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Abstract. The paper presents applications of the microplane model for concrete in finite element
analyses performed to investigate two aspects of the compressive behavior of concrete. The first
aspect is the ductile response, observed under extreme pressures, and the second aspect is the
quasibrittle response, exhibited under normal pressures. Pressures high enough to induce ductile
response are developed, for instance in impact events, and the ductile properties of concrete at
high pressures can be observed in the “tube-squash” test, conceived at Northwestern University,
in which concrete is cast inside a thick steel tube. In such a test the confinement provided by the
steel tube allows concrete to achieve very large deviatoric strains (with shear angles up to 70°),
retaining integrity, without visible damage. The axial compression of the tube filled with
concrete is reproduced with a finite strain, finite element analysis, proving the capability of the
microplane model for concrete to capture accurately the behavior of concrete under extreme
pressures. In conditions of normal confinement, concrete exhibits quasibrittle behavior in
compression, resulting in a significant size effect in the compressive failure of concrete
structures. Finite element simulations of the compressive failure of reduced-size columns show
good agreement with the structural response observed experimentally. For the latter analysis, the
microplane constitutive law is employed adopting the crack band model.
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1 INTRODUCTION

-The mechanical behavior of concrete in compression is complex and highly pressure-
sensitive. Under low hydrostatic pressure, concrete typically behaves in compression as a quasi-
brittle material. However, under high hydrostatic pressures (1~2 X compressive strength) the
response becomes plastic and concrete can achieve very large deviatoric deformations without
exhibiting visible cracking or damage.

A thorough understanding and accurate modeling of the behavior of concrete in compression
is necessary to perform finite element simulations of the mechanical response of concrete
structures. In particular, extremely high hydrostatic pressures are attained during impact events
such as missile penetration and explosive driving of anchors. Rather high pressures may be
cause by blast or seismic loading. On the other hand an accurate description of the quasibrittle
behavior of concrete at low pressures is essential to reproduce the size effect, which is observed
in the compressive failure of concrete structures. ,

An efficient and accurate constitutive model for concrete has been developed by BaZant and
coworkers'™® over the past two decades within the numerical and theoretical framework of the
microplane model. The microplane model is employed here for the finite element simulation of
tests exhibiting ductile behavior under high pressures and size effect. The accuracy of the
numerical present results further atests the validitity of the microplane model for concrete, which
was already shown to yield excellent results at moderate pressures or tension for a broad range of
triaxial loading conditions.

The paper is organized as follows: Section 2 reviews the general concepts and
formulation of the microplane model; the microplane model for concrete is briefly presented in
section 3; section 4 presents the experimental results and numerical analysis of the ‘tube-squash’
test; and section 5 focuses on the study of the size effect in compressive failure of concrete
columns. The paper closes by a concise discussion in section S.

2 THE MICROPLANE MODEL

With the microplane model approach ', the constitutive behavior of materials is
characterized by relations between the stress and strain vectors acting on planes of all possible
orientations within the material (microplanes), and the macroscopic strain and stress tensors are
determined by considering the contribution of the stress and strain components on all the planes.
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Fig. 1- Components of strain on a microplane

The orientation of a microplane is characterized by the unit normal n of components n,
(indices i and j refer to the components in Cartesian coordinates x,). The microplane can be
constrained to the macroscopic strain tensor £, kinematically of statically. In the formulation
with kinematic constraint, which makes it possible to describe softening in a stable manner, the
strain vector £, on the microplane (Figure 1) is the projection of £;. S0 the components of this

vector are £, = £;n,. The normal strain on the microplane is £y =n,€,;, that is

Ey =N,€ N,=nn, (1)

i
where repeated indices imply summation over i = 1,2,3. The mean normal strain, called the
volumetric strain €, , and the deviatoric strain £, on the microplane can also be introduced,
defined as follows (for small strains):

/
Ey =&us Ep=Ey—3E, =3(Ey — &) (2)

where &,= spreading strain = mean normal strain in microplane. £ characterizes the lateral

confinement of the microplane and the creation of splitting cracks normal to the microplane.
Considering £, and €, (or &) is useful when dealing with the effect of lateral confinement on
compression failure and when the volumetric-deviatoric interaction observed for a number of
cohesive frictional materials, such as concrete, needs to be captured.

