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ABSTRACT: The paper demonstrates the need for a fundamental revision of reliability concepts and design
codes for quasibrittle heterogeneous structures, such as concrete structures failing due to concrete fracture or
crushing (rather than reinforcement yielding), or large load-bearing fiber-composite structures for ships or 
aircraft, sea ice plates, etc. While ductile failure occurs simultaneously along the failure surface and is charac-
terized by absence of size effect and Gaussian distribution of structural strength, quasibrittle failures propa-
gates, exhibits a strong size effect and follows at large sizes extreme value statistics of weakest-link model, 
which leads to Weibull distribution of structural strength (provided that failure occurs at macro-crack initia-
tion). Based on small- and large-size asymptotic properties recently deduced from cohesive crack model and
nonlocal Weibull theory, the transition of cumulative probability distribution function (cdf) of structural
strength from small to large sizes is modeled by a chain of fiber bundles, in which each fiber with Weibull-
type tail of strength probability corresponds to one dominant micro-bond within a representative volume ele-
ment (RVE) in a brittle lower-scale microstructure. The cdf of each fiber (or micro-bond) properties can be 
deduced from Maxwell-Boltzmann distribution of the atomic thermal energies, which brings about the re-
scaling of cdf according to temperature, load duration and moisture content. A fascinating by-product of the 
analysis, with physical implications, is that the Weibull modulus is equal to the number of dominant (simulta-
neously failing) micro-bonds in an RVE. The structural strength distribution is based on chain-of-bundles 
model, for which a composite cdf with a Weibull tail grafted on a Gaussian core is proposed. For the small-
size limit, the core is totally Gaussian, and for the large-size limit totally Weibull. In between, the grafting 
point moves right as the Gaussian core shrinks with increasing size. This causes that the distance from the
mean to a point of tolerable failure probability (such as 10-7) nearly doubles as the size of quasibrittle struc-
ture increases. Consequently, the understrength factor in design codes must be made size dependent. So must
the Cornell and Hasofer-Lind reliability indices. Their reformulation (implying replacement of FORM with
‘EVRM’) is proposed. Inseparable from these effects are further problems due to ‘covert’ understrength fac-
tors implied in brittle failure provisions of concrete design codes, as well as an irrational hidden size effect
implied by excessive load factor for self weight acting alone. To improve design safety and efficiency, experts 
in statistical reliability and fracture mechanics will need to collaborate to tackle these problems comprehen-
sively. 
 
 
1 INTRODUCTION  

Recent developments in probabilistic modeling of 
quasibrittle fracture with size effect, and in statistical 
databases for failure loads, reveal problems whose 
resolution will require a major overhaul of the exist-
ing design codes and practices (Ellingwood et al. 
1980, 1982), especially those for concrete, as well as 
generalization of the basic concepts of structural re-
liability, important especially for extrapolation of 
laboratory experimental evidence to very large struc-
tures failing in a non-ductile manner. From the sta-
tistical viewpoint, the problem is that the current 

practice is to model the strength variability by nor-
mal (Gaussian) or lognormal distribution. But this 
cannot apply to large structures obeying the weak-
est-link chain model because the stability postulate 
of extreme value statistics is violated. 

The reliability problems associated with brittle-
ness have come to light as a result of theoretical 
modeling of the size dependence of the cumulative 
probability distribution function (cdf) of load capac-
ity of quasibrittle structures (Bažant 2004a, b) based 
on nonlocal Weibull theory (Bažant and Xi 1991; 
Bažant and Novák 2000a, b) and asymptotic match-
ing (Bažant 1997, 2004a, b), and also as a result of 
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Monte Carlo structural simulations and of statistical 
studies of extensive databases.  

Quasibrittle materials, which include concretes, 
rocks, tough ceramics, fiber composites, concrete 
structure strengthened or retrofitted by composites, 
sea ice, stiff cohesive soils, wood, paper, foams, etc., 
typically exhibit a transitional size effect. So do 
modern tough metallic structures. Structures made of 
such materials exhibit not only the Weibull-type sta-
tistical size effect but also an energetic size effect on 
the nominal structure strength, σN, due to stress re-
distribution caused by a large fracture process zone 
(FPZ) or by large fracture growth before the maxi-
mum load or load parameter, Pmax, is reached (σN is 
defined as Pmax/bD where D is the characteristic size 
of structure and b its thickness in the third dimen-
sion). 

The size effects are basically of two types: Type 1 
occurs for structural geometry that permits stable 
growth of large fractures prior to reaching Pmax, and 
type 2 for structures failing at macro-fracture initia-
tion from an initial cracking zone (there exists also a 
type 3 size effect, but it is very similar to type 2); 
Bažant (2002). For type 2, material randomness af-
fects only the scatter of σN but not its mean, while 
for type 1 it affects both and thus is more important.  

