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ABSTRACT 

Except for huge unreinforced structures, Weibull’s statistical size effect is weak in 
concrete structures. The size effect source is principally energetic, caused by stress 
redistribution due to a large fracture process zone size or large cracks formed before 
maximum load. It is shown that an unbiased statistical analysis of the existing database for 
shear of R.C. beams without stirrups supports the energetic size effect theory, and that the 
size effect, albeit milder, afflicts beams with stirrups, too. Known though has this type of 
size effect been for two decades, it has been mostly ignored in design codes as well as 
practice. What are the consequences? —overdesign of many small structures but, more 
seriously, unacceptable risk for large ones.  A tolerable failure probability of engineering 
structures is 10-6 per lifetime, and collapse statistics indicate that this has indeed been true 
for small structures. Probabilistic analysis calibrated by a large statistical database 
confirms this level of failure probability for shear of reinforced concrete beams without 
stirrups < 0.2 m deep. However, if the size effect is ignored (as in ACI code), the failure 
probability is shown to increase drastically—to 10-3 for beams 1 m deep (and nearly as 
much for the unrealistic formulae of CEB, fib and JSCE underestimating the size effect). 
This finding roughly matches several statistics showing that very large structures have 
been collapsing with a frequency roughly 103-times greater than small ones. This is 
unacceptable. Now that no longer just a handful of theoreticians, but entire scientific 
societies and concrete fracture committees (IA-FraMCoS, ASCE-EMD, ACI Comm. 446), 
are convinced of the inevitability of energetic size effect in brittle failures of concrete 
structures, the engineering societies ignoring or severely underestimating the size effect in 
their design codes, and perhaps even design firms, are exposed to legal risk when another 
collapse occurs.  
 
KEYWORDS: size effect, structural safety, reinforced concrete, shear failure, fracture, 
statistical analysis of test data, design codes, legal risk. 

INTRODUCTION 

Concrete structures much larger than the specimens tested in laboratories are being built in 
ever increasing numbers. For example, the box girder of the record-span Koror-Babeldaob 
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Bridge in Palau, which collapsed in a brittle shear-compression mode, was 14.2 m deep. 
The outriggers of the Trump Tower under construction in Chicago are 6 m deep. However, 
the experimental databases collected to establish design code specifications consist mostly 
of small-size laboratory tests. The mean beam depth in the ACI-445 database 1 on which 
the shear design in the current ACI standard 318 still rests is only 0.34 m, and in the latest 
ACI-445 database 2 it is 0.345 m. In the latter, 86% of the 398 data points pertain to beam 
depths < 0.5 m and 99% to depths < 1.1 m, and only 1% to depths from 1.2 to 2 m. Since 
the code-making committees prefer to rely on experiments only, it is thus no surprise that 
the size effect is not correctly represented.  
 
Concrete is an archetypical quasibrittle material whose fracture propagation is 
characterized by a rather large fracture process zone (FPZ), typically 0.5 m long. This 
causes that small structures (cross section ≤ FPZ length) fail in a quasi-ductile manner (i.e., 
with a plastic yield plateau) and exhibit almost no size effect, while very large structures 
(cross section >> FPZ length) failing in concrete rather than steel behave in an almost 
perfectly brittle manner, with a steep load drop right after the peak load, and exhibit the 
strongest possible size effect;3-6 Fig. 1. The size effect has been studied mainly for shear of 
longitudinally reinforced beams without stirrups,7, 8 but it also occurs in shear of beams 
with stirrups, in torsion, punching of slabs, failure of columns, arches and prestressed 
girders failing due to crushing of concrete, failure of anchors and splices, and bar 
pullout.8,9 Accumulating experimental evidence 10-20 shows that the size effect causes 
beams about 2 m deep to fail at loads much lower than that calculated from the design code 
using the understrength factor φ = 0.75 and the specified concrete strength (about 30% less 
than the mean strength).  For instance, the largest beam in Toronto tests 3, 4 had a shear 
strength almost 50% lower than what is calculated from ACI design code;21 see Fig. 1(a). 
This strength reduction due to size effect now causes serious concern about the safety of 
current design codes and engineering practice.  
 
To make the risk of structural failure much smaller than various inevitable risks that people  
face, the maximum tolerable failure probability is about 1 in a million.22 This value 
roughly agrees with the frequency of failures experienced for small beams. But for large 
ones, it has been about 1 in a thousand 23, 24 and could become 1 in a hundred or higher as 
ever larger beams are being built. Whether or not such unacceptable risk will have to be 
tolerated depends largely on taking the size effect properly into account. This is an issue of 
paramount significance for concrete engineering.   

RISK OF FAILURE IN SHEAR DESIGN 

The ACI Building Code 21 currently specifies the contribution of concrete to the cross-
section shear strength of reinforced concrete members by the formula  
                                                                   '2c cV f b= wd                                                  (1) 

(which is valid only in psi, lb. and inches). Here f'c is the specified compressive strength of 
concrete, d is the beam depth measured from the top face to the longitudinal reinforcement 
centroid, and bw is the web width. The code formula gives a size-independent average 
concrete shear strength, vc = Vc / bw d (identical to the ‘nominal strength’ in mechanics 
terminology). However, ignoring the size effect in Eq. (1) would lead to statistically 
dangerous designs with insufficient safety margins for large shear-critical concrete beams. 
We evidence it next. 



