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ABSTRACT: The paper presents an apercu of the current problems of probabilistic failure analysis of concrete
structures and proposes a new approach to finite element estimation of loads of very small failure probability.
The conference presentation begins by brief comments on the problem of interplay of the nonlocal characteristic
length, associated with the deterministic models for cohesive fracture or softening damage, with the autocorre-
lation length of the random field of local material strength, a problem on which important results were achieved
in Delft by de Borst, Carmeliet & Guérez. The rest of the paper is focused on the problem of loads of ex-
tremely low failure probability (such a€)~7), which should form the basis of rational design. For quasibrittle
structures, this problem can be based on the nonlocal generalization of Weibull statistical theory. A salient as-
pect of the theory is the statistical-deterministic size effect. In the typical case of failures at crack initiation, the
distribution tail can be checked by scaling the structure to a very large size. In the limit, the randomly located
fracture process zone becomes infinitely small compared to the structure size (i.e., a point), which means that
failure at one point causes the whole structure to fail. In that limit case, the tail of distribution of the failure
load cannot be anything but Weibull (which follows from Fisher and Tippett’'s condition of form stability of the
extreme value distributions). The existing stochastic finite element methods fail this fundamental requirement,
which means that their far-off probability structure cannot be realistic. A new stochastic finite element formula-
tion which guarantees the probability tail of structural strength and the large-size asymptotic size effect to be of
the Weibull type is presented. A numerical example demonstrates a good representation of the statistical data of
Koide et al. Furthermore, a simple formula for the mean size effect, recently derived by asymptotic matching,
is discussed. Finally, a recent more fundamental derivation of the formulas for the mean size effect and for the
standard deviation and entire probability distribution of the failure loads, which has been based on the nonlocal
generalization of Weibull theory, is reviewed.

1 INTRODUCTION probabilities required for safety against failure.

The probabilistic structure of the existing stochas-
Probabilistic mechanics is of paramount importancdic finite element method is at present not yet adequate
for progress in concrete design because the erroifer yielding the failure loads of extremely small prob-
due to the uncertainty of the currently used empiricalbilities such as0~7, on which the design of civil
safety factors and reliability indices are much largerengineering structures must be based. The problem is
than the errors of finite element analysis. Stochastinot the numerical computation of such loads from the
finite element analysis has been intensely studied igiven statistical distributions of material properties,
the 1980s and significant progress has been achievelut the very formulation of these statistical distribu-
However, the probabilistic structure of the existingtions themselves. These properties must be incorpo-
formulations suffices only for the computation of the rated in a way that would yield realistic far-off tails
first and second moment statistics, that is, the meansf the distributions as dictated by the known estab-
and the standard deviations. This is adequate for thisshed results of the extreme value statistics (Fisher
design against excessive deflections and flexibility& Tippett 1928, Tippett 1925, Peirce 1925,&€het
for which probabilities betwee0~! and 1072 are 1927, von Mises 1936, Gnedenko 1943, Gnedenko &
generally acceptable, but not for the very small tailKolmogorov 1954, Epstein 1948, Freudenthal 1956,
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1968, 1981, Saibel 1969, Gumbel 1954, 1958). 1b). In many two- or three-dimensional structures, the

Concrete as well as many other materials beha\,@ilure occurs as soon as one §ma|| element of mate-
in a quasibrittle manner. Their failure zone, called the/ial (representative volume,) fails. From the proba-
fracture process zone (FPZ) is not negligibly small bilistic viewpoint, such structures are analpgoust_o t_he
as in brittle materials, but it does not behave in aweakestlink model for a chain. In the continuum limit
plastic manner, as in brittle ductile materials. Instead©f infinitely many infinitely small links, the weakest
it undergoes distributed cracking, or strain-softeningink model leads to the following cumulative distribu-
When the structure is of a similar size as the Fpztion of failure probability:
it behaves in an almost plastic manner, with no size
effect, no localized failure, and no weakest-link-type Piloy) =1— e~ Jvelo(@aon)ldViz) ()
randomness. When the structure is far larger than the
FPZ, it fails in an almost perfectly brittle manner, and 3. Pilor(w)]
it also follows the weakest-link statistical model un- c(o)=>" ! (2)
less the location of fracture front is restricted by a I=1 £
notch or previous stable growth of a large crack. The -
effective size of the fracture process zone, or the chamwheres; () = principal stress just before failure at
acteristic length of the material, is a key parametempoint of coordinate vectox (I = 1,2,3), V = vol-
whose ratio to the structure size governs the brittleume of structure, and o) = function giving the spa-
ness or non-brittleness of response and, evidently, thigal concentration of failure probability of the material
size effect. Since the field of random strength must bg= 1/~ x failure probability of material representa-
autocorrelated, the characteristic length interacts withive volumeV,) (Freudenthal 1968, Eant & Planas
the autocorrelation length of the random field. 1998);¢(o) = concentration function (spatial density

After recalling the basic facts about the cohesive©f failure probability); andP (o) = failure proba-
crack band and nonlocal models of quasibrittlebility (cumulative) of the smallest possible test spec-
failure (Hillerborg et al. 1976, 1983; Petersson 1961imen, of volumeV,, subjected to stress;. Eq. (1)
Bazant 1976, 1984, Bmnt et al. 1984, 1985, 2002, gives the failure probability of the structure, provided
Pijaudier-Cabot & Baant 1987, Peerlings et al. thatthe structure (with the loading system) is of such
1996, Baant & Planas 1998), Weibull (1939) theory @ geometry that the failure (the maximum load) oc-
of perfectly brittle failure, and size effect theories CUrs as soon as a macroscopic crack initiates (this
(Bazant 1987, 1999, 2001; Bant & Chen 1987), the is called positive geometry—a geometry for which
conference presentation will briefly review statisticalthe energy release function increases with the crack
generalization of nonlocal finite element models forlength). Eq. (1) can be derived by noting that the sur-
softening damage and especially the recent studiegval probability,1 — Py, of a chain of\V links is the
in Delft (see Appendix 1) clarifying the interplay joint probability that aIItheIlnks_surylve;th|S|mpI|es
of the characteristic length for nonlocal analysisthatl — Pr = (1— P:)". Of practical interest are only
and the autocorrrelation length of the random locavery small failure probabilities’, and Py, and so we
strength field. The nonlocal generalization of Weibullmay write In(1 — Py) = NIn(1 — P) =~ —NP; or
statistical theory of brittle failure will then be dis- 1 — Py =e 1.
cussed and the limitations of the statistical size effect As proven mathematically by Fisher & Tippett
identified. The rationale behind the amalgamated1928) and also justified by Freudenthal on physical
energetic-statistical size effect law will be examinedgrounds (based on an analysis of material flaws), the
and the underlying asymptotic matching argumentow-probability tail of P, (c) must be a power law:
discussed. A new derivation of this size effect from