This study will deal only with type 1, for which 
the combined probabilistic-energetic size effect on 
the mean of σN can be approximately described as 
(Bažant 2004a): 

( ) ( )
1 1,  1

rrn m
N A rx B D lσ ϑ ϑ ϑ η −= + = +  

(1)
 

where n, m, r, x, η, A, B, l = constants. Eq. (1) was 
derived by asymptotic matching of the first two 
terms of the small-size and large-size asymptotic ex-
pansions of σN based on the cohesive crack model 
and the nonlocal Weibull theory. By asymptotic ap-
proximations it was also shown that, for large D, the 
Weibull distribution must be approached with an er-
ror second-order small in 1/D (Bažant, 2002). 

The present brief article will (1) formulate a statis-
tical series-parallel coupling model for the size ef-
fect on cdf in quasi-brittle failure; (2) propose a re-
form of the standard reliability indices used in the 
first-order reliability method (FORM) to take into 
account the cdf tail; and (3) point out the reliability 
consequences of covert understrength factors and 
excessive load factor for self-weight. 

2 HIERARCHICAL MODEL FOR CDF OF 
STRENGTH OF ONE RVE  

Structures containing a cohesive crack, scaled down 
to vanishing size (D→0), approach the case of an 
elastic body with a crack filled by a perfectly plastic 
‘glue’ (Bažant, 2002). In this limit case, all the mi-
cro-bonds along the failure surface are failing simul-
taneously. Therefore, the cdf of failure load should 
obey the Gaussian (or normal) distribution. This is 
implied by Daniel's (1945) fiber-bundle model (or 

parallel coupling of elastic-brittle fibers) in which 
the load is shared equally by all the unbroken fibers 
(Fig. 1a). The cdf of the strength, σ, of a fiber-
bundle with n fibers is given exactly by Daniels’ re-
cursive formula:   
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where G0(σ) = 1 and F(σ) = cdf of fiber strength. 
If the fibers are elastic-perfectly plastic, the 

strength of the bundle is a sum of the individual fi-
ber strengths (i.e., load redistribution is ignored), 
and Daniels’ result is similar to the central limit 
theorem (CLT), which states that the sum of a large 
number of independent random variables approaches 
the Gaussian (or normal) distribution, irrespective of 
the individual distributions (unless they have infinite 
variances, in which case another stable distribution, 
Levy’s, is approached). 

The fibers in the fiber-bundle model are a collec-
tion of interatomic bonds on the nano-scale within a 
representative volume element (RVE) of the mate-
rial. The RVE size depends on its purpose. Here the 
RVE is considered to be about three aggregates in 
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Fig. 1. Models of series and parallel couplings a) fiber bundle; b) bundle 
of chains; c) example of a complex bundle with sub−chains and sub−bun
dles; d) hierarchy of sub−chains and sub−bundles; e) a chain model with 
each link representing a RVE. 
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size and is defined as the smallest material volume 
whose failure suffices to make a structure of positive 
geometry fail (this definition differs from that used 
in the homogenization theory for heterogeneous 
elastic-plastic materials). The failure probability of 
each micro-bond can be deduced from statistical 
thermodynamics. The Maxwell-Boltzmann distribu-
tion of thermal energies of atoms (Hill, 1956; 
Cottrell 1964; McClintock and Argon 1966) states 
that the fraction of atoms exceeding atomic energy 
level E at absolute temperature T is: 

( ) ( )expΦ = − kTE E  (3) 

where k = Boltzmann constant. If the energy of an 
atom exceeds its activation energy Q, the bond is 
broken. So the fraction (or frequency) of interatomic 
bond breaks is Φ = e−Q / kT 

Application of stress, σ, causes the activation en-
ergy barrier to change from Q to Q−κσ for bond 
breaking, and from Q to Q+κσ for bond restoration 
(where factor κ depends on microstructure geometry 
and randomness, and is assumed to be independent 
of σ).  From this, it can be deduced that the pdf of 
failure of one fiber, simulating an interatomic bond 
in an RVE, at temperature T under stress σ , may be 
expressed as 

( ) ( )2 sinh /Q kT
bf e kTσ κσ−=  (4) 

The RVE is made up of trillions of interatomic 
bonds. They may be idealized as coupled either in 
parallel (as described by the fiber bundle model), or 
in series (chain model). A crack is formed when the 
critical fraction νcr of interatomic bonds, which must 
be broken in order to form a continuous surface, is 
reached (the value of vcr is a problem of statistical 
percolation theory). Because the critical fraction νcr 
can be reached by breaks of many different intera-
tomic bonds, each of which may lead to failure of 
the fiber, each fiber may be more precisely described 
by the weakest-link model simulating a lower-scale 
microstructure—a chain of very many bonds. Its 
overall cdf depends only on the tail of Fb(σ) given 
by integral of (4) with respect to σ. Since this cdf 
tail is ∝ σ p where p=1, it can be shown that, in this 
case, the cdf of each fiber under stress σ for duration 
τσ, must be the exponential distribution 

( ) ( )1 exp Q kT
b bF e

kTσ
κσσ φ τ −⎡ ⎤= − −⎢ ⎥⎣ ⎦

 
(5)

 

where φb = function of time τσ, derived from the 
critical fraction νcr of atomic bonds. The reason that 
the transfer of load from the broken to the unbroken 
bonds is not taken into account within each fiber is 
that it is approximately captured by load sharing 
within the bundle itself. 