To characterize the shear strains on the microplane (Figure 1), we need to define two
coordinate directions M and L, given by two orthogonal unit coordinate vectors m and 1 of
components m; and J; lying on the microplane. To minimize directional bias of m and 1 among

microplanes, we alternate among choosing vectors m to be normal to axis x,, x, or x;.

The magnitudes of the shear strain components on the microplane in the direction of m and
lare €, =m;(g,;n,) and &, =1,(¢;n;). Because of the symmetry of tensor &, the shear strain

components may be written as follows (e.g. %):

£, =L;g; (3)

iy i

Ey =M £,

in which the following symmetric tensors are introduced:
M, =(mn;+mn)/2; L,=(n; +1;n)/2 (4)

Once the strain components on each microplane are obtained, the stress components are
updated through microplane constitutive laws, which can be expressed in algebraic or differential
form.

If the kinematic constraint is imposed, the stress components on the microplanes are

equal to the projections of the macroscopic stress tensor ¢, only in some particular cases, when

the microplane constitutive laws are specifically prescribed so that this condition be satisfied.
This happens for example in the case of elastic laws at the microplane level, defined with elastic
constants chosen so that the overall macroscopic behavior is the usual elastic behavior °In
general, the stress components determined independently on the various planes will not be
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related to one another in such a manner that they can be considered as projections of a
macroscopic stress tensor. Thus static equivalence or equilibrium between the microlevel stress
components and macrolevel stress tensor must be enforced by other means. This can be
accomplished by application of the principle of virtual work, yielding

O'Tr

(nd +n,0,)dQ (5)

o, =———L0'Nnn d.Q+——L 0, +nd,
where Q is the surface of a unit hemisphere. Equation (5) is based on the equahty of the virtual
work inside a unit sphere and on its surface, rigorously justified in Bazant et al. '

The integration in Equation (5), is performed numerically by an ,optlmal Gaussian
integration formula for spherical surface using a finite number of integration points on the
surface of the hemisphere. Such an integration technique corresponds to considering a finite
number of microplanes, one for each mtegratlon point. A formula consisting of 28 integration
points is given by Stroud ''. BaZant and Oh '° developed a more efficient and about equally
accurate formula with 21 integration points, and studied the accuracy of various formulas in

different situations.

3 THE MICROPLANE MODEL FOR CONCRETE

The microplane model for concrete is the result of almost two decades of studies by BaZant
and coworkers. The version adopted for the analyses presented in this paper is referred to as M4
and a complete description of it can be found in Bazant et al. >

The model is formulated by use of simple one-to-one relatlons between one stress component
and the associated strain component. Except for a frictional yield surface, cross dependencies are
not accounted for explicitly, but appear in the model as result of the interaction among planes.

Each constitutive relationship at the microplane level is expressed by introducing stress-
strain boundaries (strain independent yield limits): the response is elastic until any of the
boundaries is reached; after that, the stress drops at constant strain to the boundary.

The model parameters are divided into a few adjustable ones (only four are needed) and
many nonadjustable ones(of which twenty are used), common to all concretes. BaZant et al.’
provide an efficient procedure to identify the model parameters in a systematic way from test
data. Creep and rate-effect have also been introduced in M4, but are neglected in this study.

4 THE SQUASH TEST

4.1 Presentation of the test

The tube-squash test is a new type of test developed at Northwestern University '2, which
allows the investigation of the mechanical behavior of concrete under very high hydrostatic
pressures into the finite strain range. The concrete specimen is cast inside a tube made of a
highly ductile steel alloy, capable of large deformation, up to 100%, without cracking. After -
curing, the tube 1 is then squashed up to one half of its orlgmal length, causing the specimen to
bulge.
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Fig. 2 The specimen for the squash test, Steel tube filled with concrete.