the probabilistic nonlocal theory will be outlined. p _Jo =0\ 3
Finally, a generalization of nonlocal finite element 1(0) —< 50 > (3)
analysis to extreme value statistics will be proposed

and demonstrated by numerical examples. (Weibull 1939) wheren, sq, 0., = material constants

(m = Weibull modulus, usually between 5 and 60).

The thresholdr, cannot be negative and is typically
2 WEIBULL THEORY OF RANDOM STRENGTH taken as O (because it is next to impossible to identify
AND ITS LIMITATIONS o, from the available test data unambiguously since

different positiver,, can give almost equally good fits
The Weibull statistical theory of random strength andof data). Substitution of 3 into Eq. (1) yields what
size effect is based on the weakest link model for theeame to be known as the Weibull distribution. This
failure of a chain consisting of links whose strengthsdistribution (foro,, = 0) to simple expressions for the
are statistically independent random variables (Figmean ofo, as a function ofn and the coefficient of
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Figure 1: (a) Approximate effect of stress redistritution due to cracking in boundary layer. (b) Chain structure.
(c) Field of inelastic strain in beam flexure (linear scale) and corresponding density field of contributions to
failure probability (log-scale). (d,e) Relative flexural strength versus relative size for 10 test series from the
literature, and results of nonlocal Weibull calculations, fit by energetic-statistical formula for crack initiation.
(f) Differences in apparent Weibull modut corresponding to nonlocal Weibull calculations in different size
ranges. (g) Energetic-statistical size effect for failures at crack initiation. (h) Chain subdivided into segments.



2) The energy release due to stress redistributions
caused by a macroscopic FPZ or a stable crack growth
variationw of v 1\ /VA\Y™ g/ before P,,.. gives rise to a deterministic size effect,
ON = S0 <1 + m> (V) oc D™ (4)  which is ignored. Thus the Weibull theory can be valid
only if the structure fails as soon as a microscopic

(1 4 2m~") 1/2 crack becomes macroscopic.
= <2_1 — ) (5) 3) Every structure is mathematically equivalent to
I2(1+m™) a uniaxially stressed chain or bar of a variable cross

) . section, which means that the structural geometry and
wherel is the gamma function, and; = 1, 2or 3for  ajlure mechanism are ignored.
uni-, two- or three-dimensional similarity. EQ. (4) rep- 4y The size effect differences between the cases of
resents a power-law size effect on the mean noming|, " and three-dimensional similarities(= 2 or 3)
strengthhaN (if o, = O)f' Sl_nce4th_ere IS n0”5|ze eaffect are often much smaller than predicted by Weibull the-
.Odn”’.t € (?xpressmn op in (4) is normally used 10 51 (hecause, for example, a crack in a beam causes
identify m rom tests. . failure only if it spreads across the full width of the

Eq. (4) foray suggests adopting the valug, = beam).

on(V/Vo)!/™ for a uniformly stressed specimen as 5) Many tests of quasibrittle structures show a

a size-independent stress measure. Considering fromuch stronger size effect than predicted by Weibull

this viewpoint a large crack-tip plastic zone in met-y, .\ e 4 ~diagonal shear failure of reinforced con-
%Z’ik?jlr i?égé_lgBS) proposed the idea of the so-calleg;ete beams; Walraven & _Lehwalte( 1994, Walraven
: 1995, Iguro et al. 1985, Shioya & Akiyama 1994, and
m m many flexure tests of plain beams cited inzBat &
ow = (> 0" Vi/Vi )Y 6)  Novak 2000a,b). P
* 6) When Weibull exponent. is identified by fitting
whereV; (j = 1,2,...Ny) are the elements of the the standard deviation afy for specimens of very
plastic zone having maximum principal stress. different sizes, very different: values are obtained.
Ruggieri & Dodds (1996) replaced the sum in (6) byAlso, the size effect data and the standard deviation
an integral (see also Lei et al. 1998). However, Eqdata give very different: (e.g.,m = 12 was obtained
(6) can be applied only if the crack at the moment ofWwith small concrete specimens while the large-size
failure is still microscopic, that is, small compared to @symptotic behavior correspondsrto= 24 (Bazant
the structural dimensions. Therefore, the concept ofnd Nowak 2000); Fig. 1f{» varies from 4.2 to 24.2).
Weibull stress is not useful the case for quasibrittle 7) The classical theory neglects spatial correlations
materials in which the process zone can be as large & material failure probabilities (which is admissible
the structure. only if the structure is far larger than the autocorre-
When the structure geometry is not positive (whichlation length/, of the random field of local material
for example occurs in beams with tensile reinforce-strength).
ment, or when an adjacent compressed zone stabi-
lizes a crack, as in gravity dams), a large crack must
develop before the failure can occur. This precludes OVERVIEW OF NONLOCAL GENERALIZA-
Weibull-type statistical analysis. Although rigorous TION OF WEIBULL THEORY
probabilistic modeling seems prohibitively difficult,
the case of negative geometry is not very importanfone can discern three approaches to generalizing the
because the size effect is predominantly energetic (déMeibull theory in various ways, and to various de-
terministic). So, when the size effect is mainly statis-grees, the capture the effect of a large FPZ and qua-
tical, the violations of statistical independence of ma-sibrittleness.
terial elements at different locations have a negligible 1) One classical approach is represented by various
effect, and when it is not, the question of statisticalphenomenological models for load sharing (or paral-
independence of these elements becomes irrelevantlel coupling of links) (Daniels 1945, Grigoriu 1990).
In the case of quasibrittle structures, applications ofAlthough these generalizations can simulate some ef-
the classical Weibull theory face a number of funda-fects of a large FPZ, they are not generally applicable
mental objections: and cannot capture the effect of structure geometry.
1) The fact that the size effect eny is a power law  Calibrating the model for one structure geometry, one
means that the functional equation (1) is satisfied, angannot predict the behavior for another geometry.
this implies the absence of any characteristic length. 2) Another classical approach attempts to over-
But this cannot be true if the material does containcome the problem of LEFM crack-tip singularity,
sizable inhomogeneities, as does concrete. which causes the classical Weibull integral to di-



