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Modelling of compressive strain softening, fracture and size effect in concrete
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ABSTRACT: It is by now well established that tensile failure of quasibrittle materials such as concrete
exhibits a significant nonstatistical size effect on the nominal strength of structure, but it is still widely
believed that compression failure does not. Recent researches are showing this belief to be untrue.
The present paper reviews recent research results on this problem and presents a simplified quasi-LEFM
analysis of the size effect in compression. The basic characteristics and mechanisms of compression failure
are reviewed and the distinction between local and global mechanisms is emphasized. The maximum load
is considered to be reached because the material develops axial splitting cracks and undergoes internal
buckling (microbuckling) in a localized band that propagates in either axial or lateral direction (the latter
appearing after reduction of load to zero as a ‘shear’ failure). The fully fractured and microbuckled tail of
crack band may transmit a finite residual stress. J-integral analysis of the energy release is used to obtain
the approximate size effect law for compression for a simple specimen shape, and equivalent LEFM (linear
elastic fracture mechanics) approximation is then used to derive size effect formulae that take also into
account the effect of structure geometry (shape). The cases of failure after long stable growth of crack
band and at crack band initiation are distinguished. Experimental results on size effect in reinforced
concrete columns and, for the purpose of analogy, also in carbon-PEEK laminates, are discussed. Finally,
one practical application in which the truss model for diagonal shear failure is extended to size effect is
presented and some implications for finite element analysis are discussed.

1. INTRODUCTION 1972; Paul, 1968) and described mathematically
in Bazant (1994a) and Bazant and Xiang (1997),
the compression failure in quasibrittle materials is
caused predominantly by the release of stored en-
ergy from the structure, which in turn engenders
localization and size effect. This aspect is similar
to fracture mechanics of tensile cracks. A size effect
must be expected, in general, whenever material

failure involves post-peak softening and lacks duc-

The size effect on the nominal strength of struc-
tures made of quasibrittle materials such as con-
crete, rock, ice, ceramics and composites is not re-
stricted to tensile fracture. For such materials, com-
pression fracture, too, exhibits size effect (e.g. van
Mier, 1986; Gonnermann, 1925; Blanks and McNa-
mara, 1935; Marti, 1989; Jishan and Xixi, 1990;

Bazant and Chen 1997; Bazant et al. 1998). The
compression fracture, however, is more complex and
less understood. Yet it often is the more important
and dangerous mode of failure, which is highly brit-
tle, lacking ductility.

Same as brittle tensile failure, compression fail-
ure, in general, cannot be considered to be con-
trolled by a material strength criterion, as im-
plied in nearly all practical applications up to now.
Rather, as suggested or implied by some researchers
(e.g. Ingraflea, 1977; Bazant et al. 1993; Bieni-
awski, 1974; Hoek and Bieniawski, 1965; Cotterell,

tility. The size effect is the most important prac-
tical consequence of fracture phenomena, and ob-
servations of the size effect are an effective way to
calibrate the parameters of a fracture model.

Summarizing and reviewing several recent stud-
ies at Northwestern University (Bazant and Xiang
1997, Bazant and Chen 1997, Bazant et al. 1998),
the present conference paper will attempt to ex-
plain the compression size effect in a simple and
plausible manner, outline a simplified model for
the lateral propagation of a band of axial splitting
cracks, sketch a simplified analysis of the size effect
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Figure 1: Micro-mechanisms of compression fracture.

by means of equivalent linear elastic fracture me-
chanics (LEFM), and present some applications to
shear failure of reinforced concrete cause by failure
of the so-called compression struts in the strut-and-
tie model. The presentation will deal not only with
concrete but also with compression fracture of fiber-
polymer composites. Some aspects of their failure,
which have recently been investigated in greater
depth, provide an instructive analogy for concrete.

2. CHARACTERISTICS AND MECHANISMS
OF COMPRESSION FRACTURE

Compression, as well as tensile, fallure of metals
is caused by plastic slip on inclined shear bands.
This ductile type of failure exhibits no significant
post-peak decrease of the applied load, and con-
sequently cannot cause any (deterministic) size ef-
fect. In quasibrittle materials, however, ductile {or
plastic) compression failure is possible only under
extremely high lateral confining pressures. Such
pressures lacking, reconstitution of severed atomic
bonds required for plastic slip, cannot develop in
quasibrittle materials such as concrete. On a higher
microstructural level, the interlock of rough sur-
faces of cracks inclined to the principal compressive
stress direction prevents any slip, unless the cracks
are already widely opened and the material near
the crack is heavily damaged. Macroscopically, of
course, shear failures are often observed in concrete,
but their microscopic physical mechanism is differ-
ent. It normally consists of tensile microcracking.

Three different mechanisms triggering com-
pression fracture can be distinguished on the
macroscale:

1. Pores with microcracks. Porosity has long
been known as the main controlling factor
for compression strength of various materi-
als. The linear elastic fracture mechanics
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(LEFM) was used to show that pores cause
axial tensile splitting microcracks to grow from
the pore under a compression load of increas-
ing magnitude (Fig. 1la); see, e.g., Cotterell
(1972); Sammis and Ashby (1986); Ashby
and Hallam (1986); Kemeny and Cook (1987,
1991); Steif (1984); Ingraffea (1977); Zaitsev
and Wittmann (1981); Wittmann and Zait-
sev (1981); Zaitsev (1985); Fairhurst and Cor-
net (1981); Ingraffea and Heuze (1980); Ke-
meny and Cook (1987, 1991); Sheffy et al.
(1986); Nesetova and Lajtai (1973); Carter et
al. (1992); Carter (1992); Yuan et al. (1993).
An important point to note is that these axial
cracks can grow only for a certain finite dis-
tance from the pore, which is of the same order
of magnitude as the pore diameter. Therefore,
this mechanism cannot explain the global frac-
ture. A similar conclusion applies to various
configurations of several pores which enhance
the local transverse stresses or produce shear
stresses on axial planes.

. Inclustons with microcracks. A stiff inclusion,

for example a rigid piece of stone in a softer
mortar matrix, causes tensile stresses at a cer-
tain distance above and below the inclusion,
which can produce short tensile splitting mi-
crocracks (Fig. 1b). A more effective generator
of transverse tensile stress in a macroscopically
uniform uniaxial compression field is the wedg-
ing action in a group of inclusions, e.g. a group
of two inclusions pressed between two others.
Such a failure mechanism (proposed for con-
crete long ago by Brandtzaeg and by Baker)
can be shown to produce short tensile splitting
microcracks between the inclusions (Fig. 1c).
Again, an important point is that, for all these
mechanisms, the cracks remain short, of the
same order of magnitude as the inclusion, and
so the global fracture cannot be explained.