The cdf of a simple fiber bundle (Fig 1b) ap-
proaches a Gaussian distribution with the asymptotic 
mean and coefficient of variation (CoV) given by 
(Daniels 1945): 

( ) ( ) ( )* * 1 2 * *1 ,  1F n F Fµ σ σ ω σ σ−⎡ ⎤ ⎡ ⎤= − = −⎣ ⎦ ⎣ ⎦
 
(6) 

where σ* is the point for which µ(σ) reaches its 
maximum. Obviously, for n→∞ one has ω→0, i.e., 
an infinite bundle is deterministic, and so only a fi-
nite n make sense. The Gaussian approximation of 
cdf reveals nothing about the far-out cdf tail. The 
Gaussian distribution is only valid for the central 
core expanding in proportion to n1/2 whereas the left 
tail of cdf has the cdf of the fibers (Harlow et al. 
1983). The probability of failure for each fiber given 
in Eq. (5) has a tail cdf ∝ σ p (for σ→0) where p=1. 
If the tail cdf of each fiber has the same power law, 
it can be proven from Eq. (2) by mathematical in-
duction that the tail of the cdf of the strength of a 
bundle with n fibers is a power law ∝ σnp (Bažant 
and Pang 2005b). This leads to an interesting con-
clusion—the Weibull modulus m of the tail distribu-
tion of strength σ of a RVE is equal to the number n 
of fibers in the bundle. If the fibers are elastic-plastic, 
the same conclusion could also be reached on the 
basis of the joint probability theorem (Bažant and 
Pang 2005), and may be assumed to hold for bundles 
with softening fibers as well. 

A simple fiber bundle (Fig 1b), with n=m fibers, 
would have a Gaussian cdf with Weibull tail so short 
that it would be virtually nonexistent and no effect 
on structural behavior. If the interatomic bonds wer 
coupled in series in each fiber (Fig 1b) to extend the 
length of the Weibull tail, it would still remain so 
short that it could never be manifested in experi-
ments on brittle materials such as ceramics (Weibull 
1939; Bansal et al. 1976a, b; Quinn and Morrell 
1991). 

To obtain a long enough Weibull tail, such that 
structures with >1000 RVE would be have an almost 
entirely Weibull cdf, it is necessary and more realis-
tic to model a RVE by a hierarchical model, in 
which a RVE is statistically described by a bundle of 
n1 fibers, each of which consists of a long chain of 
bundles with n2 sub-fibers, with each of the sub-
fibers having the cdf in Eq. (5). In this case the cdf 
of RVE would have a power-law tail of exponent m 
= n1n2, which is again equal to the number of all 
sub-fibers coupled in parallel. The sub-fibers of sec-
ondary bundles are refined on a still lower-scale of 
microstructure as chains of tertiary sub-sub-bundles 
consisting of long sub-sub-chains, until the nano-
scale of interatomic bonds are reached. The detailed 
probabilistic micro-structural model is surely non-
unique, but the number of parallel fibers in cuts 
separating the hierarchical model into two parts at 
the lowest level must be equal to the exponent m of 
the tail cdf of a RVE (Fig 1d). The actual behavior 
of a RVE will, of course, correspond an irregular hi-
erarchical model, such as that shown in Fig. 1c. In 
that case, according to the aforementioned basic 
properties, the exponent of the power-law tail for the 
RVE, and thus the Weibull modulus of a large struc-
ture, is defined as the minimum number of cuts of 
elementary serial bonds that are needed to separate 
the model into two halves. 
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Consequently, the detailed parallel and series cou-
pling of the hierarchical model for the RVE does not 
matter for our purpose because we seek only qualita-
tive information—the type of cdf, while a quantita-
tive analytical prediction from atomic microstructure 
is beyond reach. What matters is that (i) the cdf of a 
RVE consists, in any case, of a Gaussian core with a 
Weibull-type lower tail, whose Weibull modulus m 
is equal to the number n of parallel fibers across the 
weakest cross section, and that (ii) the lower tail of 
cdf for each micro-bond is a Weibull cdf (or a power 
law, if short enough) with exponent 1 (i.e., a linear 
function of stress), as in Eq. (5). 

An enormous advantage of anchoring the theory 
in statistical thermodynamics, particularly the Max-
well-Boltzmann distribution, is that the dependence 
of cdf of failure load on temperature T and load du-
ration τσ is captured automatically (in practice, 
though, the temperature range can be limited be-
cause of interplay of several different activation en-
ergies for different atoms). Because the activation 
potential barrier is affected by the presence of water 
molecules, it is, in principle, possible to capture also 
the effects of the content of moisture or various cor-
rosive agents in porous hydrophilic solids such as 
concrete. 