verge form > 4 (this includes all realistien values); tion of the local stress tenser at continuum point
Beremin (1983), Ritchie, Becker, Lei et al. (1998), x, must be replaced by a function of a nonlocal vari-
Lin, Evans, McClintock, Phoenix (1978), etc.. For ex- able (B&ant & Xi, 1991, Baant & Novak 2000a,b).
ample, one can exclude from the domain of WeibullThe nonlocal stress is not acceptable because it de-
integral a finite circular zone surrounding the crackcreases with increasing average strain. A suitable non-
tip, in order to make the integral convergent, or onelocal variable is the nonlocal strain or, more precisely,
can consider plastic blunting of the stress profilethe nonlocal inelastic part of strain. The material fail-
ahead of the crack tip, or one can average the failure probability is thus defined in the nonlocal Weibull
ure probability spatially. These approaches have beetheory as

shown useful for tough metals with a moderately large
yielding zone at the crack tip, but are doubtful when
the effective FPZ length is of the same order of mag-
nitude as the structure size (which is typical for rein-
forced concrete) and are not completely general (e.g., €’(x) = / a(s —x)e’(s)dV(s) / a(x) (8)
they cannot be applicable for crack initiation from a v

smooth surface).

3) The most recent approach is the nonlocain which E = initial elastic moduli tensorg (s — x)
Weibull theory (Baant & Xi 1991, Baant & Novak = a bell-shaped nonlocal weight function whose ef-
2000a,b). This is a general theory which has as it$ective spread is characterized by characteristic (ma-
limit casesboth the classical Weibull theory and the terial) lengthly; and a(x) = normalizing factor of
deterministic nonlocal continuum damage mechanics(s — x).

developed for finite element analysis of quasibrittle  The nonlocality makes the Weibull integral over
materials. The energeti_c size effect is Implled by thlSa body with crack t|p Singu|arity Convergent for any
theory as the asymptotic case for not too large strucyajue of Weibull modulusn, and it also introduces
ture sizes. into the Weibull theory spatial statistical correlation.
The nonlocal concept was proposed for elasticity inNumerical calculations of bodies with large cracks
the 1960s (Kéner 1961, Eringen 1965, Kunin, Ede- or notches showed that the randomness of material
len) and later extended by Eringen et al. to hardenstrength is almost irrelevant for the size effect on the
ing plasticity. In the 1980s, it was adapted to strain-meanc,, except theoretically for structures extrap-
softening continuum damage mechanics and strairelated to sizes less then the inhomogeneity size in
softening plasticity (Baant 1984. Baant et al. 1984, the material (Baant & Xi 1991). Therefore, the ener-
Pijaudier-Cabot & Baant 1987), with three motiva- getic mean size effect law for the case of large cracks
tions: or large notches remains unaffected by material ran-
(1) to serve as a computational ‘trick’ (localization domness. Intuitively, the reason is that a significant
limiter) eliminating spurious mesh sensitivity and in- contribution to Weibull integral comes only from the
correct convergence of finite element simulations ofFPZ, the size of which remains constant if the struc-
damage; ture size is increased. The same reason applies to the
(2) to reflect the physical causes of nonlocality,boundary layer of cracking (Fig. 1la), and is docu-
which are: (a) material heterogeneity, (b) energy reimented by the inelastic strain field in (Fig. 1c left,
lease due to microcrack formation, and (c) microcracKinear scale) and the field of the density of contribu-
interactions; and tion to the Weibull integral (right, log-scale) obtained
(3) to simulate the experimentally observed sizely Bazant & Novak (2000a) in nonlocal beam flexure
effects that are stronger than those explicable bynalysis.

Weibull theory. A special case in which the statistical size effect is
Because of material heterogeneity, the macroscopitnportant is the failure at crack initiation in a very
continuum stress at a point material must dependarge structure, much larger than the inhomogeneity
mainly on the average deformation of a representativéize. This is the case of bending of very thick plain
volume of the material surrounding that point, ratherconcrete beams or plates, for example the flexural fail-

than on the local stress or strain at that point. ure of an arch dam about 10 m thick (et & Novak

In the deterministic nonlocal theory for strain soft- 2000a,b; Fig. 1d,e).

ening damage or plasticity, the spatial averaging must The asymptotic limits of the mean nonlocal Weibull
be applied only to the inelastic pa¢t’ of the total size effect are, forD — 0, the deterministic ener-
strain e (or some of its parameters), rather than togetic size effect and, fob — oo, the mean classi-
the total strain itself (Pijaudier-Cabot & Bant 1987). cal Weibull size effect. Their asymptotic matching ap-
Accordinly, the cumulative failure probabilit#; (o),  proximation leads to the following approximate for-
considered in the classical Weibull theory as a funcimula for the mean size effect(Bant 2001, Fig. 1

Pi=(o/s))". o(z)=E:[e(z) - ()] (7)
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g,d,e): 2. The nonlocal characteristic lengthin contrast

to autocorrelation length in SFEME,, has a
D, rn/m rD, clear physical meaning and can be easily eval-
ON = O —— + —
NP0\ gD, + D nDy + D
wherern/m < 1; n, r = empirical constants. The