. Wing-tip microcracks. In absence of pores and

without inclusions, axial splitting cracks in a
macroscopically uniform uniaxial compression
field can be produced by weak inclined inter-
faces between crystals. Slip on an inclined
crack causes the growth of curved cracks grad-
ually turning into the direction of compression,
called wing-tip cracks (Fig. 1d). Such cracks
have been extensively analyzed by fracture me-
chanicians, both numerically and analytically
{Ingraffea, 1977; Ashby and Hallam, 1986;
Nemat-Nasser and Obata, 1988; Horii and
Nemat-Nasser, 1982, 1986; Kachanov, 1982;
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Figure 2: Macro-mechanisms of compression fracture.

Lehner and Kachanov, 1996; Batto and Schul-
son, 1993; and Schulson and Nickolayev, 1995),
and curved crack growth under compression
has been clarified (Cotterell and Rice, 1980). A
fully realistic analysis of wing-tip cracks would
have to be three-dimensional, which has appar-
ently not yet been accomplished. Important to
note, the length of the wing-tip cracks is again
of the same order of magnitude as the length
of the inclined slipping crack, and so the global
fracture cannot be modeled.

Mathematical modeling of failure of quasibrit-
tle structures under compression requires that the
global mechanism of compression fracture be un-
derstood. This mechanism is more complex than
the mechanism of tensile fracture.

One complicating feature is that fracture in com-
pression is inherently a triaxial phenomenon, influ-
enced by the triaxial stress state at the fracture
front. By contrast, as documented by the success
of the cohesive (fictitious) crack model of Hiller-
borg, tensile fracture is describable as a uniaxial
phenomenon (in terms of the crack-bridging cohe-
sive normal stress only).

Among the global failure mechanisms, two kinds
may be distinguished: those that cause a global en-
ergy release with size effect, and those that do not.
A mechanism of the first kind is represented by the
propagation of a continuous macroscopic splitting
crack (Fig. 2b). Such failure is known to occur
in small laboratory test specimens, especially when
the ends are sliding with negligible friction.

While a transverse tensile crack causes a change
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in the macroscopic stress field (Fig. 2a), an axial
splitting macro-crack does not (Fig. 2b), and con-
sequently does not cause any global release of en-
ergy. The energy to form the axial splitting crack
and propagate it must come from some local mech-
anism, such as the release of stored energy from
the fracture process zone (and must be calculated
from its triaxial constitutive relation; Bazant and
Ozbolt, 1992). Because of the absence of a global
energy release, compression failure caused by an ax-
ial splitting macro-crack cannot cause any size ef-
fect. This appears to be confirmed by the numerical
results of Bazant and Ozbolt (1992) and Droz and
Bazant (1989), and does not conflict with‘experi-
mental evidence.

When the load required to drive the local mech-
anism of axial splitting crack propagation is higher
than that required to drive a global mechanism of
failure due to energy release, the global mechanism
will occur. As we will see, the global mechanism is
accompanied by size effect (Fig. 3h), and so it will
prevail for sufficiently large sizes.

The mechanism of global energy release must ob-
viously involve some sort of transverse propaga-
tion of a cracking band (or strain-softening damage
band). Such a band may logically be supposed to
consist of densely distributed axial splitting micro-
cracks. The weakening of the material by microc-
racks may be expected to cause internal buckling
(Fig. 3d,g,h).

Although mathematical modeling of the afore-
mentioned mechanisms in which cracks are engen-
dered by pores, inclusions and slips on inclined in-
terfaces has led to important results, it must be
recognized that these results are limited to the mi-
croscopic initiation of compression fracture. They
do not describe the global, macroscopic compres-
sion failure. The microcracks can grow in the com-
pression direction only for a limited distance un-
der increasing load but the maximum load is not
reached according to these mechanisms. In the axial
cross-sections through 3 specimen under a uniform
uniaxial compression stress field, each of these three
mechanisius produces a profile of self-equilibrated,
alternatively tensile and compressive, microstress
which averages to a zero transverse stress on the
macroscale. Such a picture is revealed by the finite
element results of Bazant and Ozbolt (1992).

There is no doubt that the compression split-
ting fracture begins microscopically as a series of
straight, wing-tip or other microcracks shown in
Fig. la-d. But how these microcracks interconnect
and propagate macroscopically is not explained by
the aforementioned microscopic mechanisms. This
needs to be described by a global mechanical model.



A simple form of such a model, simple enough to al-
low a straightforward analytical solution, has been
proposed in Bazant (1993) and BaZant and Xi-
ang (1997). The model is based on the hypothe-
sis that the axial straight or wing-tip microcracks
can become stacked in lateral direction to produce
a transverse (inclined or orthogonal) compression-
shear band.

Relatively little work has been done on the global
mechanism of compression failure. Biot (1965),
with reference to his analysis of internal instabili-
ties such as strata folding in geology, proposed that
compression failure involves internal buckling of a
three-dimensional continuum, and pioneered elas-
tic continuum solutions of such instabilities (Fig.
2a). Biot’s studies, however, were limited to elas-
tic materials without damage, and consequently the
predicted critical stresses for such instabilities were
much too high. Bazant (1967) applied finite strain
analysis to the bulging and other internal instabili-
ties of thick compressed solids made orthotropic by
microcracking damage and showed that such insta-
bilities can explain the failure of an axially com-
pressed fiber-reinforced composite tube, describing
reasonably the dependence of the failure stress on
the ratio of the wall thickness to the diameter.

To clarify the role of buckling, Kendall (1978)
studied the axial splitting fracture of a prism com-
pressed on only a part of its end surfaces (Fig.
2e). He managed to obtain rather simple formu-
las. Simple formulas were also derived for axially
compressed fiber-reinforced laminates in which in-
ternal buckling is engendered by the waviness of
fibers in the layers of fabric (BaZant (1968); Bazant
and Cedolin, 1991, Sec. 11.9). In Kendall’s model,
however, the buckling of the specimen halves was
caused solely by load eccentricity. His model would
be unable to explain the axial splitting fracture of
a compressed specimen uniformly loaded over the
entire end surface, for which the critical buckling
stress would be obtained much too high from his
model. Nevertheless, the notion that instability
of a specimen weakened by axial cracks is part of
a global compression failure mechanism has been
clearly established.