Fig. 2 shows the cross sections of one of the specimens used for the test, as it appears at
the beginning and at the end of the test, after the loading process. Figs. 3-4 show a schematic
drawing and two pictures of the experimental set up used for the test.

Fig. 4 Pictures of the experimental set up for the squash test.

5
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During the loading process, concrete inside the tube is subjected to extremely large strains
while retaining its integrity ( Fig. 5). No visible damage, cracks or voids can be observed inside
the concrete mass at the end of the test. Some damage however occurs in concrete at the
microscopic level, as manifested by a reduction of Young’s modulus, tensile strength and
compressive strength after the test (all these quantities are reduced to approximately one third of
their original value). The previous triaxial tests and confined uniaxial-strain compression tests
achieve high pressures, but they cannot achieve large strains, neither shear nor normal. The tube-
squash test can achieve very high normal strains and shear (or deviatoric) strains by allowing the
specimen to deform highly nonuniformly. The penalty is a more complicated identification of the
constitutive relation. The large deformations as well as stresses inside the concrete volume
would be hard to measure and so they are not. To keep the test inexpensive and easy to perform,
only a limited set of data are measured. The quantities measured during the test are the axial
displacement under the load, the axial applied load and the lateral displacement of the tube at
mid-height. Also the final shape of the specimen is recorded at the end of the test, after the
specimen is cut longitudinally, in order to observe the inner profile assumed by the steel tube
after deformation. Information about the stress and strain fields may be deduced from these data.

Two specimen sizes have been tested: tubes of diameter of 76.2 mm (3.0 in.) and 63.5 mm
(2.5 in.). The wall thickness is 14.22 mm (0.56 in.) and 12.7 mm (0.5 in.) respectively. The
length of the tube is 88.9 mm (3.5 in.) in both cases.

Tests have been conducted on tubes filled with normal strength and high strength concrete,
hardened Portland cement paste and cement mortar, and on tubes with a snugly fitted limestone
insert. All the specimens show remarkable plastic behavior under extreme deformation. This
study considers only high strength concrete specimens, cast inside the smaller tubes (diameter
63.5 mm, thickness 12.7 mm).

As a companion test, also the empty steel tube is squashed in the same manner. The data
obtained from testing the steel alone can be used to calibrate a material model for steel. This
process is crucial, since a good accuracy is required in the analysis of the behavior of steel during

the squash test.

Fig. 5 Cross sectional photograph of a high strength concrete filled tube and of an empty steel tube after the test.
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Fig. 5 is a cross sectional photograph of a high strength concrete filled tube and of an
empty steel tube specimen after 50 % axial shortening. Note how the inner profile of the
deformed steel tube is affected by the presence of concrete.

4.2 Numerical results

The hardening parameters employed in the model for steel are tuned using the results of the
companion test on the empty steel tube. Fig. 6 shows a three dimensional visualization of the
mesh used for the analysis of the steel tube and the deformed mesh at the end of the process. Fig.
7 shows a comparison of the experimental load displacement diagram with the one obtained by
finite element analysis. Clearly the material parameters can be adjusted so that the experimental

curve is fitted very accurately.

a)

Fig. 6- Three-dimensional visualization of the mesh used for the analysis on the empty tube. a) Undeformed,
and b) at the end of the loading process.

The results of the analysis of the concrete filled tube are shown in the following figures. Fig.
8 shows the initial and deformed mesh and Fig. 9 gives the load displacement curve. In this case
it was sufficient to adjust merely the parameter controlling the compressive strength in the
microplane model for concrete in order to reproduce very closely the mechanical behavior of the
specimen observed experimentally. That no other adjustments were needed is remarkable.
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Fig. 7- Experimental and computed load-displacements diagram for the empty tube.

a) b)

Fig. 8- Three-dimensional visualization of the mesh used for the analysis on the tube filled with concrete. a)
Undeformed, and b) at the end of the loading process.



Zden&k P. Bazant, and Michele Brocca.

