
Mechanics Based Statistical Prediction of

Structure Size and Geometry Effects on

Safety Factors for Composites and Other

Quasibrittle Materials
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For a rational determination of safety factors, it is necessary to estab-

lish the probability density distribution function (pdf) of the structural

strength. For perfectly ductile and perfectly brittle materials, the proper

pdf’s of the nominal strength of structure are known to be Gaussian and

Weibullian, respectively, and are invariable with structure size and geom-

etry. However, for quasibrittle materials, many of which came recently to

the forefront of attention, the pdf has recently been shown to depend on

structure size and geometry, varying gradually from Gaussian pdf with a

remote Weibull tail at small sizes to a fully Weibull pdf at large sizes. This

recent result is reviewed, and then mathematically extended in two ways:

1) to a mathematical description of structural lifetime as a function of ap-

plied (time-invariable) nominal stress, and 2) to a mathamatical description

of the statistical parameters of the pdf of structural strength as a function

of structure size and shape. Experimental verification and calibration is

relegated to a subsequent journal article.

I. Introduction

The design of engineering structures such as aircraft, bridges, dams, nuclear contain-

ments, and ships must ensure an extremely low failure probability1–3 (such as Pf = 10−6
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to 10−7). The same is required for micro-electronics and bio-medical devices, as well as for

the lifetime of structures. In this range of Pf , it is virtually impossible to determine the

tail of the probability distribution function (pdf) of load F by histogram testing. It is in-

evitable to rely on a theory to be verified indirectly. Its formulation has been a fundamental

problem of failure mechanics, in which only two limiting failure types are now adequately

understood: • 1) perfectly ductile (plastic) failures, for which (because of the central limit

theorem of probability theory) the pdf of F is necessarily Gaussian, or normal (except in

far-out tails) since F is essentially a weighted sum of the strength contributions from all

the representative volume elements (RVE) of the material lying on the failure surface; and

• 2) perfectly brittle failures, which are decided by the failure at one material point and

thus follow the weakest-link model which gives Weibull distribution. In these limit cases,

which include fine-grained ceramics and fatigue-embrittled metallic structures, the required

pdf tail is estimated with high confidence and is independent of structure size and geometry.

Recently4–7 it has been shown how the problem, including its scaling aspect, can be solved

for the broad and increasingly important class of quasibrittle structures,8–10 whose failure

behavior lies between these two extremes. Although the matrix of a quasibrittle material

is brittle, its heterogeneous microstructure causes the RVE and the fracture process zone

(FPZ) not to be negligibly small compared to the characteristic size D (or cross-section

dimension) of the structure. This includes materials such concrete (the archetypical, by

now classical, case), rock, stiff soils or snow, sea ice, wood, paper and carton, as well as

modern ‘high-tech’ materials such as toughened ceramics, fiber composites and rigid foams,

or biological materials such as bone, cartilage, dentin and sea shells. Since every brittle

structure becomes quasibrittle when scaled down to D < circa 1000 l0, where l0 = RVE size,

the problem becomes important for nano- and micro-meter scale devices (nano-composites,

MEMS, thin films).

Attention is here focussed on structures of positive geometry8—a typical and dangerous

case in which the removal of one RVE suffices to cause failure (under constant load). When

D/l0 →∞, the geometry is positive if the derivative of the stress intensity factor with respect

to crack length a at constant F is positive. D. According to the classical statistical theory

of brittle failure,11 a structure of positive geometry fails as soon as the random material

strength is reached at one point of the structure. The quasibrittle structures, in which the

RVE size is not negligible, fail when the strength of one RVE as a whole is exhausted. Hence,

the number of RVEs in the structure is finite, and one must use the weakest-link model with a

finite number, N , of links in the chain. The RVE must here be defined not by homogenization

but as the smallest element whose failure will cause the whole structure to fail.7 Typically,

the RVE size, l0, is about the double or triple of the maximum inhomogeneity size (or grain

size).
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For the background literature, it is appropriate to cite, at least, Ref. 1–3, 11–41. For a

detailed discussion of relevant previous works, see Ref. 7.

II. Conclusions from Previous Work

In two previous studies,6,7 the following conclusions were reached:

1. The understrength part of safety factors for quasibrittle structures cannot be con-

stant, as generally assumed in practice, but must be varied with the size as well geometry

of the structure geometry.

