracked material, yields a system of equations from which the stress tensor
increment and the crack length increments can be solved if the strain increment tensor
is given. From this, the tangential compliance tensor or tangential stiffness tensor can
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be obtained. Preliminary numerical studies reveal that the self-consistent scheme does
not yield reasonable results, except for deformations slightly beyond the load peak. The
differential scheme, on the other hand, yields realistically looking stress-strain curves.

For arbitrarily oriented crack systems, which render the body anisotropic, the effective
elastic compliance is obtained by means of a second-order crack density tensor which
embodies the particular crack distribution statistics. The differential scheme is used to
evaluate the parameters of the model. Preliminary results show realistic trends resembling
the experimentally observed behavior of microcracking materials. The model also predicts
a ratio of compression and tensile strengths which approximately agrees with the value
typical of concrete.
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