3500

O Experimental result )
Result of finite element analysis with microplane model

3000

2500

2000 ~

1500

1000 —

Vertical applied load (KN )

0 T T T T
0 10 20 30 40
Vertical displacement under the load (mm)

Fig. 9- Experimental and computed load-displacements diagram for the tube filled with  concrete.

Fig. 10 shows the radial stress in concrete calculated at three different distances from the axis
of the specimen.
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Fig. 10- Computed radial compressive stress in concrete at three different points.

At the axis, the radial stress reaches about1.8 £, , while the axial stress is about 8f,, and

the volumetric (hydrostatic) stress component is about 3.9 f .
The maximum shear angle, which occurs at point A, is obtained for the end of the test as
71.5°. The simplified analysis in BaZant et al. 12 led to the estimate of 70°, which is very close.
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5 SIZE EFFECT IN COMPRESSIVE FAILURE OF CONCRETE
COLUMNS

Current design codes, based on failure criteria expressed in terms of strength or yield
surfaces, exhibit no size effect, i.e. no dependence of the nominal strength on the size of the
structure. However the failure of concrete columns is not plastic, but brittle, as confirmed by the
fact that the observed load deflection diagrams of columns have no yield plateau but descend
after the peak. As seen in the preceding section, under extremely high confining pressures,
compressive failure of concrete can be ductile, without any significant post-peak decrease of
applied load, but such pressures can be developed only when the concrete is confined in very
strong steel tubes. Thus description of structural behavior of concrete in terms of plastic limit
states is in general not correct. Mathematical modeling of such behavior should be based on
fracture mechanics, which predicts size effect, such that the nominal strength at failure, o,

decreases with increasing of the characteristic dimension of the structure, D, provided that the
structures of different sizes are geometrically similar.

It is now recognized that size effects must occur in all the failures of concrete structures
that are due to concrete rather than to steel except when concrete is at extreme hydrostatic
pressures. This is true not only of those failures that are due to concrete failing in tension
(diagonal shear, punching shear, torsion, anchor pullout, bar pull-out, splice fracture, etc.) but
also of the failures that are due to concrete failing in compression. This includes bending
fgailures of prestressed concrete beams, anchor of bar pullout, diagonal shear failure of
reinforced concrete beams, punching shear and torsion, in fact, all the cases analyzed by the
strut-and-tie model in which failure is due to crushing of the compression strut of concrete. Most
importantly, this includes reinforced concrete columns, which will be studied in this paper from
the size effect viewpoint.

Studies reporting size effect in compressive failure of quasibrittle materials such as concrete,
rock, ceramics and composites can be found, e.g., in van Mier ! , 3 Gonnermann 4 Blanks and
McNamara ', Marti ', and Jishan and Xixi 17 ’

Although 1mportant advances have been made in the past in the understanding of remforced
concrete columns (see e.g. Nilson and Wmter , and for further references consult McGregor *°
Bazant and Cedolin *°, and BaZant and Xiang > ) the size effect in columns has escaped attentlon
so far.

Until about 15 years ago, it had been erroneously believed that all the size effects in
concrete structures are totally explicable by the statistical nature of material strength as described
by Weibull-type theories. In reality, however, the portion of the size effect ascribable to the
randomness of concrete strength is very small and neghglble in structures in which there is large
crack growth before the maximum load is reached (BaZant ?; Bazant et al. 2>; Bazant and Xi % ).
In such structures, the size effect is almost totally determxmstlc and is caused by the fact that a
larger structure stores a greater amount of strain energy and thus the rate of energy release into
an advancing fracture front grows is larger for a larger structure, while the energy dissipated at
the fracture front per unit fracture advance is approximately mdependent of the structure size.
This source of size effect in concrete was originally recognized *® for the case of tensile failure ,
but a similar phenomenon occurs also when the structure fails in compression.