3 CDF OF ONE RVE 

From experimental data on brittle materials, such as 
ceramics (e.g. Weibull 1939; Bansal et al. 1976a, b; 
Quinn and Morrell 1991), Weibull size effect is of-
ten clearly evident for equivalent number of RVE’s 
Neq > 500. But this Weibull cdf is unobtainable if a 
simple fiber bundle with n=24 fibers (typical of con-
crete, Bažant and Novák, 2000a, b) were used to 
model a RVE, the Weibull tail would be extremely 
short, reaching only up to Pf = 10-45; which would 
the structure to be about 1047 times larger than the 
RVE for its strength to exhibit Weibull cdf. This is, 
of course, impossible. A feasible statistical model 
for a RVE is a hierarchical model of the kind shown 
in Fig. 1d. This model can provide a cdf whose 
Weibull tail extends up to about Pf = 0.003 or 0.0003 
when its elements (or fibers) are brittle (Fig. 2a) or 
plastic (Fig. 2b). More realistic doubtless are soften-
ing elements of the model (Fig. 2c), which are 
harder to analyze but may be expected to exhibit in-
termediate behavior. A parallel coupling at any scale 
of hierarchy tends to build up a Gaussian core of cdf 
and drastically shorten Weibull tail while raising its 
exponent. A series coupling at any scale of hierarchy 
tends to shorten the Gaussian core and extend the 
Weibull tail while keeping its exponent unchanged. 

For increasing D, the Gaussian core shrinks and 
the Weibull tail spreads toward higher probabilities 
(Bažant, 2004a, b) until, for infinite D, the entire cdf 
becomes Weibull. To describe such behavior, we in-
troduce a Gaussian distribution with a truncated 
lower (i.e. left) tail, onto which we graft a Weibull 

tail. The upper tail of cdf of strength is irrelevant for 
larger structures, according to the weakest-link 
model. So, a one-sided lower tail graft will suffice. 
The grafted pdf can be mathematically described as 
follows: 

1
0 0 0( ) ( / )( / ) exp{ ( / ) }

for 

m m
f W N f N N

N gr

r r m r r rφ σ σ σ
σ σ

−= −
< (7) 

2
G( ) exp{ 0.5[( )/ ] }/( 2 )
for 

f G N f N G G

N gr

r rφ σ σ µ δ δ π
σ σ

= − −
≥ (8)

 

where µG, sG = mean and standard deviation of 
Gaussian core; m, r0 = shape and scale parameters of 
Weibull tails; σgr is the grafting point; rf = 
[1−ΦG(σgr)+ΦW(σgr)] −1, is a scaling factor ensuring 
that the combined cdf of the Weibull-Gaussian graft 
is normalized. Both pdf's, as defined in Eqs. 7 and 8, 
are matched to be continuous at the grafting point, 
which leads to the following compatibility condition: 

12ln( 2 exp( ))m m
gr gr grmη α β β πα α−= − − −

 (9) 

where η = µG/r0; β = δG/r0; αgr = σgr/r0. If the stan-
dard deviation of the Gaussian core δG, and the scale 
parameter r0 of the Weibull tail, are known, η can be 
calculated from Eq. 9 and the Weibull-Gaussian 
graft for cdf of one RVE (Fig 3) can be expressed 
explicitly as: 

0( / )( ) [1 e ] for 
m

N r
1 f N grP r σα α α−= − <  (10)

2
0( / ) 0.5[( )/ ]( ) [1 e ] e

2
for 

m
gr

gr

r f
1 f

N gr

r
P r d

ασ α η β

α
α α

β π
α α

− ′− − ′= − +

≥

∫
 

(11)

 

The normalized mean and CoV of a RVE, which 
characterizes small-size quasibrittle structures, 
which fail in a nearly ductile manner, is tabulated in 
Table 1 for some typical parameter values. 
 
Table 1. Mean and CoV of Gaussian-Weibull graft for a RVE  
 
ΦW(σgr) rf η β µ/r0 ω 
  1.009 2.723 0.850 2.746 0.30 
 0.001 1.003 1.649 0.334 1.653 0.20 
  1.000 1.084 0.109 1.085 0.10 
  1.024 2.112 0.686 2.151 0.30 
 0.003 1.008 1.497 0.309 1.504 0.20 
  1.000 1.079 0.108 1.080 0.10 
  1.040 1.894 0.638 1.951 0.30 
 0.005 1.013 1.432 0.301 1.443 0.20 
  1.001 1.074 0.107 1.075 0.10 

The grafted power-law tail for each link in the 
chain is crucial for getting large-size asymptotic dis-

ε 

(a) (b) (c) 
σ°

 σ

Fig. 2. Post−peak behaviour of fibers: a) Brittle; b) Plastic;
 c) Elastic Softening 
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tribution of the Weibull type (if the links had Gaus-
sian tails, the cdf of the chain would approach Gum-
bel’s (1958) cdf, which would be physically unac-
ceptable). 