Statistical Strength Distribution of Small Beams  

While the probability density distribution (pdf) of strength scatter due to material 
randomness has recently been theoretically established for quasibrittle failures at crack 
initiation (type 1),25-27 for those occurring after large stable crack growth (types 2 or 3)8, 28 
it still remains unknown. Since the latter is our case, our choice of the pdf type must be 
empirical. But even if the pdf of scatter originating from material randomness were known, 
it would apply only to the scatter observed in carefully controlled laboratory test series 
such as those conducted at the University of Toronto 3, 4 and Northwestern University 13 for 
which the coefficients of variation (C.o.V.) of errors (i.e., standard error of regression 
normalized by data centroid) are only about 6.9% and 12%, respectively. 
 
The errors of the current code formula '2 cc fv =  are approximately characterized by the 
scatter seen in the ACI-445F database 2 (Fig. 2), which originates from material 
randomness only to a minor extent. Because this formula must apply to a broad variety of 
beams used in practice, the database covers a wide range of secondary characteristics such 
as the steel ratio, shear-span ratio and concrete type (which includes concrete strength, 
curing environment, water-cement ratio, aggregate-cement ratio and other mix proportions, 
etc.). While the scatter of these secondary characteristics is the result of human choices, it 
roughly reflects the range of characteristics occurring in practice (even though the 
distributions of these characteristics in design practice might not be exactly the same as in 
the database, there exists no better information anyway). 
 
Even if we considered the recently proposed refinement in which the effects of the 
secondary characteristics such as the steel ratio, shear-span ratio and concrete type are 
incorporated into the formula for vc,29, 30 their representation would be only approximate, 
with a high degree of uncertainty. So, the scatter due exclusively to material randomness, 
exemplified roughly by the aforementioned laboratory tests in Toronto and Northwestern, 
would still be only a minor part of the overall scatter. This is revealed by the width of the 
scatter band in previous work 30 where the regression does take the secondary 
characteristics into account. The C.o.V. of regression errors in that scatter band is of the 
order of ω1 ≈ 20%, while the C.o.V. due to material randomness per se is of the order of ω2 
≈ 10%. 
 
To make this argument precise, note that if the points of a database whose C.o.V. = ω1 are 
perturbed by independent random scatter whose C.o.V. = ω2, then the resulting scatter of 
the perturbed database will have the C.o.V. of 2

2
2
13 ωωω += . In the present case, ω3 ≈  

20% and ω2 ≈ 10%, which gives ω1 ≈ 17.3%. This is only 13% less than ω3. Obviously, ω2, 
ensuing from material randomness, has only a minor effect on the overall ω3, and so its pdf 
type cannot matter much. 
 
To decide which data to use for an empirical basis of pdf choice, note also that the scatter 
band in the ACI-445F database (Fig. 2) with 398 data points 2 has a downward trend with 
respect to depth d  (this is also confirmed by the earlier databases of 296 points assembled 
by Bažant and Kim 7, and 461 points assembled by Bažant and Sun 12). The existence of a 
marked size effect trend becomes even clearer if the influences of shear span, steel ratio 
and concrete strength are taken into account as subsidiary parameters in the regression.30 



Therefore, the entire ACI-445F database cannot be treated as a statistical population from 
which the pdf of shear strength could be identified.  
 
However, if we isolate from the database in Fig. 2(a) the data in the small size range of 
depths d ranging from 100 mm to 300 mm (4 in. to 12 in.), centered at 200 mm (8 in.), as 
shown in Fig. 2(b), then the size effect trend is weak enough for treating the data as a 
population with no statistical trend (indeed, within this range, the size effect in the Toronto 
tests 3, 4 causes a strength reduction of only about 10%). The mean and coefficient of 
variation (C.o.V.) of this population of data are found to be '1/ 2/ 3.2c cry v f= = and ω = 
27%, where is the required average compressive strength of concrete. The relatively 
high value of ω is a consequence of variability of the secondary characteristics which have 
a non-negligible influence on the shear strength. 
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To determine the appropriate pdf of shear strength for the small size beams, we plot the 
data points from the small size range as cumulative histograms on various types of 
probability paper. While several methods 31, 32 to calculate the cumulative histogram are 
used in practice, Gumbel's method 33 is adopted here due to clarity of its justification as 
well as simplicity; the plotting positions are )1/( +nm  (where m denotes the mth point 

among the data arranged in the increasing order of normalized shear strength '/ crc fv , 
and n is the total number of points in the isolated database). 
 