10
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Compressive failure is caused predominantly by the release of stored energy from the
structure in a fashxon similar to tensnle failure as suggested and 1mp11ed by several researchers
(e.g., Ingraffea 2°; BaZant et al. *%; Bieniawski 27; Hoek and Bieniawski *%; Cotterell %°; Paul 3,
Therefore the study of size effect in compression must be based on fracture mechamcs A
simplified model for the mechanism of compression fallure aimed at the study of the
accompanying size effect, is given by BaZant and Xiang >', who modeled the propagation of a
cracking band assumed to consist of densely distributed axxal splitting microcracks.

The objective of this section is to show how size effect in concrete columns can be
determined through a finite element analysis based on the crack-band concept. This will be done
by performing a finite element analySIS of a series of laboratory tests conducted at Northwestern

University (Bazant and Kwon *2).

3.1 Presentation of experimental results

In 1994, Baant and Kwon*? presented the results of a series of tests performed on reinforced
concrete columns of reduced size made with microconcrete. The purpose of these tests was to
show the presence of a significant size effect in compressive failure of columns, and to ascertain
how the strengths of columns of different sizes are mutually related.

The test specimens (Fig. 11) were tied reinforced concrete columns of square cross sections
with sides D = 12.7, 25.4 and 50.8 mm (0.5, 1 and 2 in.). Three column slendernesses A = 19.2,
35.8 and 52.5, were used; A = L/r, and according to ACI, » = 0.3D (for typical reinforced
concrete sections). The corresponding effective lengths of the columns, measured between the
contact points of the steel balls, were L= 73, 136.5 and 200 mm (2.875, 5.375 and 7.875 in.) for
the smallest cross section, L =146, 273 and 400 mm (5.75, 10.75 and 15.75 in.) for the middle
cross section, and L = 292, 546 and 800 mm (11.5,21.5 and 31.5 in.) for the largest cross section.
The loads were applied to the steel platens through steel balls and steel plates.

In each group, the columns of the same slenderness and different cross sections were
geometrically similar. The geometric similarity was enforced scrupulously: the reinforcing bars,
their location coordinates and cover, as well as the diameter and spacing of the ties were all
scaled in proportion to D.

The columns were simply supported and the load P was applied with eccentricities e which
were geometrically similar: e = 0.25D . The steel ratio was 4.91%. The Young’s modulus of the
steel bars was E, = 200 GPa (29 000 ksi) and the yield strength was f, = 552 Mpa (80 000 psi).

The concrete (actually a microconcrete or mortar) was made of Type I Portland cement with
water/cement ratio 0.65 (for easy workability). The maximum aggregate size was 3.35 mm
(0.132 in.). All the specimens were cast from the same batch of concrete. The average uniaxial

compression strength of concrete was f,= 28.96 MPa (4200 psi). Note that the aggregate size
d, was kept constant and not scaled with size D. This must be so because, if d, were changed,

one would have a different concrete, with different properties. The known scaling laws for
geometrically similar structures of different sizes are valid only when one and the same material
is used for all the sizes.

The results of the tests are shown in Fig. 15, on plots of &, versus log D, which represent

the standard size effect plots. The value of the nominal strength o, = P/D?is calculated from
the peak loads measured in individual tests. All these plots clearly indicate a strong size effect.

11
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Fig. 11- Tests on columns of different size and slenderness.

5.2 Numerical results

The finite element analysis of the tests presented in the previous sub-section is performed
using a three-dimensional explicit finite element code developed with updated Lagrangian
formulation. Eight-node brick elements are used for concrete and for the steel plates at the top
and bottom of the specimen. The reinforcement is modeled with truss elements, and an elastic-
plastic law is assumed for steel. Debonding of reinforcing bars is neglected. Note that the
assumption of perfect bond between concrete and steel is a simplification that might have some
effect on the results. This point will be discussed further. ’