2. The tail of the cumulative density function (cdf) of strength of RVE of any material

(whether brittle or plastic) must be a power law. The physical reason is that the failure of

interatomic bonds is a thermally activated process governed by transition state theory and

with stress-dependent activation energy barriers. Furthermore, this property, rather than

the statistics of material flaws, provides a sufficient physical justification for Weibull cdf.

3. The threshold of power-law tail and of the Weibull cdf of strength must be zero be-

cause, according to Maxwell-Boltzmann distribution of atomic thermal energies, the thresh-

old stress for the net rate of interatomic bond breaks is zero (Fig. 1a).

4. The physical meaning of Weibull modulus m is the number of dominant bonds

that must be severed, or the number of matrix connections between adjacent major inho-

mogeneities that must fail, in order to cause failure of the RVE. This number must in some

way depend on the spatial packing of inhomogeneities in the RVE.

5. In any statistical model consisting of series and parallel couplings (Fig. 1b) the

power-law tail of cdf is preserved, beginning with the power law of exponent 1 on the atomic

scale. While the series coupling preserves the exponent value, in parallel coupling the expo-

nents are additive and can thus be raised to high values. This is the reason why the Weibull

modulus m is so high, ranging from 10 to 50.

6. The multiplier (or amplitude) of the power-law tail of the cdf of strength of qua-

sibrittle structures is the same function of absolute temperature T , load duration τ and

activation energy Q as the mutliplier indicated by Maxwell-Boltzmann distribution for the

rate of interatomic bond breaks (Fig. 1a).

7. The statistical model for RVE can include parallel connections of no more than 2

elements on scales close to macroscales (with power-law tail exponent greater than about 6),

and 3 elements on lower scales (with a smaller power-law tail exponent), or else the power-

law tail of cdf of RVE strength would be so remote that the Weibull distribution would never

be observed in practice.

8. While the power-law tail exponent of a chain is equal to the lowest exponent among

its links, the power-law tail exponent of a bundle (Fig. 1b) is equal to the sum of the power-
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law tail exponents of all the parallel fibers in a bundle, regardless of whether they are brittle,

plastic or softening. While the probability range of power-law tail increases with the length

of a chain, it drastically decreases with the number of fibers coupled in parallel.

9. A sufficiently long power-law tail of RVE strength can be reconciled with Maxwell-

Boltzmann distribution only if the RVE is statistically modelled by a hierarchy of parallel

and series couplings, consisting of bundles of sub-chains of sub-bundles of sub-sub-chains

of sub-sub-bundles, etc., down to the atomic scale. The Weibull modulus is equal to the

minimum number of cuts of elementary bonds needed to separate the hierarchical model

into two parts (Fig. 1b). The cdf of RVE strength cannot be modelled by a bundle with

a finite number of elements following the Maxwell-Boltzmann distribution, and quasibrittle

structures cannot be modelled as a chain of bundles. Otherwise the power-law tail of RVE

would be far too remote for ever generating Weibull cdf for the strength of real structures.

10. For the sake of engineering computations, the cdf of random strength of a RVE

may be considered to have a Weibull left tail grafted onto a Gaussian core at the failure

probability of about 0.001 (or between 0.0001 and 0.01). With increasing structure size, the

grafting point moves to higher failure probabilities as a function of the equivalent number of

RVEs, in a way than can be described by treating the structure as a chain of finite RVEs.

Although the Gaussian and Weibull cdf hardly differ in looking at experimental histograms,

the point of Pf = 10−6 is for the latter, at the same coefficient of variation, almost twice as

far from the mean than it is for the former (Fig. 1c).

11. For the mean response of not too small structures, the chain-of-RVEs model gives

similar results as the previously developed nonlocal Weibull theory.19 The mean behavior

is, on not too small scales, essentially equivalent to that of the cohesive crack model, crack

band model and nonlocal damage models.

12. The reason that a nonzero threshold was found preferable in previous studies of

coarse-grained ceramics and concrete can be traced to the fact that the strength histograms of

these materials exhibit a kink separating a lower Weibull segment from an upper Gaussian

segment. Assuming a finite threshold improves the fit of these histograms but the upper

segment still cannot be fitted closely. The chain-of-RVEs model removes this problem. Its

prediction fits both segments of the experimental histograms very well (Fig. 1d,e).