9) uated from the size effect tests using simple
special case for; = 0 was shown to fit the bulk of

LEFM-based formulas; it ensues as the transi-
tional sizeD, obtained as the intersection of the
asymptotes of an optimally matched size effect
the existing test data on the modulus of rupture and  1aW: times a shape factor known from LEFM.
closely agree with numerical predictions of the nonlo- 3 Th - o -

. . . The nonlocal Weibull theory is simpler, since an
cal ngbull theory over the size range 1:1000 iB_at autocorrelated random fielgis not r?eeded (acer-
& Novak .20(.)01.3)' Aside from the two a_forementlone;d tain kind of spatial correlation is implied by the
asymptotic limits, the formula also satisfies, as a third characteristic length of the nonlocal averaging
asymptotic condition, the requirement that the deter- operator)
ministic size effect on the modulus of rupture must be '

recovered form — oco. . The first point is a fundamental one. It is related
As for the coefficient of variationuy of the {4 the far-out tail of the probability distribution of the
nominal strengtlvy, it can be proven analytically in  tangential stifiness, which governs the failure loads
general that, according to the nonlocal generalizatioryf yery small probability. The following physical ar-
of Weibull theory, it is independent of siz®. In gument is pertinent in this regard (Bent 2001):
other wordswy exhibits no statistical size effect, is ~ |pagining the structure to be scaled up to infinity
defl_ned by the same expression as in _the C|aSSIC%|ize(D . o0), the FPZ becomes infinitely small com-
Weibull theory (Eq. 4), and is fully determined by the pared to the structure size (i.e., a point in the di-
value of Weibull modulusn. Numerically this fact mensionless coordinatés= z /D). In that case, fail-
was demonstrated in Bant & Novak (2000a). ure (of a structure of positive geometry) must occur
right at fracture initiation. Therefore, the classical (lo-

cal) Weibull theory must apply, and the failure load of
4 GENERALIZATION OF STOCHASTIC FINITE very low probability then dependsly on the far-off

ELEMENT METHOD (SFEM) FOR VERY LOW {5 °0f the local strength distribution at a point of the

PROBABILITY FAILURES structure. Thus, extrapolation to very large sizes is a
way to identify the far-off tail of the local strength
distribution.

On the other hand, the existing SFEMs have not
been shown to converge to Weibull theory and to re-
produce the Weibull size effect &3 — oo, neither
analytically nor computationally. This important re-
quirement is not ensured by the existing SFEMs.

The requirement that the Weibull size effect must
be approach for infinite size has some implications for
the structure of the tail of the probability distribution
of the stiffness coefficients, deflections and stresses.
Normally, the material stiffness characteristics are as-

umed in SFEM to have the Gaussian or log-normal
istributions. Since the probability distribution of the
structural tangential stiffness matrix is essentially a

datis & Shinozuka 1991, Shinozuka & Deodatis 1988 /€ighted sum of the elemental distributions (i.e., the
' ’glstrlbutlons of the stiffness characteristics of a small

Takada 1990). A critical appraisal, however, suggest epresentative volume of the material), the distribu-

that SFEM, as it now exists, is not an adequate too!. f the structural stiff toient b
for determining failure loads of very small probabil- lon of the Structural SUTiness Coetlicients may be ex-

ity, on which structural design must be based. In thisfeCted to be Gaussian, with the exception (1) of the

regard, the nonlocal generalization of Weibull statis- ar-out tail of probablllty dlstrlb_utlon, and (2) of the_
tical theory has three important advantages: states of damage localization in one or several finite
elements which may (though need not) occur just be-

1. In the limit of infinite size, the nonlocal Weibull fore reaching the peak load and dominates the struc-
theory reduces to the classical (local) Weibulltural stiffness.
theory, which is not true for the SFEMs in their  During the loading process, the maximum load
contemporary form. (which represents a failure state under the conditions

1/r

In comparison to SFEM, the nonlocal generaliza-
tion of Weibull statistical theory (Baant & Xi, 1991,
Bazant & Nowak 2000a,b; Baant 2002a,b) has two
limitations:

1) It does not yield the statistics of stiffness, deflec-
tions and stresses during the loading process; and

2) the failure probability is not related to the proba-
bility that the first eigenvalug; of the tangential stiff-
ness matrixk; of the structuref;, becomes nonpos-
itive. Properly, matrixk; should loose positive defi-
niteness at the onset of failure.

SFEM has become a powerful tool for calculating
the statistics of deflections and stresses of arbitrar
structures (e.g., Sckiller 1997a,b, Kleiber & Hien
1992, Ghanem & Spanos 1991, Liu et al. 1987, Deo



of load control), is reached when the tangential stiff- 3) Weibull distribution:
ness matrix of the structuré&’,, ceases being positive

definite, i.e., when the first eigenvaldeof K, ceases Py(y)=1-— e V" (15)
being positive (e.g. Baant & Cedolin 1991, ch. 4, 10
and 13). Therefore, (Case 1 is usually called the Gumbel distribution, but

) - Fisher and Tippett derived it much earlier and Gumbel
Failure probability(u) = Prob(Ai(u) <0) (10)  gave them credit for it.) Case 3 is obtained if the el-
emental distributionP; (y) has a power-law tail with
finite threshold (the simplest case is the rectangu-
r probability density function, for whichn = 1).
Case 1 is obtained iP; (y) has an infinite exponen-
tially decaying tail, and case 2 i?;(y) has an infinite
tail with an inverse power law (such &s|~™) (see
also Bouchaud & Potters 2000).