The concept of energy release as the phenom-
enon driving the compression fracture, same as in
the case of tensile fracture, was introduced in the
analysis of stopes in very deep mines in Transwaal
in the 1960’s. An empirical failure criterion based
on the energy release from the rock mass as a func-
tion of the length of the stope was established (it
was actually simulated by an electric analog model
at the Chamber of Mines in Pretoria); Hoek and
Bieniawski (1965), Bieniawski (1974).
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Figure 3: Simple model for energy release analysis and
size effect curve.

Consideration of the global energy release was
brought into the modeling of compression failure
in a study of the compression breakout of boreholes
in rock (Bazant et al., 1993). A band of parallel
splitting cracks was considered to propagate from
the sides of the borehole, driven by the release of
strain energy from the surrounding rock mass. It
was shown that such a model predicts a size ef-
fect, which basically agrees with recent test results
of Haimson (1989), Carter (1992) and Carter et al.
{1992). This solution contrasts with previous plas-
ticity solutions of borehole breakout which predict
no size effect. The stored energy release due to
propagation of a band of axial splitting cracks, cou-
pled with buckling of the slabs of material between
the cracks, have been two principal aspects of a
model recently proposed by Bazant et al. (1993)
which will serve as the basis of the present analysis.

A nonlocal constitutive model for strain-softening



damage, capable of capturing the energy release,
was used by Droz and Bazant (1989) and BaZant
and Ozbolt (1992) for finite element modeling of
compressed rectangular specimens. These studies
predicted for such specimens no significant size ef-
fect. The explanation is that the specimen was too
small for developing a significant energy release. In
that case, propagation of a long axial splitting crack
is the preferred mechanism of failure, and this me-
chanics exhibits no size effect.

3. SIZE EFFECT IN COMPRESSION FRAC-
TURE

To analyze global compression fracture, Bazant
(1993), and BaZant and Xiang (1997) introduced
the hypothesis that the aforementioned micromech-
anisms create a laterally propagating band of axial
splitting cracks; see Fig. 3a,b,c. The band propa-
gates in a direction either inclined or orthogonal
to the direction of the compressive stress of the
largest magnitude (Bazant, 1993, BaZant and Xi-
ang, 1997). In the post-peak regime, the axial split-
ting cracks interconnect to produce what looks as a
shear failure (Fig. 3b,c) although there is no shear
slip before the post-peak softening (in fact, shear
failure per se is probably impossible in concrete).

It is instructive to show by a simple energy analy-
sis that a size effect must be exhibited by the pris-
matic specimen shown in Fig. 3a,b,c. Formation of
the localized band axial splitting cracks, accompa-
nied by buckling of the slabs of the material between
the splitting cracks, as shown in the figure (which
can be regarded as internal buckling of microscop-
ically damaged continuum), engenders a reduction
of stress on the flanks of the band (in the wake of
the propagating band front); Fig. 3d. Approxi-
mately, a full stress reduction may be considered to
occur in the shaded triangular areas. For the calcu-
lation of the energy change within the crack band
one needs to take into account the fact that the
slabs of material between the axial splitting cracks
ought to undergo significant post-buckling deflec-
tions corresponding to the horizontal line 3-5 in Fig.
3e. Thus, the energy change in the splitting crack
band is given by the difference of the areas 0120
and 03560 (the fact that there is a residual stress
0. in compression fracture is an important differ-
ence from a similar analysis of tensile crack band
propagation).

The energy released must be consumed and dissi-
pated by the axial splitting cracks within the band.
This is one condition of failure, for which the frac-
ture energy of the band, G}, is the essential material
characteristic. Its value may be expressed as
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Gy = Gyw/s (1)

where Gy = mode I fracture energy of the axial
splitting cracks; s = characteristic spacing of these
cracks, and w = width of the splitting crack band.
In general, parameter s as well as w may vary along
the band and may also depend on the structure
size D. It appears, however, that the available
experimental data for concrete and rock, as scat-
tered as they are, can be fitted reasonably well with
the assumption that G, = material constant. Yet,
they can be fitted equally well under the hypothesis
that the s-value is governed by buckling of the mi-
croslabs between the cracks according to the'Euler’s
critical stress formula. In that case, for a given D,
there exists a certain finite value of s for which ox
is minimized (because increasing s causes the mi-
crobuckling stress to increase but Gy to decrease).
For large D, the asymptotic behavior is the found

to be
s = s0(D/ Do)!/® )

where s, Do = constants (Bazant 1993, BazZant et
al. 1993, Bazant and Xiang 1997). However, if the
spacing s is of the same order of magnitude as the
size of material inhomogeneities, then s may be a
constant, independent of D. For example, when
continuum analysis indicates s to be less than the
spacing of the large aggregate pieces in concrete,
then s is forced to be equal to that spacing, and
thus constant.

The second condition of failure is that the relative
displacement across the compressed band due to
microslab buckling must be compatible with the ex-
pansion of the triangular areas in the flanks caused
by the stress relief. One needs to write the condi-
tion that the shortening of segment HI in Fig. 3a
is compensated for by the extension of segments
GH and 1J, which is a compatibility condition. The
energy release from the crack band is given by the
change of the areas under the stress-strain diagrams
in Fig. 3e, caused by the drop of stress from the ini-
tial compressive stress op to the final compressive
stress o, carried by the splitting crack band.

The resulting asymptotic size effect on the nom-
inal strength on of large structures is given by a
formula of the following form (Bazant 1993, Bazant
and Xiang 1997), in which Cy, C}, o, = constants;

Co\/JEGywD™'? + o,
C1D-2/5 + O

ON

or 3)
depending on whether s varies according to (2) or is
constant. For s varying according to (2), the plots
of log oy and log(on — o) versus log D are shown
in Fig. 3f.
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To check the approximate theory just outlined
(Bazant, 1993; Bazant and Xiang, 1997), the test
results on size effect in reduced-scale tied reinforced
concrete columns with reduced aggregate size hav-
ing three different sizes (in the ratio 1:2:4) and three
different slendernesses (A = 19.2,35.8 and 52.5),
have been fitted; see Fig. 4, where the formula is
shown by the curves. In fitting of the data it was
assumed that s varies as D'/5. However, the data
could be fitted equally well if s, and thus also G,
were assumed to be constant. In view of the in-
evitable scatter of test results, one would need test
data of a much broader size range to decide whether
or not s and G, are dependent on size D.