3 STATISTICS OF BRITTLE FAILURE 

We consider structures of positive geometry (i.e., a 
geometry for which KI for unit load increases with 
crack length), which fail at fracture initiation. With 
increasing D, the weakest-link model (Fig. 1e) gives 
a cdf quickly approaching the Weibull cdf [with an 
error of only O(D-2); Bažant, 2004a] because the 
tails of each link (each RVE) are Weibull and thus 
satisfy the stability postulate of extreme value statis-
tics (Fisher and Tippett, 1928). Note that, aside from 
Weibull cdf, there exist only two other extreme 
value cdf’s—Gumbel’s (derived by Fisher and Tip-
pett 1928) and Fréchet’s (1927); but they are ex-
cluded, not only because of lacking a power-law tail 
for each link but also because their far-out tails reach 
into physically meaningless negative strength values. 
The mean of nominal strength, Nσ , is scaled by the 
number of links as follows:  

( )1 1
0 1m

N mNσ σ −= Γ +  (12) 

where σ0 = Weibull scale parameter of each link; m 
= shape parameter (or Weibull modulus) common to 
all links and the whole chain. The CoV of nominal 

strength is independent of the number of links and is 
given by: 

( ) ( )22 11 1 1N m mω −= Γ + Γ + −  (13) 

Note that when ωN depends on D, it means that 
Weibull statistical theory does not apply and that the 
size effect is caused, at least in part, by energy re-
lease due to stress redistribution, as captured by the 
nonlocal Weibull theory (Bažant and Xi 1991). 

 The links in the chain (weakest link model) 
(Fig. 1e) correspond to individual RVEs, having 
roughly the size of a FPZ dictated by material het-
erogeneity (considered identical to the nonlocal av-
eraging domain; Bažant and Xi 1991). For very large 
structures dwarfing the FPZ (or the zone of localized 
distributed cracking), a positive-geometry structure 
fails as soon as the full FPZ, capable of dissipating 
energy at the rate equal to the fracture energy of ma-
terial, develops (in the case of notches or structures 
of negative geometry failing after large macro-crack 
growth, the cdf is predominantly Gaussian, with a 
short Weibull tail).  

4 TRANSITION OF CDF BETWEEN SMALL 
AND LARGE STRUCTURE SIZES 

The transition of cdf from small sizes to large struc-
tures can be calculated, according to the weakest-
link (or chain) model (Fréchet 1927), as follows : 

( ) ( )11 1 eqN
f N NP Pσ σ⎡ ⎤= − −⎣ ⎦

 (14) 

where P1(σN) is the failure probability of each RVE 
(or each link) computed from Eqs 10 and 11, which 
ceases being size dependent for very large structures. 
The number of links (Fig. 1e) equals the number of 
RVEs in the structure if the stress is uniform. It the 
stress field is non-uniform, 

0( / ) ( ) ( )dn m
eq V

N D l S dV= ∫ ξ ξ
 

(15)
 

where ξ = x/D, is the dimensionless coordinate vec-
tor; S(ξ) is the dimensionless stress field which de-
pends on structure geometry but not on structure size 
D; l0 = material characteristic length (roughly the 
RVE size); nd = number of dimensions in which the 
structural failure is scaled. For narrow beams in 
flexure which fail at macro-crack initiation, the 
number of links (or RVE's) in the chain scales as Dnd 
with nd =2, because widening of a narrow beam has 
no effect. 

The transition of the mean size effect curve from 
the small-size to the large-size asymptote, calculated 
with the failure probability in Eq. 14, is shown in 
Fig 4 (which is similar to the curve ensuing from 
nonlocal Weibull theory; Bažant, 2004a). 

5 RELIABILITY-BASED DESIGN 

The reliability-based design requires consistent 
evaluation of failure probability risk using probabil-
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Fig. 3. cdf of a RVE with Pgr = 0.003 and CoV = 25% in 
a) Weibull probability paper; b) normal probability paper 

381 
 
 
 

Proceedings ICOSSAR 2005, Safety and Reliability of Engineering Systems and Structures 



ity theory.  Structures are designed for very low 
probability, typically of the order of 10-7 (Allen, 
1968; CIRIA, 1977), which is totally dominated by 
far-off tail distributions of the load and the resis-
tance.  The probability of failure is the integral of the 
bivariate probability density over the domain where 
the resistance is less than the load (Freudenthal et al. 
1966; Ang and Tang 1984; Melchers, 1987). This in-
tegral can be rearranged as 

( ) ( ) ( )σ σ σ
∞

−∞
= ∫f N N NP l R dx 

(16) 
where R(σN) = cdf of structural resistance and l(σN) 
= probability density function (pdf) of the load.  