13. Two ways of experimental calibration and verification are possible: 1) Fit the mean

size effect curve, particularly its deviation from the Weibull size effect for small sizes (Fig.

1f). 2) Fit the strength histograms with kinks for at least two significantly different sizes,

and possibly different shapes (Fig. 1e). Each way suffices to determine all the parameters.

The objective of this paper is to derive analytical expressions for the size and shape

dependence of the mean and variance of structure strength, and to extend the theory to

structural lifetime.
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(a) (b)

(c) (d)

(e) (f)

Figure 1. Models and Distributions. Top left: Activation energy barrier and corresponding cdf tail. Top
right: cdf of chain-of-RVEs. Middle left: Variation of cdf with increasing size. Middle right: Fit in Weibull
scale of Weibull’s experimental histograms of mortar strength by Weibull cdf with a finite threshold σu and by
chain-of-RVEs model. Bottom left: Distances from mean to points Pf = 10−6 for various sizes. Bottom right:
Size effect of chain-of-RVE model, deviating from power law.
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III. Review of Size Effect in Weakest Link Model and Its

Asymptotics

We will consider geometrically similar structures of different sizes D, representing the

characteristic dimension of the structure. We will restrict consideration to structures of

positive geometry. This is a broad class of structures, for which the derivative of the energy

release rate with respect to the crack length at constant load P is positive. These are

structures that fail (under load control) as soon as the full fracture process zone (FPZ) forms

and a distinct continuous macro-crack begins to grow. Let σN = P/bD = nominal stress in

a structure, where P = applied load (or parameter of the load system) and b = structure

width. For geometrically similar elastic or elasto-plastic structures, σN at maximum load is

independent of structure size, and therefore a decrease of τ with structure size is called the

size effect.

From the viewpoint of failure statistics, a structure of positive geometry may be modeled

as a chain (1 in Fig. 1b or bottom right in Fig. 1f), which is known as the weakest link

model (the positive geometry means that the partial derivative of energy release rate with

respect to crack length is positive,8 and in the case the structure fails as soon as the FPZ,

roughly equal to one RVE, is fully formed). For such structures, the representative volume

element (RVE) must be defined as the smallest material volume whose failure causes the

whole structure to fail.6,7 The size of the RVE can be considered equal to the width of the

FPZ and typically equals 2 to 3 material inhomogeneity sizes. If one RVE fails, the whole

structure fails, i.e., the strength of the chaink is decided by its weakest element, or link,

which is called the weakest link model. In our interpretation, each link corresponds to one

RVE, and so we have a chain-of-RVE model (bottom right in Fig. 1f).

It has been shown6,7 that the strength one RVE of a quasibrittle material must have a

composite cumulative distribution function (cdf) having a broad Gaussian core onto which

a Weibull tail is grafted at the probability of about Pg ≈ 0.001 (grafting probability). Since,

in the weakest-link model, σN = σ = stress in each link (i.e., one RVE), the Gaussian core

may be written as

P1 = Φ(x), x =
σN − µ

s0

(1)

where Φ(x) =
1√
2π

∫ x

−∞
e−x2/2dx (2)

where µ = mean, s0 = standard deviation, and Φ(x) is the error function representing the

standard (unit) Gaussian (or normal) cumulative distribution function (cdf). Because Pg is,
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for a single RVE, very small, the Weibull tail is nearly identical to a power function, i.e.,

Pf = (σN/sW )m (3)

where sW = scaling parameter and m = material constant or Weibull modulus (its value is

roughly equal to the number of dominant micro-cracks in the RVE that must fail to cause

the whole RVE to fail6,7).

In a chain of N RVEs, simulating the failure of a large structure, the whole chain survives

if all the RVEs survive. So, according to the joint probability theorem, 1− PN = (1− P1)
N

where PN is the failure probability of the whole chain. Hence

PN(σN) = 1− [1− P1(σN)]N (4)

Here N should be interpreted not as the actual number of RVEs in the structure, Nactual =

V/l0
nd , but as the equivalent number of RVEs in the structure, which is obtained as7

N = V/(l0
ndΨ), Ψ =

∫

V
〈σ̃(ξ)〉mdV (ξ) (5)

Here V = volume of the structure, 〈x〉 = max(0, x), l0 = RVE size = material characteristic

length, nd = number of dimensions in which the failure is scaled (1, 2, or 3), ξ = dimensionless

coordinate vector (independent of structure scaling), and Ψ = geometry factor, causing that

the RVEs receiving small stress contribute to the equivalent number N very little.