The test results shown in Fig. 4, as well very
recent tests results on real size reinforced concrete
columns made with concrete of normal-size aggre-
gate tested by Barr and Sener in Cardiff, never-
theless clearly demonstrate that a strong size effect
exists, although it is currently ignored by the design
codes for concrete structures and has not yet been
reproduced by finite element analysis.

Understanding of other quasibrittle materials can
be helpful. In this regard it is worth mentioning
that on-going tests of PEEK laminates reinforced
by unidirectional carbon fibers reveal a significant
size effect in compression along fibers (Bazant et al.
1998).

Why is no systematic size effect observed in uni-
axial compression tests of small laboratory speci-
mens failing by a long axial splitting crack? In a
uniform uniaxial stress field, a sharp planar axial
crack does not change the macroscopic stress field,
and so it releases no energy. Therefore a damage
band of a finite width (Fig. 3g) must precede the
formation of an axial splitting crack. The energy
is released only from this band but not from the
adjacent undamaged solid. Therefore, the energy
release is proportional to the length of the axial
splitting crack, which implies that there is no size
effect (Fig. 3h). Thus, the lateral propagation of
a band of splitting cracks, which involves a. size ef-
fect, must prevail for a sufficiently large specimen
size (Fig. 3h; Bazant and Xiang 1997). The expla-
nation why the axial splitting prevails for a small
enough size is that the overall fracture energy con-
sumed (and dissipated) by a unit extension of the
splitting crack band must be smaller than that con-
sumed by a unit lateral extension (for which new
cracks must nucleate).

As experimentally demonstrated by Nesetova and
Lajtai (1992), Carter (1992), Carter et al. (1992),
Yuan et al. (1992), and Haimson and Herrick
(1989), a size effect also occurs in the breakout of
boreholes in rock; Fig. 2d. It is known from the
studies of Kemeny and Cook (1987, 1981) and oth-
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Figure 4: Test results on size effect in reduced-scale
reinforced concrete columns (after Ba¥ant and Kwon
1994).

ers that the breakout of boreholes occurs due to
the formation of splitting cracks parallel to the di-
rection of the compressive stress of the largest mag-
nitude, 0ye. An approximate energy analysis of the
breakout has been conducted under the simplifying
assumption that the splitting cracks occupy a grow-
ing elliptical zone (although in reality this zone is
narrower and closer to a triangle). The assumption
of an elliptical boundary permitted the energy re-
lease from the surrounding infinite solid to be eas-
ily calculated according to Eshelby’s theorem for
eigenstrains in ellipsoidal inclusions (Bazant, Lin
and Lippmann 1993). By repeated use of this theo-
rem, the energy release from the infinite rock mass
can be approximated as

All = —n[(a + 2R)Rol,, + (2a + R)acl,,
~2aR04000y00 — 2002 )(1 — v?)/2E

(4)

in which R = borehole radius, a = principal axis
of the ellipse, 0, and oy = remote principal
stresses, £ = Young’s modulus of the rock, and
v = Poisson ratio. A similar analysis as that for the
propagating band of axial splitting cracks, already
explained, has provided a formula for the breakout
stress which has a plot similar to that in Fig. 3f.
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4 ASYMPTOTIC SIZE EFFECT VIA ENERGY
RELEASE

4.1 Case of notches or long splitting crack band

Let us now analyze failure that occurs after a stable
growth of a long compressive splitting crack band
in a long unnotched rectangular specimen (Fig. 5a)
loaded at the top and bottom ends by uniform pres-
sures equal to on. The band has width w (Fig. 5a,
same as k in Fig. 3a) and may have a nonzero
inclination 8 with respect to the direction of com-
pression. The diagram of the axial normal stress
across the crack band, o, versus the relative dis-
placement 6" across the band (Fig. 5e,f) may be
assumed to exhibit post-peak softening where oy =
initial strength and 7, = residual strength, repre-
senting the final plateau corresponding to buck-
led microslabs. Similar to what was shown for
mode II slip bands by Palmer and Rice (1973),
the area of the diagram above the yield plateau is
known to play the role of fracture energy G, of the
splitting crack band. To approximately calculate
the energy release due to propagation of the crack
band, we may apply Rice’s J-Integral (Rice 1968a).
We consider the rectangular closed integration path
ABCDEFGH shown in Fig. 5b. The top, bottom
and right sides of this rectangular path, CDEF, are
sufficiently remote from the crack band for the ini-
tially uniform stress state, o = oy, to remain undis-
turbed. On the left downward sides of the rectangu-
lar path, FG and BC (Fig. 5b), the distribution of
the axial stress has the curved profile shown on the
left of Fig. 5b. For the sake of simplicity, we replace
this profile by the stepped piece-wise constant pro-
file shown, in which the stress drops abruptly from
the initial stress on to the residual stress o, that
is transmitted across the band after large axial dis-
placement. For sufficiently large geometrically sim-
ilar specimens, the locations of the stress steps in
this replacement profile, that is, points F and C, lie
on rays of a certain constant slope k& shown dashed
in the figure. These rays may be imagined to em-
anate from the tip of the equivalent crack of length
a = dg + Cp.

A finite-size fracture process zone must exist at
the front of the crack band. This is the zone in
which the axial splitting cracks form and the nor-
mal stress across the band gets reduced to the resid-
ual stress o,, while the microslabs of the material
between the splitting cracks buckle. It seems rea-
sonable to assume that the effective length of the
fracture process zone of the crack band, ¢; (Fig.
5a), is constant and that, if there is a notch, the
fracture process zone at maximum load still remains
attached to the tip of the notch (Fig. 5c), whose
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length is denoted as aq (Fig.5a,b,c). Referring to
the sketch in Fig. 5a, our crack band of length
ag+co is approximately equivalent to a mode I crack
whose faces are imagined to interpenetrate (Fig.
5b); its length is ap + ¢, where ¢, = ¢ + (w/2k),
which may again be assumed to be approximately a
constant when the size D is varied. Consequently,
the height FC of the rectangular path in Fig. 5b, is
approximately 2k(ag + ¢), as labeled in the figure.
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Figure 5: ldealizations for J-integral analysis (a-g)
and use of superposition principle (h).