 If the distributions of random load variable L 
and resistance variable R are Gaussian, the safety 
margin, M = R−L, is also Gaussian, and its mean µM 
= µR−µL and variance sM

2 = sR
2+sL

2 give 

( )2 2( )f G R L R LP s sµ µ= Φ − − +
 

(17)
 

To avoid dealing with small probabilities, it is often 
more convenient to adopt reliability index β, which 
is for Gaussian distributions simply defined as 

2 2( )R L R Ls sβ µ µ= − +  (18) 

as proposed by Cornell (1969). In the space of nor-
malized differences of load and resistance from their 
means, β has the geometrical meaning of the dis-
tance from the origin to the closest point (called the 

design point) on the boundary of the safe region 
(L<R) (e.g. Haldar and Mahadevan, 2000). Eq. (18) 
assumes a linear failure surface (a hyperplane) and it 
belongs to the first-order second-moment method 
(FOSM) (Madsen, et. al, 1986; Melchers, 1987). If 
the variables are non-normal, or if the failure surface 
is nonlinear while the first-order approximation of 
the failure surface at the design point is still used, 
one may use an improved Hasofer-Lind reliability 
index (FORM), calculated by an iterative procedure. 

6 REVISION OF RELIABILITY INDICES AS 
FUNCTIONS OF BRITTLENESS OR SIZE 

The aforementioned reliability indices, however, are 
based only on second-moment statistics, utilizing 
only the mean and standard deviation. Unfortunately, 
they cannot distinguish between different cdf tails 
governing very small failure probability. The seri-
ousness of this point for quasibrittle structures has 
not been properly appreciated so far. For such struc-
tures, the far-off tail probability of failure depends 
strongly on structure brittleness, which varies with 
the size (as well as geometry) of the structure. Most 
reliability-based design codes have been based on 
Cornell’s reliability index (Eq. 18). For quasibrittle 
failures, however, there is a huge size effect on the 
tail of probability distribution. Therefore, the design 
code provisions for quasibrittle failures need to be 
overhauled.  

The urgency of overhaul is clear from Fig. 5 
where TG and TW are the distances from the mean to 
the tail point of specified failure probability Pf. The 
tail offset ratio θ = TW / TG can be in realistic situa-
tions as large as about 2 if the tolerable failure prob-
ability Pf is tiny and CoV small (Fig. 5) (and can be 
arbitrarily large if Pf and CoV are small enough).  
As the cdf of quasibrittle structure gradually changes, 
at increasing size D, from Gaussian to Weibull and 
the grafting point gradually moves towards the mean, 
θ grows to about 2 (depending on the CoV of resis-
tance of structure, as well as its geometry). 

To relate the reliability index to its value for 
purely ductile behavior with Gaussian distribution of 
resistance, the Cornell reliability index (Eq. 18) may 
be generalized by introducing the tail offset ratio θ 
as follows: 

2 2 2( )R L R Ls sβ µ µ θ= − +  (19) 

θ as a function of sR (which is a function of size D) 
can be calculated from the grafted Weibull-Gaussian 
distribution based on the hierarchical statistical 
model, the mean size effect law, and the values of sL, 
and the ratio µR/µL (see Table 2). 

The limiting small-size Gaussian probability dis-
tribution becomes, of course, irrelevant to the reli-
ability index in the rare situation where the given Pf 
or CoV is so small that the Pf point lies outside the 
Gaussian core. Note in Table 2 (and Fig. 5) that an 
increase in µR/µL, or a decrease in sR or sL, moves the 
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overlapping failure domain in the integral of Eq. (16) 
farther out into the Weibull tail of resistance cdf, 
creating a smaller Pf. 
 
Table 2. Determination of reliability correction factor θ. 
 
 Neq sL sR µR/µL Pf Pf,new θ 
 10 0.10 0.069 1.62 1.84x10-5 1.08x10-4 1.199 
 100 0.10 0.057 1.62 2.65x10-6 5.75x10-5 1.360 
 1000 0.10 0.052 1.62 1.09x10-6 5.13x10-5 1.470 
 10 0.10 0.156 1.62 1.12x10-2 9.26x10-3 0.965 
 100 0.10 0.108 1.62 1.02x10-3 2.98x10-4 0.862 
 1000 0.10 0.057 1.62 1.04x10-6 5.60x10-5 1.365 
 10 0.20 0.069 2.08 5.97x10-6 2.00x10-5 1.183 
 100 0.20 0.057 2.08 1.74x10-6 1.08x10-5 1.319 
 1000 0.20 0.052 2.08 1.05x10-6 9.69x10-6 1.420 
 10 0.20 0.156 2.08 2.30x10-3 1.37x10-3 0.925 
 100 0.20 0.108 2.08 1.63x10-4 5.42x10-5 0.867 
 1000 0.20 0.057 2.08 1.67x10-6 1.06x10-5 1.323 

As discussed later in more detail, in addition to 
the usual understrength (capacity reduction) factor, 
which essentially accounts for the brittleness of fail-
ure, code provisions for brittle failures of concrete 
structures tacitly imply covert understrength factors 
for the error of theory or formula and for random-
ness of material strength (Bažant and Yu 2006). 
Thus there are in fact three random variables for 
structural resistance, which all affect θ. In that case, 
the calculation of θ will be cumbersome (and impos-
sible if all three are not known). It will be desirable 
to reduce the number of variables. The probability of 
structural failure in Eq. (17), which is easily calcu-
lated and determined for a given structure, takes into 
account the ratio and variation of the load and of the 
resistance variables. Choosing the unmodified prob-

ability of failure Pf, sL, and sR0, which is the CoV of 
one RVE, θ can be determined as shown in Fig. 6. 