The constitutive law adopted for concrete is the microplane model M4. In microplane finite

element analysis, damage is modeled as smeared over the domain of the element. When such a
smeared approach is used, numerical analysis of compression failure of concrete faces the same
difficulties as posed by tensile strain softening in quasi-brittle failure. The softening -behavior
included into the constitutive law might cause loss of well-posedness and spurious strain
localization into arbitrarily small regions.
This can be easily understood by considering the example of a bar made of a material
characterized by an elastic-softening constitutive law (see e.g. Bazant > *; Bazant and Planas
34). If the bar is discretized into N elements, it can be shown that, after the stress peak, the strain
must localize in only one of the elements. Only one element continues stretching, while the
others unload elastically 3%. Thus the size of the damaged region and the post-peak response of
the bar depend on N. Such phenomenon is usually referred to as mesh unobjectivity or spurious
mesh sensitivity and is obviously unacceptable - conceptually, physically and computationally.

The only known satisfactory remedy of this problem is to apply a nonlocal continuum
concept in some form to the strain softening damage. In a nonlocal formulation, it is recognized
that continuum damage models cannot be implemented with the classical assumption that stress
at a point depends only on the strain at the same point. Rather, a more general concept of
nonlocal continuum must be adopted, according to which the stress at a point depends also on the

12
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strain in the neighborhood of that point, or on some type of average of strain in the neighborhood
(this average may futher be approximated by the second strains gradient). By doing so, the
nonlocal approach can account for the interaction of microcracks and other microscale sources of
damage. '

However, even without directly addressing nonlocality, spurious strain localization can be
prevented by introducing some type of strain localization limiter, i.e. a mathematical restriction
on the size of the damaged region to be associated to the material constitutive model. A popular
and effective way to do so is the crack band model, introduced in general terms by BazZant 33,38
and developed in full detail for sudden cracking in BaZant and Cedolin and Cedolin and BaZant,
and for gradual strain softening BaZant and Oh .

The basic idea in the crack band model is that the damage propagates as a band whose width
has a certain characteristic value 4. For a given constitutive law of concrete, /, depends on the

strain-softening curve. The element size must be determined accordingly. In most cases, when
the damage region (crack band) propagates inside a finite element mesh, its width will be equal
to the size of the elements in the direction perpendicular to the direction of propagation of the
damage. Therefore the element size in such a direction must be equal to #_.

The crack band approach has been introduced and extensively used for analysis of tensile
fracture. As already mentioned, the propagation of a region of compressive strain-softening
damage is driven by energy release in the structure and, in this sense, it is a phenomenon
analogous to the propagation of tensile cracking. Thus in terms of strain localization, the same
arguments as those made when dealing with tensile failure apply also to the case of compressive
failure. _

Determining the proper band width (and thus the element size) to be adopted in finite
element analysis is not a simple task. Often this must be done empirically. There is no sufficient
previous experience available to tell what is the optimum element size for a computation with the
microplane model. For the analysis of concrete columns presented in this paper, the element size
was empirically determined as the element size that gives accurate results for one of the 9
specimens to be analyzed (namely the small specimen of intermediate slenderness, S2), and has
been kept constant for the remaining computations. This guarantees consistency throughout the
analysis and makes possible a meaningful comparative study of the results obtained for different
specimen sizes. The element size in the direction normal to the expected plane of propagation of
the damage region (the horizontal plane) is taken to be approximately 1.7 times the aggregate
size.

One last comment needs to be made on the effect that the orientation of the elements in the
mesh might have on the results. Whenever a damage region propagates through the elements of a
finite element mesh, there is a tendency for it to follow the mesh lines. A comparison of results
obtained for different meshes, with different orientation of the elements, would be needed, in
order to capture accurately the propagation of the damage into the column. However, the main
focus of this paper is on the size effect and thus, during each computation, what is needed is the
nominal strength, o,= P/D?, calculated from the peak load. The peak is reached when the

reinforcing bars buckle, after softening of the surrounding concrete. Therefore, at peak, the
damage region has not propagated deep inside the column. For this reason, the mesh adopted for
the computation seems to be sufficient to capture the response of the columns up to the peak. A

13
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correct prediction of the propagation of the damage would be essential to capture accurately the
post-peak structural behavior of the column, which is beyond the scope of this paper.