In view of these considerations, one part of the
J-Integral may be expressed as follows:

2 2
dey = 2k(ao + ¢) (;]1; ;’E)

in which W = strain energy density, and z,y =
horizontal and vertical coordinates (Fig. 5b). In
(2) we have considered that the parts of the inte-
gral over the horizontal segments are zero, and that
the stress on the vertical segment DFE may be as-
sumed undisturbed by the band, i.e., equal to on.
The portions of the integral over the crack surface
segments GH and AB are, likewise, 0.

The second part of the J-Integral may be calcu-
lated as follows:

folfac = o o]
s o] e

—/:0:00, dé(z)

= o, /::_Odcs(x):—orﬁgg (6)

in which & = stress vector acting on the path from
the outside, ¢ = displacement vector, § = relative
displacement across the band, and égg = relative
displacement between points B and . That dis-
placement can be estimated as

(5)

[

6s¢ = AED— (AFC+ABC) = 2k(ao + )

—-a;

—7 (1)
As indicated, this value is calculated as the differ-
ence between the changes of length £D and length
FG.

Now the J-Integral may be readily evaluated as

follows:
f (Wdy s 6—udz)
Jdz

k
= E(ao + ) [0',2\, — ot —2on — a,)ar]

—2k(ag + cb) 7= = 2k(ao + cb)

J

oo+ as) (o — 0, (8)
The energy consumed may be calculated again with
the help of the J-Integral, in the manner shown by
Rice (1968b) and Palmer and Rice (1973). To this
end, the integration path that runs along the equiv-
alent crack surface and crosses the crack (Fig. 5d)
is used;

Gy =

Jop = —0,.6, + fa —dz 9)
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This represents the critical value J, of the J-
Integral; the first term, —o.6,, represents the work
done by the band-bridging stresses that is leaving
the fracture process zone in its wake; it is repre-
sented in Fig. 5f by the rectangle lying under the
shaded triangle that gives the fracture energy. Fol-
lowing the way shown by Rice (1968b) and Palmer
and Rice (1973), the second part of this expression
may be evaluated as follows

sy 2 {15 Ja

[ e 7 (6] de
20 d 11

+ /z:ao-l—cbf[&(l)]E {56(1:)] dx

ag+ch dé(z
[ flaan

r=ag

&
= [ fi5(=)ds(a) =

As expected from the energy balance requirement,
this result verifies expression (1) for crack band
fracture energy.

Equating (8) and (9), and solving for the nominal
strength of the specimen, oy, one obtains

&e\
A

| o5

&
oo
)
1

(10)

EGb/ka _

Jg
- =04 —— (11
14+ D/Dg /1+ D/ D, (1)

in which (with ap = ag/ D)

oy =0+

Cp EG{,
Jgg = —_
g’ ke

Dy=— (12)
Note that the resulting formula (11) is of the same
form as that proposed by Bazant (1987) for the gen-
eral case of quasibrittle failures with a residual plas-
tic mechanism, and subsequently verified for several
applications to concrete structure.

So far we have considered a long compression
splitting crack band with uniform residual stress
extending all the way from a smooth surface. In
the case of a notch, the crack bridging stresses o,
are zero up to the notch tip. Normally the fracture
process at maximum load may be expected to be
attached to the notch tip, which means one may
obtain the solution from the previous solution (11)
by simply substituting o, = 0. This gives, for com-
pression failure of notched specimens,

Jo

~ 1+ DDy B (cf+ 2’“) = 09

which is the same as the approximate size effect law
proposed in Bazant (1983, 1984).

From laboratory evidence and computational ex-
perience, the length of the crack band up to the



beginning of the fracture process zone, ag, may of-
ten be considered to be roughly proportional to the
specimen size D, within a certain range of sizes
(Bazant and Planas 1998). In other words, the ra-
tio D/ap is approximately constant, and so is the
value of Dg in (13), provided that the specimens are
geometrically similar.

The foregoing procedure is generally valid for any
type of distributed or concentrated load applied on
the top and bottom of the specimen at remote cross
sections. For the special case of a uniform load, the
foregoing result can be more directly obtained by a
simpler procedure that is based on the principle of
superposition, as illustrated in Fig. 5h. The solu-
tion for a specimen with residual stress in the crack
band is the sum of the solution of a specimen in
which the distributed load at specimen ends is equal
to the residual stress (in which case the stress state
is uniform, ¢ = ¢,) and the solution of a specimen
with a mode | stress-free crack loaded at remote
cross sections by oy — o,. In that case it suffices to
take the J-Integral only along the path BCDEFG,
that is, omit the segments AB and HG along the
crack surface. In such an approach, (5) disappears,
and so does the first term in (7). This leads directly
to an expression of the type (13), but with on — o,
on the left-hand side, which evidently is equivalent
to (10).

The case of a notched specimen can be treated
as a special case of the preceding analysis in which
the curve of band-bridging stress versus its rela-
tive displacement has the shape indicated in Fig.
5S¢, with a sudden drop to 0 at a certain point of
the yield plateau, é., corresponding to the trans-
verse contraction of the crack band at the notch tip
(the notch is assumed to have a certain finite width
sufficient to accommodate this contraction without
overlap). In a full analysis of the boundary value
problem, the values of §, and of the splitting crack
band length would be determined by the condition
that the total stress intensity factor caused by the
applied load and the band-bridging stresses would
vanish. However, imposing this condition would be
too complicated for the present simplified analy-
sis. Instead, it appears reasonable assume the crack
band at the maximum load to have a certain finite
length cr characteristic of the material. Then, the
analysis that has led to (11) is applicable, except
that o, is replaced in this formula by 0 and that
Do = ¢,D/Jag. Thus, the approximate size effect
law for geometrically similar notched specimens has
the form of (12).

Another difference of failure of notched specimens
(with fracture process zone at maximum load at-
tached to the notch tip) is that the fracture en-

ergy of the splitting crack band must be consid-
ered as the area G, which includes the area under
the yield plateau shown in Fig. 5f. Consequently

oo = /EGyw/kes.

4.2 Case of splitting crack band starting from
smooth surface

As is well known, in prestressed concrete beams or
in reinforced concrete columns, the bending failure
may start by compression failure of concrete rather
than tensile yielding of reinforcement. In view of
the present analysis, such failure may be ¢onsid-
ered to occur at the initiation of a splitting crack
band from the compressed face of the beam. How-
ever, unless the beam is enormously large, a fracture
process zone whose length ¢, is not negligible com-
pared to the cross section depth D must form be-
fore the maximum load is reached (Fig. 5g). This
must evidently cause significant stress redistribu-
tion, which may be seen as the source of the size
effect.