An exact analytical solution of cdf of the strength of a structure of any size seems impos-

sible, but we will show that approximate analytical formulas for the mean and coefficient of

variation can be obtained by asymptotic matching.

IV. Small-Size Asymptotics of Mean Strength

First consider the small-size asymptotics, for N → 1 (it is convenient to treat N as a

continuous variable). Then we may write:

1− PN(σN) = [1− P1(σN)][1− P1(σN)]N−1 = [1− P1(σN)]e(N−1) ln[1−P1(σN)] (6)

Noting that ex ≈ 1 + x for x ¿ 1, we have the small-size approximation:

1− PN(σN) ≈ [1− P1(σN)]{1 + (N − 1) ln[1− P1(σN)]} (7)
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Because, for N ≈ 1, almost the entire strength distribution is Gaussian,

1− PN(σN) ≈ Ψ(σN) [1 + (N − 1) ln Ψ(σN)] (8)

where Ψ(σN) = 1− Φ(x) (9)

This approximation should be sufficient for determining the mean nominal strength σ̄N for

N → 1. Since strength σ cannot be negative,

σ =
∫ ∞

0
σpf (σ)dσ =

∫ ∞

0
σ

dPf

dσ
dσ =

∫ 1

0
σdPf (σ) =

∫ ∞

0
[1− PN(σ)]dσ (10)

where pf (σ) = probability density function (pdf) of strength. So, Eq. (8) yields

for N close to 1: σ̄N = A− (N − 1)B (11)

where A =
∫ ∞

0
Ψ(σN)dσN (12)

B = −
∫ ∞

0
Ψ(σN) ln Ψ(σN)dσN (13)

V. Small-Size Asymptotics of Coefficient of Variation

The coefficient of variation ω of the strength distribution for N close to 1 may be deter-

mined as follows:

ω2 =
1

σ̄2
N

∫ 1

0
σN

2dPN(σN)− 1

≈ 1

A2

[
1− (N − 1)

B

A

]−2 ∫ ∞

0
σ2

N

dPN

dσN
dσN

≈ 1

A2

[
1− (N − 1)

B

A

]−2 ∫ ∞

0
σ2

N

d

dσN

(
1 − [1− P1(σN)]{1

+ (N − 1) ln[1− P1(σN)]}
)
dσN − 1

≈ 1

A2

[
1 + 2(N − 1)

B

A

] ∫ ∞

0
σ2

N

(
dP1(σN)

dσN
{1 + (N − 1) ln[1− P1(σN)]}

+ (N − 1)
dP1(σN)

dσN

)
dσN − 1 (14)

Denoting

φ(x) = e−x2/2/
√

2π (15)

which is the standard Gaussian (or normal) pdf, we have

dP1(σN)/dσN ≈ dΦ(x)/dx = φ(x)/s0, x = (σN − µ)/s0 (16)
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ω2 ≈ G− (N − 1)H or ω ≈
√

G[1− (N − 1)H/2G] (17)

in which

G =
1

A2s0

∫ ∞

0
σ2

Nφ(x)dσN − 1, x =
σN − µ

s0

(18)

H = − 2B

A3s0

∫ ∞

0
σ2

Nφ(x)
{
N + (N − 1) ln[1− P1(σN)]

}
dσN

− 1

A2s0

∫ ∞

0
σ2

Nφ(x)
{
1 + ln[1− P1(σN)]

}
dσN (19)

VI. Large-Size Asymptotics of Mean and Coefficient of Variation

Second, consider the asymptotic variation of σ̄N and ω for N → ∞. In this case P1(σN)

converges to the Weibull distribution, i.e.,

PN(σN) = 1−
[
1− N(σN/s0)

m

N

]N

⇒
N →∞ 1− e−N(σN/s0)m

(20)

because limN→∞(1 + z/N)N = ez. The statistics of Weibull distribution are well known and

give the following large-size asymptotic properties:

[σ̄N]N→∞ = N−1/ms0Γ(1 + 1/m) (21)

[ω]N→∞ = ω∞ =

√√√√ Γ(1 + 2/m)

Γ2(1 + 1/m)
− 1 (22)

VII. Size Effect on Mean and Coefficient of Variation via

Asymptotic Matching

For the mean, σ̄N, we have the value and slope with respect to N for N = 1, and the slope

and vertical axis intercept for asymptote at N →∞. This is a total of 4 parameters, and so

the asymptotic matching formula connecting these extremes can have 4 free parameters. A

suitable formula of this kind has been systematically derived,10 and has the form:

σ̄N =

[
Na

N
+

(
Nb

N

)r/m
]1/r

(23)

in which m, r,Nb, Nb = constants to be found from 4 matching conditions. Matching σN and

dσN/dN to equations (11) and (17), one finds that the m-value must be the same as the

Weibull modulus of the material, coinciding with the exponent of the power-law tail of RVE

strength distribution. For the remaining constants r,Na, Nb, one gets the following three
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equations:

[σ̄N]N=1 = A =
(
Na + N

r/m
b

)1/r
(24)

[
dσ̄N

dN

]

N=1

= B = −1

r

(
Na + N

r/m
b

)1/r − 1
(
Na +

r

m
N

r/m
b

)
(25)

[
σ̄NN1/m

]
N→∞ = N

1/m
b = s0Γ(1 + 1/m) (26)

where it is assumed that, in agreement with all the experience, r/m < 1. Eq. (26) may now

be substituted into (24) and (25). Then Eq. (24) may be solved for Nb and substituted into

Eq. (25). This yields one transcendental equation for exponent r, which can be easily solved

by Newton iterations, upon which Nb and Na can be simply evaluated.

For the coefficient of variation, ω, the asymptotic matching formula is similar to Eq. (23)

but ω becomes constant for large N . Therefore,

ω2 = ω∞2
(
1 +

qNc

N

)1/q

(27)

where q, ω∞, Nc are 3 constants to be found by matching the asymptotic properties. From

Eq. (22) one obtains ω∞, and matching Eq. (17) one gets:

[ω2]N=1 = G = ω∞2 (1 + qNc)
1/q (28)

[
dω2/dN

]
N=1

= H = −ω∞2Nc (1 + qNc)
1/q − 1 (29)

Solving Nc from Eq. (28) and substituting it into Eq. (29) yields a transcendental equation

for exponent q, which may be easily solved by Newton iteration. Nc then follows from Eq.

(28).

VIII. Grafted Weibull-Gaussian Strength Distribution for Any

Size

As shown in detail in Ref. 6(Eqs. 50-65), the cdf of structure strength may be approx-

imated by a Weibull cdf grafted from the left onto a Gaussian (normal) cdf.6 The graft

ensures continuity of cdf and its slope, and the grafted distribution is rescaled horizontally

and vertically to be normalized. According to Eq. (4), if the strength of each link in a chain

is Weibullian up to stress σW , corresponding to link failure probability P1(σW ), then the cdf

of the strength of the whole chain is Weibullian for all Pf ≤ PNg = 1− [1− P1(σg)]
N .

In the remaining part for Pf > PNg , the cdf at increasing σ closely approaches the

Gaussian distribution in N is small, but the Gumbel distribution if N → ∞. However,
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for large N the Weibullian part occupies almost the entire cdf (i.e., PNW
→ 1), and so the

Gumbel part is irrelevant.

Hence, we may assume that, approximately, the strength cdf for any N is a graft of

Weibull cdf onto a Gaussian cdf, with the grafting point given approximately by

PNg ≈ 1− (1− P1g)
N , P1g = P1(σg) (30)

If PNg , σN, ω are known for any N , the grafted Weibull-Gaussian cdf can be constructed

as shown before.6 The entire cdf being known, one can then calculate the load for which the

structural failure probability is, e.g, 10−6. Integrating this cdf with the pdf of the load, one

can also obtain the structural failure probability for a given distribution of the load.

IX. Size Effect on Structure Lifetime

All of the foregoing analysis applies for constant temperature and a fixed load duration

τ . We will now explore the question of size dependence of lifetime τ of quasibrittle structures

under a given nominal stress σN.