Fisher & Tippett (1928) based their proof on three
arguments: (1) The key idea is that the extreme of
sample ofv = Nn independent identical random
ariablesz (the strengths of the individual links of
a chain) can be regarded as the extreme of the set

of N extremes of the subsets of variables, e.g.,
Tail of[ Prob( A\ (u) < 0)] = Fw[P(u)] (11) the strengths of. links of a chain (Fig. 2g). (2) As
bothn — oo and N — oo, the distributions of the
Here Fy (P) is the cumulative Weibull distribu- extremes of samples of sizasand Nn must have a
tion function (Weibull 1939). This distribution has a similar form if an asymptotic form exists. This im-
power-law tail and a threshold, which can normally plies that that these distribution must be related by a
be taken as zero (excluding negative valug€s).is linear transformation in which only the mean and the
here properly considered as an implicit function ofstandard deviation can change; i.€.,= ayo + by
the controlled displacementbecause the tangential wherea,y andby are functions ofN (N ~ struc-
stiffness in the direction of loading changes its sign ature size) Although an asymptotic distribution of the
maximum load. extremes, as a limit foV — oo, does not exist, an

Imposing condition (11) can be justified by ruling asymptoticform (or shape) of the extreme value dis-
out all the other possibilities, which are as follows. tribution should exist, i.e., the asymptotic distribution
In a population ofV statistically independent random form should be stable with regard to increasiig
variablesX; (: = 1,2,...N) with arbitrary but iden- Thus the argument of a joint probability of survival
tical statistical distributions Proix; < =) = Pi(z),  of all N segments of the chain yields for the asymp-
henceforth called the elemental distributian< o /s, totic form of the cumulative distribution of the sur-
= scaled stressy; = scaled random strength), the dis- vival probability F'(¢) =1 — P; = 1 — Py of a very
tribution of Yy =minY, X; for very largeN has long chain the recursive functional equation:
the general expression:

As indicated here, the failure probability and the first
eigenvalue are regarded as functions of the Ioad-poirﬁ
displacement: (since, in order to achieve computa- a
tional stability, it isu, rather thanP, which needs to
be controlled during loading).

Now itis important to realize that, in the limit of in-
finite size, the distribution of extreme values is not ar-
bitrary, not something that can be left to empirical ob-
servations. Rather, it must be the Weibull distribution,
exactly, and nothing else. Consequently, it necessa
to satisfy, in the limit of infinite size, the following
condition:

FN(0) = F(ayo +b 16
PN(y) —1— e NP (12) ( ) ( N N) (16)
_ which is called the stability postulate of extreme value
where Py (y) = Probmin’, X; < y); Px(y) = P;  distribution @, by are coefficients depending o).
= failure probability of structure, provided that the Fisher and Tippett proved that this functional equa-
failure of one element causes the whole structure tion for unknown function?” has three and only three
fail. As proven by Fisher and Tippett (1928), there eX-types of solution, and that they are given by (13)—(15).
ist three and only three asymptotic forms (or limiting By substituting these forms into functional equation
forms for N — oo) of the extreme value distribution (16), one can check that indeed this equation is sat-
Py (y): isfied. The substitutions further give the dependence
. . o of ay andby on N, which in turn characterizes the
1) Fisher-Tippett-Gumbel distribution: dependence of the mean and the standard deviation

of each asymptotic distribution N (/N ~ structure
Puly) = 1= (13) e (

size).
, o The infinite negative tails oPy of the Féchet dis-
2) Frechet distribution: tribution and the Fisher-Tippett-Gumbel distribution
are not acceptable for describing the strength. There-
Py(y)=1—elI™ (14) fore, these two distributions are are ruled out. So, in



the case of strength, there is no other acceptable taiic variable. The subdivision number is defined as
distribution but Weibull distribution (which is what n = V,;/i{"¢ whereV,, is the macroelement volume,
lends support to the condition (11)). ["4 is the characteristic volume of the materiak:

In SFEMSs, there are of course techniques, such agharacteristic length and,; = number of spatial di-
the importance sampling, for calculating the failuremensions in which the structure is scaled up €
loads of extremely small probability. Unfortunately, 1,2,3 for one-, two- and three-dimensional similarity).
though, the fact that the probability structure of theThen the strength for each of theaé subsets ofn
existing SFEMs do not yield Weibull power-law tails, stochastic strength variables is simulated statistically,
nor lead to the Weibull power-law size effect when according to Weibull distribution, and for each subset
the structure size is scaled up to infinity, means thathe extreme (minimum strength) is selected to be the

the calculations of loads of a very small failure proba-representative statistical property (the strength) of the
bility, such asl0~7 (and probably not evetn—3), are finite element (macroelement). Thedeextremes of

unrealistic. the subsets of. variables are then used in numerical

In design codes, the safety factors relate the meafinite element analysis of the whole structure.
failure load prediction (roughly the same as the me- This procedure ensures that the extreme value
dian, or failure probability 0.5) to the failure load with statistics is correctly approached, with one cru-
a desired extremely low probability, typically about cial advantage—the numbet of finite elements
10~7. This is illustrated by the upper arc in Fig. 2k, (macroelements) remains reasonable from the com-
spanning about 6.5 orders of magnitude. Since the eXputational point of view. AlthoughV increases with
isting experimental validations of SFEMs have beerthe structure size, the determination of the extreme
confined mainly to the standard deviation, the currenfrom the subdivision of each macroelement does not
SFEMSs, with their exponential tails, might be realis- add to the computational burden since it is carried out
tic for calculating only loads of failure probability no analytically, outside the finite element analysis.