Fig. 3(a,b) shows the cumulative histograms and their fits by cumulative distribution 
functions (cdf) in the normal and log-normal probability papers. Now note that the data 
points fit a straight line on the log-normal probability paper significantly better than they 
do on the normal probability paper (for the former, the mean and standard deviation are 
3.22 and 0.895, and for the latter they are 3.22 and 0.885). Also note that if the Weibull 
probability paper were used, the fit of a straight line would be still worse. Hence, based on 
the information that exists, a log-normal pdf appears to be the best choice. 
 
The type of pdf for small beams may alternatively be examined by the goodness-of-fit 
tests. The widely used Kolmogorov-Smirnov or K-S test 34 compares the observed 
cumulative probability Sn (solid curve) with the assumed normal distribution obtained by 
optimal fit (dashed curve), and generates the maximum discrepancy of Dn = D277 = 0.078; 
see Fig. 3(c). This value satisfies the critical value for the 5% significance level (  = 
0.081) but exceeds the critical value for the 10% significance level ( = 0.073). By 
contrast, the maximum discrepancy for log-normal distribution is D277 = 0.056, which is 
much less than that observed in the K-S test for normal distribution and satisfies the critical 
values for both the 5% and 10% significance level; see Fig. 3(d). 
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Furthermore, the type of pdf for small beams may be examined by the chi-square test.35 In 
this test, one subdivides the range of coordinate '/ crc fv , which spans from 1.32 to 6.56, 
into several intervals and compares the frequencies ni of the small beam data with the 
assumed frequencies ei for all the intervals in the histogram. Here, 6 intervals, limited by 1, 
2, 3, 4, 5, 6 and 7, are considered. They contain 18, 106, 107, 32, 13, and 1 data points, 
respectively; see the histogram in Fig. 3(e). Compared with the frequencies corresponding 
to normal distribution (dashed curve), we have ∑ − iii een /)( 2  = 20.95, which cannot 



satisfy the critical value c0.95,3 = 7.81 for 5% significance level. On the other hand, we 
obtain ∑ = 3.45 for log-normal distribution (solid curve), which satisfies the 
critical value for 5% significance level. 
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The foregoing comparisons demonstrate that, among simple distributions, the log-normal 
pdf is the best choice for the small beam data in the ACI-445F database. 

Statistical Strength Distribution of Large Beams  

Again, theoretical deductions based on the scatter in one and the same material 25, 26 are 
inapplicable because this scatter is overwhelmed by the scatter due to random variability of 
steel ratio, shear span ratio, etc., in the ACI-445F database. As emphasized in previous 
work,29, 30 the database is heteroscedastic in the plot of normalized shear strength '/ crc fv  
versus size, but becomes nearly homoscedastic in the doubly logarithmic plot; in other 
words, the variance or C.o.V. of the data becomes almost independent of the structure 
size.30 Furthermore, in view of the aforementioned origin of scatter, there is no reason for 
the type of pdf to change with the structure size. Therefore, it is logical to assume the pdf 
of the normalized shear strength in the ACI-445F database to be log-normal for all the 
sizes. 
 
Fig. 4(a) shows the same pdf (log-normal, with the same coefficient of variation) 
superposed on the series of individual tests of beams of various sizes made at the 
University of Toronto.3, 4 Now it should be noted that, for the type of concrete, steel ratio, 
shear span ratio, etc., used in the Toronto tests, the shear strength value in these tests lies 
(in the logarithmic scale) at certain distance a below the mean of the pdf  (Fig. 4(a)). Since 
the width of the scatter band in Fig. 2(a) in logarithmic scale does not vary appreciably 
with the beam size, the same pdf and the same distance a between the pdf mean and the 
Toronto data must be expected for every beam size d, including the size of d = 925 mm 
(36.4 in.), for which there is only one data point, and also the size of 1.89 m (74.4 in.). In 
other words, if the Toronto test for d = 925 mm (36.4 in.) were repeated for many different 
types of concrete, steel ratios, shear span ratios, humidity and temperature conditions, etc., 
one would have to expect a pdf shifted downwards in the logarithmic scale as shown in 
Fig. 4(a). 
 
Lest it be thought that distance a should be treated as random, it must be emphasized that a 
represents a certain percentage cut-off on the pdf of shear strength, and thus it is a property 
of pdf. It is the basic tenet of the theory of probability that the pdf per se, including any of 
its properties, is not random. It is a deterministic descriptor of random variability. 
Assuming pdf, including any of its properties, to be random, would wreck the whole 
edifice of the existing theory of probability. By assuming the value of a to be the same for 
the small and large size ranges, we simply imply that the probability, or frequency, of 
beams having shear strength below the value characterized by a will be the same for these 
size ranges. 
 
For fracture specimens, information on the scatter in size effect is much more abundant 
than for beams. Much of this information tends to show a decrease of scatter band width as 
the size increases, but is obtained from specimens with the same geometry in which 
parameters other than the size are not varied. As for the random scatter in tests of size 



effect in beam, the only information appears to be the reduced-scale tests 13 conducted at 
Northwestern University on geometrically similar specimens with the size range of 1 : 16. 
These tests show the coefficients of variation to be almost the same for all the 5 sizes 
tested (C.o.V. = 6%, 7%, 8%, 6% and 8%). 
 