The transition state theory with the concept of activation energy was used7 to show that

the left tail of the cdf of the strength of interatomic bonds must have the form F (σ) =

(Cbκ/kT )σ = power function of stress σ with exponent 1; where T = absolute temperature,

k = Boltzmann constant, κ = coefficient of linear dependence of activation energy on σ, and

Cb = constant. Based on this fact it is further shown that, for various (but constant) T and

τ , the nominal strength σN/s0 in the argument of failure probability P1 of one RVE must be

replaced by σN/s0R(τ, T ) where

R(τ, T ) =
Λ(τ0)

Λ(τ)

T

T0

e

(
1
T
− 1

T0

)
Q
k (31)

where T0, τ0 = reference values of T and τ , for which R = 1, and function Λ indicates how

the stress for which the atomic thermal vibrations produce a contiguous surface of a break in

the material nanostructure scales with the load duration7 (where, for the sake of simplicity,

one may set Λ(τ) ≈ rτ = linear function of τ ; r = constant). Hence, for a finite chain of

RVEs, Eq. (4) must be generalized as

PN(σN, τ, T ) = 1− {1− P1[σN/s0R(τ, T )]}N (32)

¿From this, we can obtain not only the pdf of structural strength as a function of applied
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σN, pf (σN) = [dPN/dσN]T,τ , but also the pdf of strength as a function of load duration τ :

pN(τ) = [dPN/dτ ]T,σN
(33)

which can be calculated from Eqs. (32) and (31). This distribution agrees with the require-

ments that, for σN → 0, one must have PN = 0 and τ → ∞; while for σN → ∞, one must

have PN = 1 and τ → 0.

The mean structural lifetime (or durability) as a function of σN and T may be calculated

as

τ̄(N, σN, T ) =
∫ ∞

0
τ
dPN

dτ
dτ =

∫ 1

0
τ dPN =

∫ ∞

0
(1− PN) dτ

=
∫ ∞

0
{1− P1[σN/s0R(τ, T )]}Ndτ (34)

and for N →∞: τ̄(N, σN, T ) =
∫ ∞

0
e− N P1[σN/s0R(τ,T )] dτ (35)

The last equation follows by setting P1 = x/N and noting that limN→∞(1−x/N)N = e−x =

e−NP1 . If we assume that R is linear in τ , i.e. Λ(τ) = rτ , and note that Γ(1/m)/m =

Γ(1 + 1/m), then

for N →∞: τ̄(N, σN, T ) =
∫ ∞

0
e−N(σNτ/s0τ0R0)m

dτ = τ0
s0

σN

R0(T )

N1/m
Γ

(
1 +

1

m

)
(36)

where R0(T ) =
T0

T
e

(
1
T
− 1

T0

)
Q
k (37)

Note that the mean lifetime for N → ∞ decreases as a power law of structure size and is

inversely proportional to the applied stress. For finite N , however, there is a deviation from

the power law.

For the coefficient of variation ωτ of structural lifetime under load σN and at temperature

T , one has

ωτ
2 =

1

[τ̄(σN, T )]2

∫ 1

0
[τ(σN, T )]2 dPN [R(τ, T )σN] − 1 (38)

for N →∞: ωτ
2 =

Γ(1 + 2/m)

Γ2(1 + 1/m)
− 1 = ω∞2 (39)

This is the same coefficient of variation as for the strength at fixed load duration, and is

governed solely by Weibull modulus.

To obtain explicit approximations of τ̄ and ωτ , asymptotic matching similar as before

may be used. For small N , the cdf of τ is again Gaussian, except for the tail of probability

< circa 0.001. With increasing N , a Weibull tail grows into the Gaussian core until, for N >
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circa 5000, it occupies essentially the entire cdf of τ .

X. Closing Comment

The mathematical model established in this article for the effect of structure size and

geometry on the probability distribution of structural lifetime at constant load is not yet

verified experimentally. The verification and calibration is left for a forthcoming journal

article.
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9Bažant, Z.P. Scaling of Structural Strength. Hermes, London 2002; 2nd updated ed., Elsevier, London
2005.
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17Bažant, Z.P., and Novák, D. “Probabilistic nonlocal theory for quasibrittle fracture initiation and size

effect. II. Application.” J. of Engrg. Mech., ASCE, 126 (2), 2000, pp. 175–185.
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