less than about0~2. So, an _empirical safety factor As already pointed out, one basic hypothesis of
spanning 5 orders of magnitude is needed to relatghe classical Weibull theory of structural strength is
this load to the failure load of the desired probability the statistical independence of the strengths of the
suchad 0" (see the lower arc in the figure). Compar- individual characteristic volume« , wherel is the
ing the lengths of the two arcs, one gets the soberingharacteristic length. The strength of each of these
impression that, in terms of safety against failure, noyolumes can be described by Weibull distribution
too much is gained by the use of SFEMs if a properwith Weibull modulusm and scale parametes (the
tail probability structure is not enforced. threshold being taken as zero, as usual). Each of the
aforementioned macroelements, whose characteristic
5 PRACTICAL FINITE ELEMENT APPROACH size is Ly and characteristic volumé;?, may be
imagined to be discretized inte characteristic vol-
In a primitive approach, the structure would have toumesi+. This consideration provides the statistical
be subdivided a very large numberof finite ele- properties of the macroelement. Since we are inter-
ments having the fixed size of the characteristic vol-ested only in very small tail probabilities, we may
ume of material. For a very large structurewould  simply substitute in these equations the tail approxi-
be a very large number, easily one billion. Thereforemation of the elemental (generic) Weibull distribution
such a primitive approach is impossible. with a certain modulus and scale parameter. The tall
To achieve a proper tail probability with a man- approximation is the power function™ (times a
ageable number of finite elements, the following ideaconstant), and its substitution leads for the strength
which is advanced in more detail in Nk, B&ant &  of the macroelement again to Weibull distribution but
Vorechovsly (2003), will now be briefly outlined. The with a different modulus and scale parameter, and
idea is to simulate by finite elements directly Fisher &thus with a different mean and variance, which are
Tippett's (1928) fundamental stability postulate of ex-expressed according to Eq. (4).
treme value distributions. This can be done as follows.

Similar to the crack band model (Bant 1982,
Bazant & Oh 1983), the finite elements used in com-6  NUMERICAL EXAMPLE OF FOUR-POINT-
putations have a fixed size in the relative coordinatdBEND FLEXURAL TESTS
& = x/D. The structure is subdivided into a fixed
number N of finite elements (called the macroele- By this time, abundant experimental evidence on the
ments) the size of which increases in proportion tostatistical size effect on plain concrete beams has been
structure sizeD. Each macroelement is imagined to accumulated. Koide et al. (1998, 2000) recently re-
consist ofn microelements of a fixed actual size andported tests of 279 plain concrete beams under four-
a strength represented by an independent stochageint bending, aimed at determining the influence of
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Figure 2: (a,b) Cumulative Weibull distribution and its density, for various Weibull maduli(c) 77 size effect

test data on fracture energy from the literature, plotted on Weibull probability paper. (d,e) Plots of measured
versus predicted values of size effect fracture energy (77 test series) and Hillerborg fracture energy (161 test
series). (f,g) Invasive affine fractality of crack surface and lacunar fractality of microcracks. (h,i) Unreasonable
size effects for large cracks and crack initiation ensuing from the hypothesis of fractal size effect. (j) Softening
stress-crack separation curve of cohesive crack model of concrete. (k) Safety factors relating failure probability

to calculations.



the beam lengtl on the flexural strength of beams. 850
These excellent statistical data permit a comparison of

the cumulative probability distribution function of the x
maximum bending moment/,,,, at failure (Baant 800 | |
& Novak 2000b, No@k et al. 2001). Beams of three _

different bending spans, 200, 400 and 600 mm (se- --@-- Experiment

ries C of Koide et al.) are shown in Figure 3, along — 750 | - Deterministic
with the cracks obtained by deterministic finite ele- E = Altemnative

ment calculations (carried out with the code ATENA, & | - Alternaivell
Cervenka 2002). The cross-sections of all the beamsé 700 - —— Alternativelll

were kept constant (0.1nx0.1m) and the experi-
ments showed how/,,,, decreases with an increas-
ing span (Fig. 4). To describe the size effect of the
span, Koide et al. proposed a modification of the
Weibull theory.

650 -

M aximum mo

550 - T

200 400 600
| 400 | Bending span (mm)

150 Figure 4. Comparison of means of Koide's data and
- ATENA Deterministic and Statistical simulations.

Fig. 4, reflecting the fact that, the longer the beam, the
_ ' . higher is the probability of encountering in it a mate-
Figure 3:Koide's beams of bending span 200, 400  igl element of a given low strength.

and 600 mm, series C. The force increments applied on the beams were
rescribed in numerical simulation in order to avoid

| 200 | 600 | B

tal lts plotted in Eia. 4 th %5) to become nonsymmetric. Because of load con-
perimental results plotted in Fig. 4 give the M3y the load-deflection curves, including the peak

value for each size. The double logarithmic plot of .4 ostneak response, were calculated using the arc
M, versus the span is approximately a straight I'nqength method.

of slope D"/ wheren, is the spatial dimension
andm is the Weibull modulus. Since the depth and
width of the beam are not increased, the problem i
properly analyzed as one-dimensional, and then th
overall slope of the experimental data in the figure
is matched best with the value = 8, which is un-
usually low for concrete and implies an unusually et g s o b el g e
high coefficient of variation of the scatter of flexural
strength.

Deterministic simulation with nonlinear fracture
mechanics software (made with ATENA) indicate thatFigure 5: Deterministic cracks for sizes 20, 40 and 60.
no appreciable size effect is present. This is no sur-
prise. According to fracture mechanics, the determin- The probabilistic version of nonlinear fracture me-
istic size effect on flexural strength of beams, whethechanics software ATENA Cervenka & Pukl 2002)
unnotched or notched, is almost nil if the beam depttwas utilized to simulate the tests of Koide et al. by fi-
is not varied because the energy release function isite elements in the sense of extreme value statistics.
almost independent of the beam span. This is usefulhis was made possible by integrating ATENA with
in view of our focus on the statistical size effect. It the probabilistic software FREET ( Nak et al. 2002,
allows a purely statistical analysis of the test data ir2003). In this simulation, the finite element mesh is

||||||| ||||]||||i||u
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defined by using only 6 stochastic macroelements oproach is the first alternative studied. Only the random
strip-like form, placed in the central region of the testscatter of tensile strength is considered, the generic
beams in which fracture initiates randomly; see Fig-mean value of tensile strength being fixed as 3.7 MPa.
ure 6. The strips suffice for simulating the Weibull The resulting size effect curve obtained by probabilis-
size effect. We imagine elements per macroelement tic simulation is found to have a smaller slope than
of width L, while the finite element meshes for all the the experimental data trend, in spite of the fact that an
sizes are identical (except for scaling by a horizontalinusually low Weibull modulusr = 8) is used. To
stretch). explain it, note that the Weibull theory strictly applies