 
For the ACI-445F database, the C.o.V. for large sizes may be estimated from the 22 test 
points falling in the size range of 760 to 1000 mm (30 to 40 in.), and is found to be 27.9%. 
This value is almost the same as that for the small size range. It confirms our assumption 
that the scatter band width in the logarithmic plot does not change significantly with the 
size. 
 
A question now arises: Could we not directly use the 22 test points in the size range 760 to 
1000 mm (30 to 40 in.) to determine the distance a? We could not, because these 22 points 
cover only a portion of the entire range of the influencing parameters of interest and the 
distribution of these parameters is very different from that in the small size range. For 
example, the steel ratios in the small size range of the ACI-445F database vary from 0.25% 
to 6.64%, with the mean of 2.55%, while the aforementioned 22 points correspond on the 
average to much lighter reinforcement, with the steel ratios varying from 0.14% to 2.1%, 
and the mean of 0.96%. A similar discrepancy exists for a/d. So, using the data points in 
this size range would be misleading (yielding a distance a as only 0.07 instead of 0.45). 
 
Now it is inescapable to recognize that this shifted pdf for d ≈ 1 m (40 in.) reaches well 
below the line of required nominal strength '2/ cc fv  of '/ cc fvy =  = 2 (while the pdf 
for the small beam range lies almost entirely above this line). This means that if the type of 
concrete, steel ratio, shear span, humidity and temperature conditions, etc., used in the 
single Toronto test were varied through the entire range occurring in practice (exemplified 
by the variation in the small size range), a large percentage of the beams would likely be 
found to be unsafe. According to our assumption of log-normal pdf and equality of 
distances a for small and large sizes, the proportion of unsafe 1 m (40 in.) deep beams 
would be about 40%, while for small beams 100 to 300 mm (4 to 12 in.) deep it is only 
1.0%. This is not acceptable. A design code known to have such a dangerous property 
cannot be sanctioned. 

Failure Probability for Large and Small Beams 

To determine precisely the consequences for failure probability Pf of the beam, we need to 
consider also the pdf of the extreme loads expected to be applied on the structure, which is 
denoted as f(y). To calculate Pf , we need to consider a certain value of the load factor. We 
will consider only the load factor of 1.6, which is applicable to the cases where the live 
load dominates, as is the case for bridge beams up to 1 m (40 in.) deep (for load 
combinations with a significant dead load component, for which the blended load factor is 
less than 1.6, the failure probabilities for both small and large beams would be higher than 
those obtained in what follows, but their ratio, which is of main interest, would be about 
the same). 
 
The distribution of the applied extreme loads will be considered as log-normal (it is 
debatable whether the Gumbel distribution might be more realistic 36, 37, but it would make 
little difference for the ratio of probabilities and would make the calculation more tedious). 



The C.o.V. of the applied extreme loads will be considered as 10%. Under the foregoing 
assumptions, and based on the understrength factor of φ = 0.75, the mean of the pdf of 
extreme applied loads and function f(y) representing this pdf will be positioned as shown in 
Fig. 4(b). The failure probability may now be calculated from the well-known reliability 
integral 38-40 

                                                                                                        (2) 
0
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where R(y) is the cumulative distribution function (cdf) of structural resistance, which is 
obtained by integrating the log-normal pdf in Fig. 4(a, b). 
 
When this integral is evaluated for small beams within the range of depths d from 100 mm 
(4 in.) to 300 mm (12 in.), centered at d = 200 mm (8 in.), and also for the large beams of 1 
m (40 in.) depth, one obtains the following failure probabilities: 
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The failure probability of 10-6, i.e., one in a million, obtained for small beams, corresponds 
to what the risk analysis experts generally consider as the maximum acceptable for 
engineering structures in general,22-24 because it does not appreciably add to the inevitable 
risks that people face anyway. 
 
So, if the size effect in beam shear were ignored for beams without stirrups up to 1 m deep, 
the probability of failure for 1 m (40 in.) depth would be about 1000-times greater than for 
200 mm (8 in.) depth. This would be unacceptable. If there should be any difference, it 
should be in the opposite sense because, for large beams, the failure consequences are 
usually more serious than for small ones. 

STATISTICAL ANALYSIS OVERCOMING BIAS IN THE DATABASE 

Sound arguments for a realistic design formula capturing the size effect on shear strength 
of beams must be based on fracture mechanics, verified by properly designed experiments, 
and statistically calibrated by a broad database. For many engineers, though, a purely 
statistical evidence, with no use of mathematics and mechanics, is most convincing. Such 
evidence can be, and has been, readily provided for many design problems where 
experiments are easy to perform through the entire range of all parameters. But the 
problem of size effect is different. 
 