This type of size effect is analogous to the size ef-
fect in tensile failure of plain concrete beams, i.e., in
the test of modulus of rupture. It can be explained
on the basis of energy release, however, one must
for that purpose take into account the second-order
derivatives of the energy release rate (because the
energy release rate for an initiating crack or crack
band, still infinitely short, is 0). The present sim-
ple J-integral approach is not accurate enough for
determining these higher-order derivatives. There-
fore, the size effect can be more conveniently and
perhaps more instructively explained and quantified
by analyzing the stress redistribution (as already
done for concrete in Bazant Li, 1995).

The size effect at crack band initiation is known
to occur only if the stress distribution has a signifi-
cant stress gradient ¢’ and a maximum magnitude
at the surface (Fig. 5g). The remote stress distri-
bution near the surface may be considered in the
form:

T

o=0—drz=on(l+7)+ 2770'ND (14)

in which z = distance from the surface; 01,0’ =
values of the stress and its gradient at the surface
(z = 0) before any axial splitting cracks formed. If
the stress distribution is calculated from the theory
of bending and is caused by axial load P = onbD
of eccentricity e, then n = 6e/D = dimensionless
stress gradient.

A simple solution may proceed as follows. Based
on experience with the analysis of size effect on the
modulus of rupture of concrete, the stress under
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maximum load at roughly the center of the frac-
ture process zone, or precisely at distance ¢, from
the surface, may be assumed to be equal to the
strength limit o¢ at which the crack band begins
to form, which corresponds to the maximum stress
point on the diagram of band-bridging stress versus
contraction of the band (Fig. 5¢);

c
5=
Solving this equation and introducing a large-size

approximation valid for D < D, one obtains the
formula:

[o],, =00 or on(l1+n)+2noNn oo (15)

on = Op 1
N T+n) (T -Du/D)

in which we introduced the notations:
Dy =2cn/(1+19), 0w =00/(1+17)

For a vanishing stress gradient or a vanishing load
eccentricity, n = 0, and the size effect then vanishes.
The values of o0, and D, are constants, the latter
representing the thickness of the boundary layer in
which the crack band damage takes place.

Equation (14) is of the same form as previously
derived for concrete (BaZant and Li, 1995, Bazant
and Planas, 1998). One could also obtain the same
equation by a more sophisticated analysis in which
the stress redistribution due to the formation of
crack band is actually calculated and the maximum
load is determined from the redistributed stresses
(Bazant and Li, 1995). Such an analysis could also
be applied here, but it is more complicated. A
still more general approach is an asymptotic analy-
sis based on the energy release functions of LEFM,
which is outlined next.

R O (1 + %) (16)

(17)

5. ASYMPTOTIC SIZE EFFECT ANALYSIS
VIA EQUIVALENT LEFM

5.1 Case of long notches or crack bands

Following a procedure analogous to Bazant (1997a),
we will now try to express the coefficients of the
size effect law in (11) on the basis of the energy
release functions of linear elastic fracture mechan-
ics (LEFM). This will further allow us to capture
the effect of structure geometry (shape). Assuming
that the fracture process zome at the crack band
front is not so large as to spoil linearity, the stress
intensity factor K7 at the tip of a Mode I crack ap-
proximately equivalent to the crack band may be
expressed according to the principle of superposi-
tion as follows:

Ki=Kf - K; (18)

in which (with @ = a/D)

K{ =ony/Dg(e),  Kj = on/Dr(a)

Here a is the length of the equivalent LEFM crack,
whose tip lies roughly in the middle of the fracture
process zone of the crack band; K¥ or K} are the
LEFM stress intensity factors caused by the applied
load P alone (or by load system parameter P), or by
a uniform normal traction o = o, alone (Fig. 5h)
applied on the crack faces (but not the notch faces,
if any); g(a) and y(a) are dimensionless energy re-
lease functions of LEFM, which can be obtained for
various specimen geometries from handBooks (e.g.
Tada et al. 1985) and can always be easily deter-
mined by linear elastic finite element analysis.
Since the crack band is propagating during fail-
ure, its energy release rate G must be critical, i.e.,
G = Gy = Gg(w/s). Therefore, in view of Ir-

win’s relation K1 = v/ EG, we have ony/Dg(a) —
or\/Dy(a) = VEG,. Consequently,

_ VBT + 0. Dy(e)
Dg(a)
The question now is what is the value of « or a at

Pmar-
It is convenient to set a = ap + c or

(19)

on (20)

a = a9+ (¢/D) (21)
If the specimens are notched and the notches for
different sizes are geometrically similar, then ap =
ag/D = constant > 0 where ap = notch depth.
If there iz no notch, ag represents the length of
the portion of the crack band length along which
the normal stress o transmitted across the band
has already been reduced to the residual value o,;
ap = the distance from the beginning of the split-
ting crack band at the surface to the beginning of
the fracture process zone (Fig. 5a).

In view of previous experimental studies and fi-
nite element results (BaZant and Planas 1998), it
seems reasonable to introduce two simplifying hy-
potheses applicable when size D is not too small:

1. The value of ap at maximum load P, is ap-
proximately constant over the practically in-
teresting range of sizes D and,

2. the crack band extension ¢ = a — ag at P is
also a constant, i.e., ¢ = ¢;, where ¢, character-
izes the effective length of the fracture process
zone at the front of the splitting crack band
(Fig. 5a).
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Our analysis of scaling for notch-free structures fail-
ing only after a long crack band growth is predi-
cated on the foregoing two hypotheses.