For large sizes, the entire cdf becomes Weibull. This 
alters the reliability index profoundly. The differ-
ence made by Weibull distribution arises from the 
tail, which is approximately a power law, contrasting 
with the exponential tail of the Gaussian distribution 
(Fig. 5). For tail offset ratio θ, the following, highly 
accurate (<0.5% error), approximation, has been 
formulated to correct the current failure probability 
for brittle failures: 

2( 1.46 0.97 0.14)2(2.61 1.93 1.16)[ log( )] L Ls s
L L fs s Pθ − + += − + −  

 (20) 

The Hasofer-Lind reliability index (FORM) must 
be revised similarly. As can be shown, it can be 
computed in the usual manner, except that the so-
called reduced variable for resistance must be modi-
fied as: 

( )i i R i Ri iR R sµ θ′ = −
 (21) 

When θi = 1, this reduces to the classical form (e.g., 
Eq. 7.48 in Haldar and Mahadevan 2000). 

The need for a reform of the existing reliability 
concepts is evident from the discrepancy between 
the theoretical and actual failure probabilities. The 
observed frequency of catastrophic failures of large 
structures has been about an order of magnitude 
higher than the theoretical probabilities of failure 
computed in the classical way, assuming fully Gaus-
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sian distributions only (Allen 1968, 1975; CIRIA 
1977; Livingstone 1989). This discrepancy may be 
largely due to ignoring the long power-law tails 
characterizing brittle failures of large structures 
which is shown in Table 2. 

The need for introducing the effect of the tail-
offset ratio θ  means that reliability methods, taking 
into account only the first and second order statisti-
cal moments (FOSM, SOSM), must be abandoned 
for quasibrittle structures. But it does not mean that 
the reliability methods (FORM, SORM), taking into 
account the non-normal variables by equivalent 
Gaussian variables, should be used. Rather, the use 
of θ could be called 'EVRM'—the extreme-value re-
liability method. 

7 COVERT UNDERSTRENGTH FACTORS 

Another related and inseparable problem, already al-
luded to, is caused by the fact that, for brittle failures, 
concrete design codes unfortunately specify not 
mean prediction formulas but “fringe formulas”, i.e. 
formulas that have been set at the margin (or fringe), 
rather than the mean, of the scatter band of test data. 
The use of fringe formulas implies a hidden pres-
ence of “covert” understrength factors (or capacity 
reduction factors) (Bažant and Yu 2006), which are 
not evident to the user of the code. Their determina-
tion requires tedious examination of the databases 
used by the code-writing committees, which are 
usually hard to access. The covert understrength fac-
tors in ACI code represent great strength reduc-
tions—in shear failure of concrete beams they are 
about 0.65 for formula scatter (caused primarily by 
error of theory and randomness of cracking) and 
0.70 for randomness of concrete strength (due to the 
fact that the design is based on a reduced, rather than 
mean, strength from cylinder tests). The usual 
(“overt”) understrength factor, which distinguishes 
diverse failure modes and is the only one evident to 
the user, is now 0.75 for beam shear in the ACI 
Standard 318. 
Bažant and Yu (2006) proposed to undertake a ma-
jor revision of concrete design codes, making the 
covert factors overt in all the code specifications for 
brittle failures, and specifying both the probability 
cut-off and the CoV associated with each covert fac-
tor. Until this is done, structural reliability assess-
ments will remain a mathematical exercise with no 
real meaning. 

The problem of multiple understrength factors 
also affects the reliability indices. Fundamentally, it 
means generalizing the standard Freudenthal's reli-
ability integral in Eq. (16) to multiple pdf's associ-
ated with the individual understrength factors (which 
leads to a multiple integral) and then translating this 
integral in a suitably simplified manner into the reli-
ability index of Cornell or Hasofer-Lind type. The 
Hasofer-Lind type index will have to be considered 
in a multidimensional space (four-dimensional for 

beam shear failure). Because the multiple, simulta-
neously applicable, understrength factors should 
properly be considered as functions of brittleness (as 
affected by structure size), the scaling properties, 
fracture mechanics, and reliability concepts are in-
separable. 