Fig. 12-14 show the meshes used for specimens of three slendernesses. Each figure exhibits
three specimens with the same cross section and three different slendernesses. For each specimen
type, the figure shows separately the finite elements used to model the reinforcement (including
top and bottom steel plates), the undeformed mesh of the whole specimen and the deformed
mesh at the end of the loading process. The specimen sizes (cross section sides) are D = 12.7,
25.4 and 50.8 mm (0.5, 1 and 2 in.) for Fig. 12, 13 and 14 respectively. '

The size effect is determined by comparing the results obtained for geometrically similar
specimens with constant slenderness A and varying size D . The best way to discuss
systematically the results of finite element analysis is, however, by plotting them on standard
size effect plots of log o, versus log D. Such plots are shown in Fig. 15, for the three groups of

specimens, again grouped by slenderness.

Based on previous theoretical arguments of general validity [see Bazant and Cedolin 2
Chapter 12 and 13, or Bazant and Kazemi 36, BazZant 37], the size effect should be described by
the following approximate size-effect law proposed by BaZzant 38,

oy =Bf,0+p",  B=DID, (6)

in which Bf, and f are two empirical constants (the tensile strength f,, is introduced merely

for convenience, to make B non-dimensional). For comparison, Fig. 5.5 shows also the
experimental results and their optimal fits by this size effect law.

Experimental evidence and theoretical arguments (see, e.g. BaZant and Planas **) show that
the dependence of log o, on log D for geometrically similar structures is such that it approaches

a horizontal asymptote for small sizes and a straight line asymptote of slope —1/2 for D— oo. For
D — oo, the size of the fracture process zone, compared to the size of the structure, is so small
that the behavior of the structure approaches that predicted by linear elastic fracture mechanics.
When the result of finite element analysis are shown in the bilogarithmic plot, it can be seen that
a smooth curve interpolating the three points for the three specimen sizes has negative curvature,
in agreement with the theory. This shows that the size effect is captured in a realistic way.

Quantitatively the results are satisfactory too, although the predicted size effect is less strong
than that observed experimentally. In particular, observe that the approximation seems to worsen
slightly with increasing slenderness. There are two reasons to which this discrepancy can be
attributed. In the first place, the present analysis assumes perfect bond between steel bars and
concrete. The steel bars used in the test are smooth, as explained in section 2, and therefore
debonding and pull out might have played some role in reducing the nominal strength with
increasing size. Obviously, debonding cannot be captured under the assumptions made for the
present analysis. Second, the constitutive model used in the computation is local. The crack band
model gives results too stiff because the mesh could not be laid out so that the mesh lines would
follow the boundary of the softening damage zone (this is known as “stress locking”). Also the
crack band model cannot distinguish the mutual amplification and shielding crack interaction.
Doubtless, a non-local formulation, using finite elements at least three times smaller would yield
more accurate results. However, the number of finite elements required would increase 27-times,
which would call for a more powerful computer than that affordable for this project.

14
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Size effect testing of real size columns with real size aggregates has also begun (Abusiaf
et al. ). The results so far agree with Bazant and Xiang’s analysis 3!, However, they are limited
in the range and scope to serve as a check on the present model.

Fig 13- Undeformed and deformed meshes used for the computations on specimens of size D =25.4 mm (1.0 in.).
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Fig 14- Undeformed and deformed meshes used for the computations on specimens of size D = 50.8 mm (2.0 in.).
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Fig 15- Size effect plots for the specimens with slenderness A = 19.2 (a), 35.8 (b), 52.5 (c).

6 CONCLUSION

A complete model for compression behavior and failure of concrete must capture (1)
compression fracture of strain-softening damage, with the associated size effect, and (2) plastic
repsonse under extremely high hydrostatic pressures. The microplane model in its latest version
M4, combined with the crack band approach to handle localization in an objective manner, can
capture both aspects, as demonstrated by successful simulation of the compressive failure of
reinforced concrete columns with the observed size effect and of the tube squash test with shear
strains of the order of 100%.
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