Large-Size Asymptotics: For geometrically similar
notched specimens and, according to the foregoing
hypotheses, for notch-free structures as well,

g(@) =glao +90), (a)=7v(aw+6) (22)
with § = ¢,/D. To deduce the large-size asymp-
totic behavior, we may expand the functions g and
v into Taylor series with respect to @ about point
ap, and then truncate each series after the second
(linear) term. So, we introduce into (20) the large-
size approximations:

gle)~go+g0, yla)mrn+40  (23)
in which go = g(a0),70 = 7v(ao) and ¢’ =
dg(a)/da,y = dy{a)/da at o = ap. After some
rearrangement, this leads to the following size ef-
fect law for geometrically similar failures occurring
only after and a long crack band growth:

VEG:, + o,1/7¢ + %D
va'es + gD

on = (24)

Small-Size Asymptotics and Asymptotic Match-
ing: To deduce the small-size asymptotic behavior,
we introduce new parameter £ = 1/0 = D/c; and
new LEFM functions

P(Oth f) = {g(ao + €_1)1 w(007£) = E’Y(ao + 6;;)

Then we substitute g(a) = p(ao,£)/¢ and y(a) =
w(ag, £)/€ into (20), expand these functions into
Taylor series in £ about the point ¢ = 0 {or D —
0), and truncate the series after the second (linear)
term. This furnishes

plao,é) mpo+ P, w(ao,€) Mwo+w'E (26)
where pg,wp, p’,w’ = constants. Expressing g and

7 from (25) and substituting into (20), we obtain,
after rearrangements,

_ VEG, + o,v/we, +w'D
vpe, + 9D

By algebraic rearrangement, the expression (24)
for the large-size asymptotic approximation can be
brought to the form:

_ [+11) +0’y‘/1 +D/Dl

oON (27)

oN (28)

259

in which
I EG '
Do = Cbg_, Dy = Cbl, 0o =/ —=, Oy = Url
9o Yo ¢ !
(29)

Under the aforementioned assumption that G, and
o, are constant, formula (28) has the following as-
ymptotes:

for small D: on = 09 + oy = const.;
for large D: oy = oy+/Do/Dy = const.

So the size effect curve of logon — logoy versus
logD (Fig. 3f) represents a gradual transition from
a horizontal line, corresponding to the case of no
size effect, as in plasticity, to a straight line of down-
ward slope —1/2, corresponding to LEFM. The fact
that the small-size asymptote is horizontal agrees
with the fact that the strength theory or plasticity,
which exhibits no size effect, ought to be a good
approximation for small sizes because the failure is
not localized.

It is interesting that the expression (27) for
the small-size asymptotic approximation can be
brought into the same form, in which

(30)

EG,
Do = Cbp—o, D, = Cb‘ﬂ,)‘, Og = = gy = Urﬂ
r w CsPo Po
(31)

In contrast to the large-size asymptotic expres-
sions (29), however, the small size asymptotic ex-
pressions (31) must not be expected to have predic-
tive capability because the equivalent LEFM ap-
proximation, on which both are based, is physi-
cally justified only for sufficiently large structures,
in which the fracture process zone size at the front
of the crack band is small compared to the structure
dimensions. Therefore, the values of Dy, Dy, 00,01
for the small-size approximation may be assumed
to be the same as given by (29) for the large-size
approximation. With this assumption, the size ef-
fect law in (28) may be regarded as a matched as-
ymptotic, i.e., a formula giving an asymptotically
correct ‘interpolation’ between opposite infinities in
the logD scale (Bazant 1997a). This fact suggests
that (28) should have a broad applicability. A sim-
ilar conclusion has already been confirmed for con-
crete.

For the special case of 0, = 0, (24) or (28) reduces
the previously established size effect law for qua-
sibrittle fracture (BaZant and Kazemi 1990; Bazant
and Planas 1998, Eq. 6.1.3; Bazant and Cedolin,
Eq. 12.2.11; Bazant 1997a).

The effect of structure geometry is captured in
(24) by means of the functions g and 7 and their



derivatives. So the formula represents an approx-
imate law for the effects of both the size and the
shape.

Formula (11), which was derived for a long rec-
tangular strip, is a special case of the general for-
mula (28) for D; = Dy, i.e., for 7(@) = g(a). This
equivalence of the energy release functions means
that the corresponding stress intensity factors are
equal. This is immediately evident from the prin-
ciple of superposition (see Fig. 5h, in which the
middle specimen is in a homogeneous stress state
and thus has no stress singularity, or K; = 0).

In a similar manner as shown in Bazant (1997a)
for cracked specimens, the foregoing analysis could
be refined by considering that the splitting crack
band ought to exhibit R-curve behavior. In other
words, the critical energy release may be expected
to follow an R-curve, such that G = Ry(c) where
Ry(c) is assumed to be a given function of the crack
band extension c. The only change needed in the
preceding formulation is to replace the value VEG,
in (20) by \/ERs(c). In addition to this, it becomes
possible to implement in the calculations the con-
dition of failure as a stability limit, which can be
reduced to the condition that the curve of energy re-
lease rate at constant load is tangent to the R-curve
(BaZant 1997a) (this condition cannot be imposed
when the critical energy release rate is constant,
being equal to Gy, as assumed in the preceding).

5.2 Case of crack band initiation from smooth sur-
face

For crack bands originating from a smooth surface,
the failure is likely to occur at the beginning of
propagation. Therefore, the initial crack length for
the LEFM approximation ao = 0, and so ap = 0.
But the energy release rate of a crack of zero length
vanishes, g(op) = ¥(g) = 0. Thus, if we truncated
the Taylor series expansion of g(ap+0) and v(ap+6)
after the linear term, we could not capture the size
efféct. Therefore we need to truncate these series
only after the quadratic term. In this manner, the
large-size approximation of (20) takes the form:

_ VEGy+ av\[7'es + 7"(ct[2D)

ON (32)
Ve'es + g"(c2/2D)
This may be rearranged as
EGy/ey + o,4/4'(1 + 2
o= VEGTa oy 20)

Vo'(1 — 2x0)

with xo = —g"¢;/(4¢'D), x1 = ¥"¢;/(47' D); the no-
tations are ¢’ = dg(a)/da,y' = dy(a)/de,g" =

d*g(a)/do?,v" = d*y(a)/da?, all evaluated at o =
ag = 0; xo is defined with a minus sign because g"
is, in bending specimens, negative (Bazant and Li
1996).

For large D we may introduce the asymptotic
approximations /T + 2x1 = 1 + x1,1/y/T = 2x0 ~
1+4xo. After further rearrangement and after delet-
ing a term with 1/D? which is higher-order small
for large D, we obtain a size effect formula identical
to (17), in which

[EG [
O = __g’c: +oy gy . (34)
" " " '
Dy = -2 |L JEG (9" _1Y 2
4600 gl glcb gl ,YI gl

We have thus obtained a more general confirmation
of (17). Note that although the approximations
that led from (33) to (34) are only first-order ac-
curate in 1/D, (32) is also only first-order accurate
in 1/D. So, these approximations cause no loss in
accuracy overall. In fact, (34) can be applied more
widely because it has acceptable behavior also for
D — 0 while (33) does not.