The current code thus implies the concrete design 
formulas for various types of brittle failure (shear, 
torsion, punching, column crushing, etc.) to have the 
form  
σN = φψ F(ζ, fc) (22) 

where F = function, ζ = reduction factor applied to 
mean material strength fc; φ = overt and ψ = covert 
understrength factors, taking into account brittleness 
and formula error. Let rφ(φ), rψ(ψ), rζ(ζ) be the corre-
sponding pdf’s of RVEs, which may be assumed to 
be statistically independent. Then one can show that 
Eq. (16) must be replaced by (Bažant 2004a, Bažant 
and Yu 2006): 

( ) ( ) ( ) ( )=1 ,f cP g P r r F f d d d dPϕ ψϕ ψ ς ς ψ ϕ
ℜ

′− ∫ ∫ ∫ ∫
 

 
( ) ( ) ( ) ( )=1 , cG P r r F f d d dϕ ψϕ ψ ς ς ψ ϕ

ℜ
′− ∫ ∫ ∫

 
(23)

 

where P = applied random load whose pdf is g(P) 
and cdf is G(P); F'(ζ, fc) = ∂F(ζ, fc)/∂ζ; and integra-
tion is performed over hyper-region ℜ in which 
φψF(ζ, fc) > P/bD . 

8 IRRATIONAL SIZE EFFECT HIDDEN IN 
LOAD FACTOR FOR SELF WEIGHT 

ACI Standard 318 (2005) imposes the load factor of 
1.4 for dead load acting alone. In a very large struc-
ture, the self-weight may represent 95% of the total 
load or more. But an error of 40% in the self-weight 
(i.e., in mass density and structural dimensions) is 
inconceivable; at most 3% to 5% could be justified. 
This means that large structures are systematically 
overdesigned, compared to small ones in which the 
self-weight contributes a negligible part of loading.  
This implies a hidden size effect of about 30% 
(Bažant and Frangopol 2002), and partly compen-
sates for the lack of size effect in structural resis-
tance formulas of ACI code, but is irrational because 
it does not distinguish among various types of fail-
ure. For shear or torsion of very large beams, this 
hidden size effect is far too small, while for flexural 
failure of unreinforced beams it should vanish. For 
prestressed concrete or high-strength concrete it is 
smaller than for normal concrete because such struc-
tures are lighter, yet it should be greater because 
they are more brittle, etc. This further implies that 
probabilistic calculations predict incorrect reliability 
for structures of different sizes (Bažant and 
Frangopol 2002). 
However, elimination of the excessive and irrational 
dead load factor would be dangerous unless the size 
effect is introduced at the same time into the code 
provisions for all brittle failures. Reliability experts 
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and fracture experts will have to collaborate on this 
task. 

9 DEFINITION OF BRITTLENESS NUMBER 

Practical application of the present theory necessi-
tates defining a brittleness number, β, as a shape-
independent characteristic that allows determining 
the size effect for any structural geometry if it has 
been calibrated in the laboratory for one structure 
geometry. For type 2 size effect (due to large cracks 
or notches), such brittleness number has been ex-
pressed as β = D/D0 where D0 is the transitional size 
defined in terms of the energy release rate function 
of LEFM (e.g. Bažant 2002). But here the focus is 
on type 1 size effect, for which β has not yet been 
defined. In the transition from plastic to brittle re-
sponse, β should characterize the proximity to brittle 
response, i.e., to LEFM. This has nothing to do with 
strength randomness and should be defined strictly 
on the basis of the energetic part of size effect law, 
which is (for type 1) the special case of Eq. (1) for 
m→∞. From this equation, it can be shown that β = 
(D/D1)−1/2. Geometrically, this number has the mean-
ing β = (c/b)−1/2 where c and b are the distances in 
linear scale of σN between the circled points marked 
on the size effect curves in Fig. 7. This geometrical 
definition of β is universal, valid for not only type 1 
but also type 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Geometrical definition of β for (a). Type 2 or 3 struc-
tures (b). Type 1 structures.   

10 CLOSING OBSERVATIONS 

For more than two decades, the structural reliability 
theory seemed to be understood almost perfectly. 
However, this has been true only as long as the the-

ory of limit states, anchored in plasticity, is applica-
ble. In that case, the failure proceeds simultaneously 
along the whole failure surface, the material strength 
is mobilized at all the points of the surface, the size 
effect is nil, the scatter follows Daniels fiber-bundle 
model, and the structural strength distribution is, for 
any structure size, necessarily Gaussian (or normal, 
but never log-normal).  

In recent years, though, it gradually transpired that 
this classical theory does not apply to quasibrittle 
structures, such as large concrete structures failing 
due to concrete fracture rather than yielding of steel 
reinforcement, load-bearing fiber-composite parts of 
large ships or aircraft, sea ice plates; etc., in which 
the failure is progressive, propagating along the fail-
ure surface. Often failure occurs as soon as the full 
FPZ is formed, and then there is a strong energetic-
probabilistic size effect, with a structural strength 
distribution that has a Gaussian core and Weibull tail, 
the tail expanding and the core shrinking as the size 
increases. This has enormous effect on the structural 
design satisfying the typical tolerable failure prob-
ability (about one out of ten million). To preserve a 
constant safety margin for such a small failure prob-
ability, the required understrength factor depends on 
the structure size, and with increasing size almost 
doubles. This, as well as related problems due to 
covert understrength factors in codes and to exces-
sive load factor for self weight, will necessitate pro-
found modification of reliability analysis and a ma-
jor overhaul of design codes and practices for 
quasibrittle structures. 
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