The characteristic length is considered to be 50nly when the failure occurs right at the crack initi-
mm, which is approximately three-times the maxi-ation, before any (macroscopically) significant stress
mum aggregate size. The Weibull modulus is takerredistribution with energy release takes place. This is
asm=8, and the scale parameterjs= 1.0 MPa. The not the case for concrete, a coarse material relative
statistical parameters of the strength of the macroeleo the beam depth used. So, a nonnegligible fracture
ments, imagined to consist &f = L,/ material el- process zone must form before a macroscopic crack
ements each. For the three sizes (spans) consideredn form and propagate, dissipating the required frac-
here,M = 50,100,150 mm andN = 1,2, 3. ture energyG; per unit crack surface. Therefore, the

For the stochastic finite element simulations, abeam, analyzed by nonlinear fracture mechanics (the
stochastic computational model witN=6 random crack band model, approximating the cohesive crack
tensile strength variables is defined for each beam siz@odel) does not fail when the first element fails (as
(span). These 6 variable are characterized by 16 ramequired by the weakest link model imitating the fail-
dom simulations based on the method of Latin hyperure of a chain). Rather, it fails only after a group of
cube sampling, using simulations by the FREET ancelements fails, and several groups of failing elements
ATENA softwares (Noak et al. 2003, Viechovsk  can develop before the beam fails; see Fig. 6. The fi-
& Novak 2003, Pukl et al. 2003). The statistical char-nite element simulations are able to capture this be-
acteristics of the ultimate load can then be evaluatechavior thanks to the cohesive nature of softening in a
The mean values of nominal strength obtained frontrack or crack band, reflecting the energy release re-
a statistical set of the maximum load are determinedjuirement of fracture mechanics.

first. The random cracking pattern at failure is shown A tarnative 1I: To overcome the aforementioned

in Fig. 6, as obtained for four realizations of three . ,h1em and match the size effect data, we must take
progressively improved alternatives of solution. To il-; ;5 5 ccount the randomness of fracture enefy

lustrate the randomness of failure, the corresponding, .+ \ve cannot ignore the statistical correlatior(df
[l_ahndor:n Ioatjll-defleptlon ]E:urver? ak:ehshown Iln Figure 7y tensile strength. For lack of available data, we sim-
ett dr_eeFa_1 terna:ltlves, ﬂ?r ;N”'C | the results are prey,, 5ssume a very strong correlation, characterized by
Sented In rigure 4, are the foflowing: correlation coefficient 0.9. Such a correlation tends to
cause the (macroscopic) crack propagation to begin

45 g P P Frrrrr e O Raaans 3 earlier than in Alternative |. The result is shown in
Fig. 4 as Alternative Il. The resulting slope of the sim-
4t 3 ulated size effect curve is now close to the slope of ex-
S 35t E perimental data. However, the entire curve is shifted
x E down, i.e., all the beams are weaker than they ought to
X 3t E be. The strong correlation between the tensile strength
§ and fracture energy is see to cause the macroelements
Q 25} E with a lower tensile strength to be more brittle. There-
o 3 ; fore, the failure must localize into these macroele-
g_ ments.
@ 1.5 3 Alternative IlI: In seeking a remedy, we must re-
L 1E E alize that Koide et al. measured neither the tensile
strength nor the fracture energy, and that our forego-
05 E ing estimates may have been too low. So, our only
0 7 s e e e L option is a heuristic approach. While keeping Aterna-
0 002 004 006 008 0.1 012 tivell weare free to _shlft the size effect curve up by
. . increasing the generic mean value of tensile strength
Midspan deflection (mm) and the fracture energy value. We increase them to 4
Figure 7: Random load deflection curves. MPa and 100 N/m, respectively, and this adjustment

is found to furnish satisfactory results; see Fig. 4. Al-
Alternative I: A pure Weibull-type statistical ap- though the size effect of Alternative IIl in the double
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Figure 6: Macroelements and examples of random crack initiation for the first size; left: random tensile strength
only, right: random and correlated tensile strength and fracture energy.

logarithmic plot is not as straight as the trend of datajty aspects has been achieved in many works; e.g.
the differences from the data are negligible. Theseshinozuka (1972), Mihashi & lzumi (1977), Mazars
small differences may have been easily caused, faf1982), Baant & Xi (1991), Breysse (1990), Breysse
example, by an insufficient size of the data set or by& Renaudin (1996), Carmeliet (1994), Carmeliet &
weak stability of load-controlled computations nearHens (1994), de Borst & Carmeliet (1996), Gutz
the peak load, making the detection of the peak inac{1999), Gutéerez & de Borst (1999, 2000, 2001, 2002)
curate. and others. A finite element reliability method for
In conclusion, it may be emphasized that thegradient-enhanced damage models has been formu-
result of Alternative Ill is in excellent agreement lated by Guterez & de Borst (1999. They considered
with the previous analysis of the same data usinghe damage threshold as an autocorrelated random
the nonlocal Weibull theory (Bant & Novak 2000b).  field and applied their model to quasibrittle damage
in tensile double-edge-notched specimens and pull-
out of steel anchors from concrete simulating damage
7 CONCLUDING REMARK threshold as a random field. The analysis furnished
the most likely localization patterns corresponding to
The factors of safety for designing against the riska chosen failure criterion and the influence of deter-
of failure of concrete structures have doubtless muclministic and statistical length scales on the statistical
larger errors than the errors stemming from the inadproperties of structural response, size effect and dam-
equacies of the finite element analysis. Therefore, iage accumulation.
would make little sense to strive for improvements of The characteristic length of a nonlocal continuum
the finite element analysis with the underlying con-governs the deterministic scaling and the autocor-
stitutive and fracture laws without at the same timerelation length of random field in stochastic finite
addressing the limitations of the statistical theory.elements governs the statistical scaling. De Borst &
The present practice of finite element analysis, an@armeliet (1996) showed that both the characteristic
even its stochastic generalization, cannot realisticallyfength and the correlation length are needed—the
cope with the statistical risk of failure because it doedirst to avoid localization, the second to characterize
not provide the correct probability structure of the spatial randomness. A salient question is the relation-
far-off tail of the failure probability distribution as ship of these two characteristic length. Franziskonis
a function of the applied load. The present analysif1998) studied this relationship analytically and
attempts to identify the problem and propose a wayGutierez & de Borst's (2002) numerical studies
doubtless not the only way, of achieving the correctrevealed very different roles of these two lengths.
extreme value distribution of failure probability for
structures that fail in a quasibrittle manner.
APPENDIX Il. STATISTICAL PROPERTIES OF
NONLOCAL GENERALIZATION OF WEIBULL
APPENDIX I. INTERPLAY OF DETERMINISTIC THEORY FOR SIZE EFFECT IN QUASIBRITTLE
AND STOCHASTIC LENGTH SCALES STRUCTURES