In the case of size effect, it is financially prohibitive to conduct experiments through the 
entire range of beam depths of practical interest, which spans from 0.05 m to perhaps 14 m 
(the latter being the depth of the record-setting box girder in Palau, whose compression-
shear collapse must be partly attributed to size effect). Obtaining statistics and covering by 
experiments the full range of influencing parameters other than the size (or beam depth) 
has been easy for small beams, but is almost impossible for very large ones. Thus it is not 
surprising that the existing ACI database 1, 2 has major gaps and a strong subjective 
statistical bias caused by crowding of the test data in the small-size range, scant data in the 
large size range, and no data at all for the largest sizes of practical interest (depths >2 m). 
Consequently, simple bivariate statistical regression of all the points of the ACI-445F 
database yields a misleading trend.29, 30 Eliminating the bias is important for a realistic 



update of the code provisions currently under consideration for the design codes of many 
countries. 
 
The size effect is defined as the size dependence of the nominal strength of structure when 
geometrical similarity is maintained and all the parameters other than the size are kept 
constant. In the case of beam shear, the size may be measured by the beam depth d, the 
nominal strength of structure may be taken as the average concrete shear strength in the 
cross section, vc, and the parameters that must be kept constant comprise all the concrete 
properties (including the maximum aggregate size da), the longitudinal reinforcement ratio 
ρw, and the shear span ratio a/d  (here a = distance of the load from the support). 
 
If the entire database on size effect in beam shear were to be obtained in one testing 
program in one laboratory, a sound statistical design of size effect experiments would 
dictate choosing the same number of tests in equally relevant size intervals and 
maintaining within all the size intervals the same means and distributions of parameters ρw, 
a/d, da,, over their entire practical range. This condition is far from satisfied by the existing 
database. But there is no other choice. So the question is how to minimize the statistical 
bias in regard to the size effect.  From the size effect viewpoint, this database has a bias of 
two kinds: 
 

• Kind 1.  Crowding of the data in the small size range — 86% of the 398 data points 
pertain to three-point-loaded beams of depths less than 0.5 m, and 99% to depths 
less than 1.1 m, while only 1% of data pertain to depths from 1.2 to 2 m. 

 
• Kind 2.  Strongly dissimilar means and distributions, among different size 

intervals, of the subsidiary influencing parameters, particularly the steel ratio ρw, 
shear span ratio a/d, and the maximum aggregate size da.   

 
To reach any meaningful statistical conclusion on the size effect, both kinds of bias must 
be filtered out. 

Statistical Regression of Size Effect 

We want to isolate the trend of size effect from a database governed by multiple variables. 
The standard way to do that is to carry out multivariate least-square nonlinear regression in 
which all the parameters are optimized simultaneously. This is the approach which was 
pursued in previous work.29, 30 There is another way, though. It does not lead to 
multivariate regression, yet makes the statistical trend conspicuous without any 
mathematics. To this end, an unbiased (i.e., objective) procedure of data filtering is 
required. 
 
Let us subdivide the range of beam depths d of the existing test data into 5 size intervals 
(vertical strips in Fig. 5(a-c)). They range from 0.075 to 0.15 m, from 0.15 to 0.3 m, 0.3 to 
0.6 m, from 0.6 to 1.2 m, and from 1.2 to 2.4 m. In the ACI database, these intervals 
contain 26, 251, 80, 38, and 3 data points, respectively; see Fig. 5(a-c). Note that the 
borders between the size intervals are chosen to form a geometric (rather than arithmetic) 
progression because what matters for size effect is the ratio of sizes, not their difference (to 
wit, from d = 0.1 to 0.1 + 1 m, the size effect is strong, from 10 to 10 + 1 m negligible). 
The chosen intervals are constant in the scale of log d, and this is also needed for another 



reason — in the plot of  y = '/ cc fv  versus d, the database is heteroscedastic (i.e., has a 

variance density decreasing with size), but transformation to the plot of )/log( '
cc fv  

versus log d renders the database almost homoscedastic (i.e., of uniform variance density), 
which is necessary for meaningful regression analysis.41 Fig. 5(a-c) shows the restricted 
(filtered) data points by bigger circles, and those filtered out by the tiny circles. 
 
The problem with the distribution of subsidiary influencing parameters in the full database 
is graphically documented by Fig. 6(a,b), in which the diamonds show their means in the 
individual size intervals, and the error bars show the span from the minimum to the 
maximum retained value (Fig. 6(c-f) shows the same plots achieved by filtering the 
database). In Fig. 6(a), the mean of ρw is in the second interval nearly 7-times larger than in 
the last interval (and almost 2-times larger than in the fourth interval). In Fig. 6(b), the 
mean of a/d is in the third interval 30% larger than in the last interval (and 10% larger than 
in the fourth interval). Obviously, such differences among size intervals must completely 
distort size effect statistics.  
 
To filter out the effect of influencing parameters other than d, each interval of d must 
include only the data within a certain restricted range of ρw-values such that the average 

wρ  would be almost the same for each interval of d. Similarly, the range of a/d and da in 

each interval must be restricted so that the average da /  and ad  would also be about the 
same for each interval of d. The filtering of data must be done in an objective manner (i.e., 
with no human preference). To this end, a computer optimization algorithm has been 
formulated. It progressively deletes from each interval, one by one, the data points in each 
size interval that lie at the top and bottom margins of the ranges of ρw, a/d and da, until 
uniformity of each subsidiary influencing parameter throughout all the intervals is 
optimally approached. 
 