Note that, in the foregoing formulae, D} and 0.,
are constant only if s and w, and thus also G, are
constant. If s varies as described by (2), then these
coefficients depend on D. Which case applies in
various situations will have to be researched further.

6. FRACTURING TRUSS MODEL FOR SHEAR
FAILURE OF REINFORCED CONCRETE

Local compression failure is also the decisive fail-
ure mechanism in global shear failures of reinforced
concrete beams, such as diagonal shear of beams,
torsion of beams, punching of plates, pullout of
anchors, and failure of corbells, bar splices and
frame connections, etc. The existence and impor-
tance of size effect in shear failure of beams has
been experimentally documented by many investi-
gators (Kani 1967, Walraven 1978, 1995; Iguro et
al. 1985; Shioya et al. 1989; Shioya and Akiyama
1994; Bazant and Kazemi 1991; and Walraven and
Lehwalter 1994; and Mihashi et al. 1993). The size
effect in diagonal shear failure of reinforced concrete
beams can be explained by local compression fail-
ure (Bazant 1997b). Before closing this paper, we
will review it briefly.

According to the truss model of Ritter and
Morsch at the beginning of this century, later re-
fined by Collins (1978), Schiaich et al. (1987) and
others, and recently called the strut-and-tie model,
a good approximation is to assume that a system
of inclined parallel cracks forms in the high shear
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B - Crushing
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(area ~d) = o
strip
(area ~ d2;

Figure 6: Explanation of size effect by truss model for
diagonal shear failure of beams.

zone of a reinforced concrete beam before the at-
tainment of the maximum load (Fig. 6). The cracks
are assumed to be continuous and oriented in the
direction of the principal compressive stress (which
is, of course, an approximation). This assumption
implies that there is no shear stress on the crack
planes and that the principal tensile stress has been
reduced to 0.

According to this simplified picture, the beam
acts as a truss consisting of the longitudinal rein-
forcing bars, the vertical stirrups (which are in ten-
sion), and the inclined compression struts of con-
crete between the cracks. If the reinforcing bars
and stirrups are designed sufficiently strong, there
is only way the truss can fail—by compression of
the diagonal struts.

In previous works, the compression failure of the
struts has been handled according to the strength
concept. This concept, however, cannot capture the
localization of compression fracture and implies the
compression fracture to occur simultaneously every-
where in the inclined strut. In reality, the compres-
sion fracture, called crushing, develops within only
a portion of the length of the strut (in a region with
stress concentrations, as on the top of beam in Fig.
6). Then it propagates across the strut. For the
sake of simplicity, the band of axial splitting cracks
forming the crushing zone may be assumed to prop-
agate as shown in Fig. 6 and reach, at maximum
load, a certain length c. The depth of the crushing
band may be expected to increase initially but later
to stabilize at a certain constant value h governed
by the size of aggregate.

The mechanism of the size effect can now be ap-
plied easily. Because of the existence of parallel
inclined cracks at maximum load, the formation of
the crushing band reduces stress in the entire in-
clined white strip of width ¢ and depth d (beam
depth shown in Fig. 6). The area of the white strip
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is c¢d and its rate of growth is éd So, the energy re-
lease rate is proportional to ¢d(0%/E), where the
nominal strength is defined as oy = V/bd = aver-
age shear stress, V = applied shear force and b =
beam width. The energy consumed is proportional
to the area of the cracking band, ch, that is, to
c(Gsh/s), and its rate to ¢(Gysh/s) where Gy =
fracture energy of the axial splitting cracks and s =
crack spacing. This expression applies asymptoti-
cally for large beams because for beams of a small
depth d the full width % of the crushing band can-
not develop. Equating the derivatives of the en-
ergy release and energy dissipation expressions, i.e.
¢d(o%/E) o« &(Gyhfs), we conclude that the as-
ymptotic size effect ought to be of the form:

on « E(Gsh/s)[Vd o const./Vd

The complete size effect represents a transition from
a horizontal asymptote to the inclined asymptote
in the size effect plot given by this equation. Rel-
atively simple design formulas are obtained in this
manner (Bazant 1997b).

The analysis can also be done in a similar way
for the diagonal shear failure of beams with longi-
tudinal reinforcement but without vertical stirrups,
and further for torsion, etc.

(35)

7. IMPLICATIONS FOR FINITE ELEMENT
ANALYSIS

Although the present conference if focused on
computer-aided design, there is no room but for a
‘ew comments on the problem of developing finite
slement code capable of handling compression frac-
ure of concrete, in addition to tensile fracture and
-eneral nonlinear constitutive behavior.

1. Obviously, to capture localization of compres-
sion damage, a nonlocal model is required.
However, if tensile fracture should be mod-
eled by the same code, it is probably neces-
sary to use a nonlocal model such as the non-
local model based on microcrack interactions,
in which the nonlocal interactions are tensor-
ial rather than scalar, in order to distinguish
between the amplifications zones and shield-
ing zones of cracking damage (Bazant 1994b,
Bazant and Jirdsek 1994).

The strain-softening damage cannot be ade-
quately described by the cohesive (fictitious)
crack model, which is uniaxial. Rather, it must
be described by a strain-softening triaxial con-
stitutive law, such as the microplane model
(Bazant et al. 1996).



3. Finally, a finite-strain finite element formula-
tion with nonlinear geometric effects (Bazant
et al. 1996) is requisite in order to capture
the internal buckling of orthotropically dam-
aged material.

8. CONCLUDING COMMENT

Analysis of energy release caused by propagation of
splitting crack band in a quasibrittle material shows
that compression failure ought to exhibit a signif-
icant size effect. The existing test results, albeit
scant, confirm it. Due to larger size of the frac-
ture process zone in compression, the size effect in
compression comes to play at larger structural sizes
than that in tension. While concrete structures are
designed to resist tension by steel reinforcement as
much as possible, compression is resisted by con-
crete. Compression failure, such as that of a col-
umn in a large building, normally has more severe
consequences that tensile failure. Consequently, in
designing large structural members, it appears ad-
visable to take the size effect in compression into
account, especially in computer-aided design. Suit-
able nonlocal finite element codes need to be devel-
oped for that purpose.
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