Progress in the understanding of the uncertaintie¥he statistical properties of the nonlocal generaliza-
concrete failure and fracture behavior with reliabil- tion of Weibull theory (Eq. 7) can be derived ana-
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lytically. This derivation, which is more fundamental of asymptotic accuracy, the error being of the second
than the direct asymptotic matching approachz@d  order inl/D):
& Novak 2000c), Baant 2002) and is presented in
full in Bazant (2002c), will now be briefly outlined. g™ — f7™(1 —¢,,1/ D)™ ~ Hy™ (1 +mre,l /D)~ 4"
Considering the nonlocal averaging domains in a (19)
nonlocal model of a structure to be analogous to thgBazant 2002c) where s an arbitrary positive empir-
links of a chain, one may calculate the the failurejcal constant. Eq. (17) then yields:
probability Py of a structure is given by-In(1 —
P;) = [, (6(x)/s0)" dV(x)/V, (Bazant & Xi 1991) I _ 1/m
th)erex}/i \(/ol)lfmé of sgru)c/tureVO = representative on ==l =PI ™sp (D>1) - (20)
volume of materialm = Weibull modulus s, = scal- na/m 1r
ing parameterg(xz) = maximum principal stress at o = 20 o 14+ mre o (21)
point of coordinate vectat, 6 = nonlocal stressy, P~ H,\D "
= representative volume of the material for which the
Weibull parametersn and s, have been experimen- (Bazant 2002c). This expression represents the large-
tally identified; and(..) denotes the positive part of size size effect law of nominal strength of structure
the argument. Itis convenient to introduce dimensionwith any specified failure probability;. For P; = 0.5
less coordinates and variables by setfing D¢,V = it represents the large-size size effect law for the me-
[,V ="y, dV(x) =1"dv(),o(x) =onS(€)and  dian nominal strength.
| = V,'/" whereD = size (characteristic dimension)  Eg. (21) gives for anyD a real value ofry which,
of the structurep, = number of spatial dimensions for any fixed P, decreases monotonically with
in which the structure is scaled{ = 1, 2 or 3 for through the entire size range € (—oo,00). How-
one-, two- or three-dimensional scaling): charac- ever, the limiting nominal strength fab — 0 is in-
teristic length of material¢ = /D = dimension- finite. From a purely empirical viewpoint, this might
less coordinate vector; angly = P/bD = nominal  not be considered as objectionable because unreason-
strength of structure{ = maximum loadp = width ~ ably largeoy might result only for a hypothetical
of structure). We consider geometrically similar struc-structure sizeéb much smaller than the aggregate size.
tures of different size®, for which the correspond- However, we prefer the small-size asymptotic proper-
ing points have the same dimensionless coordigate ties to agree with the theoretical small-size asymptotic
then (Baant 2002c) properties of the cohesive (or fictitious) crack model
. g or the crack band model, or the nonlocal damage
Py=1—e (/o) g om— S0 <l> (17)  model, which imply that the value a@fy for D — 0
H™\ D should be finite and should be approached linearly in
D (Bazant 2001, 2002); this may be achieved by re-
m_ & enm placingl/D with 1/(nl + D), which has no effect on
A = /1,<S(£)> dv(§) (18) the large size asymptotic properties{ empirical co-

A efficient of the order of 1). With this replacement, Eq.
The nonlocal stresS (&) used above does not per- (21) becomes:

mit determining the size effect analytically. There-
fore, we restrict attention to large enough structures ng 1
such that the nonlocal averaging domain, roughly of , _ %0 < ! > (1+mm l ) (22)
the same size as the fracture process zone (the zone Hy \nl+D "nl+ D
of distributed cracking or localized damage), is small
enough compared tb, though not necessarily negli- (Bazant 2002c) whereDd > [. It may be noted that
gible. the mean size effect law for meaf; implied by this

It can be shown in general for various definitionsresult is not identical to (9). However, the difference
of the nonlocal stress and verified by the example ofs barely distinguishable in data fitting.
a three-point bend beam that the first two terms of the Similar to the classical Weibull theory, the mean
asymptotic expansion of the dimensionless nonlocaand standard deviation efy may be calculated as:
integral H as a power series ity D may be written
asH = Hy(1 — ¢,/ D), the error being of the order _ /°° o
of (I/D)?; hereHO/and ¢, are dimensionless con- N = ondPylow) = spD(1+1/m)  (23)
stants for geometrically similar structures. Since the
term(1 — ¢,,[/ D) becomes negative for small enough 2 _ /°° 2 =2
1/D (which would render (17) physically meaning- on on"dFy(on) =N
less), it is suitable to introduce the following equiva-
lent approximation (which maintains the same order =sp’D(1+2/m) — ox° (24)
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Accordingly, the coefficient of variation ofy (for  Agency of the Czech Republic under the grant No.

D >1) 103/03/1350. Authors thanks to M. Kéchovsk
for numerical simulation of four-point-bend flexural
On L(1+2/m) tests.
= — =, =41 25
YN T o \JF2(1+1/m) (25)
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