Because, as generally agreed, the effect of the specified concrete strength f'c is adequately 
captured by assuming the shear strength of cross section, vc, to be proportional to '

cf , we 

do not need to restrict the range of f'c and may obtain the ordinate y  of data centroid in 
each interval by averaging, within that interval, not the vc-values but the values of 

'/ cc fvy =  that fall into the aforementioned restricted ranges of ρw, d/a and da. 
 
As seen in Fig. 5, there are only three test data in the size interval spanning 1.2 to 2.4 m. 
The first has the longitudinal steel ratio of ρw = 0.14%, the second 0.28% and the third 
0.74%. The extremely low ρw of the first two makes it impossible to find similar data in 
other intervals of d. For example, the minimum ρw is 0.91% within the first interval of d, 
and 0.46% within the third interval. Therefore, one must consider the size range from 
0.075 to 1.2 m. Formulating a statistical optimization algorithm for database filtering (to be 
presented in a forthcoming journal article), one finds 7, 68, 17, and 36 data points within 
the admissible ranges for each interval of d (ideally, of course, the number of data in each 
interval should be the same, and the fact that it is not shows that complete elimination of 
statistical bias is impossible; nevertheless for obtaining reliable means, 7 data certainly 
suffice). 
 



After filtering, the mean values of ρw for the restricted ranges are 1.51%, 1.5%, 1.5%, and 
1.5%, the mean values of a/d are 3.45, 3.33, 3.33 and 3.23, respectively, and the mean 
values of da are 16.8, 17.0, 16.8 and 16.5 mm. This provides data samples with minimum 
bias in terms of ρw, a/d and da. The data centroids for each interval are plotted as the 
diamond points in the plot of )/log( '

cc fv versus log d (Fig. 5(d)). We see that, despite 
enormous scatter in the database (Fig. 5(d)), the trend of these centroids is quite 
systematic. 
 
Under the assumption that the statistical weight of each size interval centroid in Fig. 5 is 
the same, the foregoing procedure is used to obtain the optimum least-square fit of these 4 
centroids with the classical size effect law (type 2 energetic size effect law 42), which was 
proposed for beam shear in 1984 7 and recalibrated in 2005,29, 30 and is written here as 

2/1
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' )/1(/ −+= ddCfv cc  where C, d0 = free constants to be found by the fitting algorithm 
(for reasons of proper weighting, it is best to conduct nonlinear regression with a nonlinear 
optimization subroutine, although a linear regression in transformed variables is possible 
and acceptable 9). The resulting fit of the centroids (the solid curve) is seen to be quite 
close; it gives, for predicting the mean strength, a very small coefficient of variation of 
errors, namely ω = 2.5% = standard deviation of the optimum fit curve from the centroids, 
divided by the data mean (for individual beams, ω is, of course, much larger).  This 
coefficient of variation characterizes the uncertainty in the mean strength of many 
structures of a given size rather than in the strength of an individual structure, which is of 
main interest for design. The negative curvature of the trend of the centroids confirms the 
theoretically predicted 8 gradual transition from quasi-plastic behavior for small sizes to 
perfectly brittle behavior for large sizes. The trend of the last two centroids roughly 
matches the theoretical prediction of the slope –1/2 of the final asymptote of the size effect 
curve,7, 13, 29, 30, 42 given by vc ~ d -1/2 (which is a property unanimously endorsed as 
fundamental in 2004 by ACI Committee 446). 
 
Using the same statistical algorithm, let us now increase the average steel ratio for each 
interval to 2.5%. The fitting of the centroids is shown in Fig. 5(e). The asymptotic slope of 
–1/2 is confirmed and the negative curvature is obvious. 
 
To increase the size range, one may further include one point from the largest size interval 
spanning 1.2 to 2.4 m, namely the Toronto beam with ρw = 0.74%; see Fig. 5(f). 
Admittedly, one data point is too little, but nothing more exists because of the cost of 
testing very large beams. Then the same procedure as above is followed and, for the other 
4 intervals of d, one finds 1, 2, 5, and 15 data points for which the means of ρw in the 
interval of d are 0.91%, 0.94%, 0.94%, 0.91% and 0.74%, while the mean of a/d (= 2.9) 
and the mean maximum aggregate size da (= 10 mm) are the same for each interval. The 
coefficient of variation of errors of mean prediction now is ω = 5%, and the size effect 
trend is very clear. Again, the trend agrees well with the asymptotic slope of –1/2 and with 
the energetic size effect law (solid curve, Fig. 5(f)). 
 
Now, an important point to note is that, for different averages wρ , da /  and ad , the trend 
of the interval centroids is the same, and closely matches the size effect law. This 
demonstrates objectivity of the data filtering approach.  
 



Also note that the present statistical results lend no support to the previously proposed 
power laws 4/1'/ −= Cdfv cc based on Weibull's statistical theory.43 Neither do they lend 

any support to the asymptotic size effect 1'/ −= Cdfv cc  which is implied by an alternative 
model 44, 45 based on MCFT (Modified Compression Field Theory) (besides, an exponent 
of magnitude > 1/2 is impossible thermodynamically as well as from the viewpoint of 
material strength randomness 8, 9, 28). 

Variance of Individual Data Via Weighted Regression 

Kinds 1 and 2 of bias afflict not only the mean trend of the full database, but also its 
scatter. The scatter may be measured by an unbiased coefficient of variation of the errors 
of the optimum fit curve compared to the individual data points. This is the error that must 
be considered for safe design. It can be ascertained by one of two methods: 
 

1) One method is a simple bivariate nonlinear regression of our filtered restricted 
database, in which the kind 2 bias is already suppressed. To suppress the kind 1 
bias, one needs to give the same weight to the data in each size interval i, regardless 
of the number mi of the points that fall into that interval.  This may be achieved by 
assigning to the data in each interval i the normalized weight 

.  Nonlinear regression, i.e., the minimization of  the 
weighted sum of square deviations from the size effect law, then yields the 
coefficient of variation of 22.3% for the filtered database with

( )1/ / (1/ )i i kw m m= ∑ k

wρ =1.5%, and 

23.6% for that with wρ = 2.5%  (Fig. 7). 
2) The other method, which is the standard one, is a multivariate weighted nonlinear 

regression of the entire database. Compared to the first method, there is the 
complication that, instead of filtering the database, one must judiciously select the 
mathematical functions describing the dependence of the parameters C and d0 of the 
size effect law for shear strength on the subsidiary influencing parameters ρw, a/d 
and da, and then optimize simultaneously the coefficients of all these functions by 
minimizing the variance of errors. Proper choice of these functions suppresses the 
kind 2 bias. The kind 1 bias is in Ref. 30 minimized by weighting the data points in 
inverse proportion to the value of a smoothed histogram of the number of tests 
versus size. The result is quite similar to the first method — the coefficient of 
variation is 19.0%, after transformation to the variable '/ cc fvy = . However, the 
range from the minimum to the maximum value of each subsidiary parameter (Fig. 
6) fluctuates, from one size interval to the next, more than in the first method 
(ideally, the range should be the same for all the intervals, and the fact that it is not 
introduces some extra measure of bias, which cannot be removed although it 
probably is small).  

 
The effect of data weighting can further be clarified by Fig. 7(a, b) where the solid curves 
are the bivariate nonlinear regression curves of the interval centroids, with the same weight 
on each centroid. As one can see, almost undistinguishable curves (dashed ones) are 
obtained by the weighted nonlinear bivariate statistical regression of all the data points in 
the restricted (filtered) database. An unweighted regression of the same data points is 
shown in Fig. 7 by the dash-dot curves, and, as we can see, the dash-dot curve is again 



hardly distinguishable from the regression curve of the centroids in Fig. 7(a), but is very 
different in Fig. 7(b). One reason for this difference is that the vertical ranges of the 
restricted data in the individual size intervals, marked by vertical bars, are in Fig. 7(a) 
nearly symmetric with respect to the centroid curve, but not in Fig. 5(b). Another reason is 
that the restricted database in Fig. 7(a) is roughly homoscedastic, while that in Fig. 7(b) is 
not. 
 
For comparison, the coefficient of variation of the multivariate nonlinear regression 
conducted on the entire database 2 is 15% if the data are weighted, and 17% if unweighted. 
When only the 11 beams deeper than 1 m are considered, the coefficient of variation is 
14% if these data are weighted and 16% if unweighted. As we see, the weighted regression 
gives a better prediction for the scatter of shear strength of large beams. 

SIZE EFFECT FOR CONCRETE BEAMS WITH STIRRUPS 

Although much information exists on the size effect on reinforced concrete beams without 
shear reinforcement, there is little information on the size effect in shear failure of beams 
with minimum or heavier shear reinforcement (stirrups). Many engineers are of the opinion 
that beams with minimum or heavier stirrups exhibit no size effect. However, this opinion 
is incorrect and would lead to unsafe designs for large structures. Computational 
simulations, and even the limited experimental evidence that exists, reveal that stirrups do 
not eliminate the size effect. They only mitigate it. According to the analysis by Bažant,46 
the energetic size effect law 42 remains valid and the effect of stirrups is to increase the 
transitional size d0.9 Avoidance of size effect would require elimination of post-peak 
softening on the load-deflection diagram, and this could be achieved only if the concrete 
were subjected to triaxial confinement with all negative principal stresses exceeding in 
magnitude several times the uniaxial compression strength. 
 
The test series conducted by Walraven et al.19 clearly show that there is a strong size effect 
for deep beams with a/d < 2 (Fig. 8(a)) to which the strut-and-tie model is applicable. As is 
well known, if the failure is triggered by the compression crushing of concrete strut, it 
typically exhibits size effect.8 For slender beams with a/d > 2, two test series are found in 
the literature:  

• tests conducted by Bhal 11 in 1968 in Stuttgart, in which the shear span ratio is a/d 
= 3, the shear reinforcement is heavier than the minimum requirement, and the size 
range is almost 1 : 4. 

• tests conducted by Kong and Rangan 20 in 1998 in Perth, in which the shear span 
ratio is a/d = 2.4, the shear reinforcement is heavier than the minimum requirement, 
and the size range is 1 : 3. 

When plotted in the logarithmic scale (Fig. 8(b, c)), it can be seen clearly that, in both data 
sets, the shear strength markedly decreases with increasing beam depth. The asymptotic 
size effect trend of slope –1/2 does not contradict these test results. 
 
Extensive finite element simulations based on the crack band model and micro-plane 
model have also been carried out to investigate whether the shear failure of beams with 
stirrups exhibits a size effect. The beam geometry considered in these simulations is the 
same as in the Toronto tests. 3, 4, 18 Computations are run for geometrically similar beams 
of depths 0.47 m, 1.89 m, which is the size of Toronto test, and 7.56 m. The stirrups and 



longitudinal bars are assumed not to slip (although the bond slip was found to play only a 
minor role and tend to intensify the size effect). 
 
The mesh and the computed cracking pattern at maximum load are shown in Fig. 9(a), and 
the simulated load-deflection diagrams are shown in Fig. 9(b), for all the sizes. The 
diagram for d = 1.89 m (the size tested in Toronto) shows the peak load of 283 kips. This is 
very close to the value measured in Toronto. The yield plateau observed in this test is also 
well reproduced by the simulation. However, for the largest beam simulated, the yield 
plateau disappears and the load descends steeply right after the peak. Fig. 9(c) shows the 
dependence of the average beam shear strength vn = V/bw d on beam depth d, and Fig. 9(d) 
shows the same for the average shear strength vc = Vc/bw d contributed by concrete (Vc = V 
– Vs, Vs = As fy d/s; As, s = stirrup area and spacing). Compared with the concrete beams 
without stirrups tested at same laboratory, the transitional size d0 shown in Fig. 9(c,d) is 
significantly increased. These plots document that a strong size effect exists also in the 
beams with stirrups, although it is pushed into larger sizes. The asymptotic slope of –1/2 is 
seen to remain. 
 
Together with the experimental evidence, the finite element simulations clearly 
demonstrate that the shear reinforcement, whether minimum or heavier than minimum, is 
unable to suppress the size effect. It mitigates the size effect in the larger size range, but 
not enough by far to make it negligible. 

SOME CATASTROPHIC COLLAPSES WITH A ROLE OF SIZE EFFECT  

The overall safety factor µ, although not used in the current codes, is defined as the mean 
of failure test data divided by the mean (or unfactored) design load. The part of µ of 
concern here is the understrength factor. Besides the overt understrength factor φ 
characterizing the brittleness of failure mode, there also exists a covert understrength 
factors φf due to the design formula error and φm due to the material randomness.47 
Consequently, for shear failure of longitudinally reinforced concrete beams without 
stirrups, the overall safety factor currently is µ ≈ 3.8 for small sizes and µ ≈ 1.7 for large 
sizes. The former is totally dominated by the live load, and the latter is totally dominated 
by the self weight. In the latter case, the neglected size effect factor has been considered 38 
as 2. In view of the scatter in Fig. 2, the individual overall safety factors vary within 2.3 to 
6 for small sizes, and 1.05 to 2.8 for large sizes. The very large values of these safety 
factors are doubtless one reason why, despite the neglect of size effect, there have not been 
many more structural collapses than actually experienced. These large values also reveal 
that, in concrete engineering (by contrast to aeronautical engineering), a single error in 
design or construction is usually not enough to bring the structure down. 
  
The size effect factor for normal concrete structures can hardly be more than 2, and so the 
size effect alone would rarely suffice to cause the collapse if the material strength and 
formula error have nearly mean values. To produce collapse, the material strength and 
formula error must simultaneously have values of small probability, far from the mean. 
Thus, at least two, and typically three, simultaneous mistakes or lapses of quality control 
are needed to make a concrete structure collapse. This makes it easy for an investigating 
committee to blame collapse entirely on the other factors and ignore the theoretically more 
difficult size effect. For example, in the case of catastrophic sinking of Sleipner oil 
platform in a Norwegian fjord in 1991 (Fig. 10(a)), which was due to shear failure of a 



thick tricell wall, there were three simultaneous mistakes. Besides two mistakes recognized 
by government forensic committee, the necessity of strength reduction of about 34% due to 
the size effect was pointed out by Bažant but omitted from the conclusions.  
 
Of major interest for the size effect theory is the 1996 collapse of the Koror-Babeldaob 
Bridge in the Republic of Palau (Fig. 10(b)). This prestressed box girder had the world 
record span of 241 m when it was built in 1976. In addition to the erroneous initial 
prediction of creep and shrinkage deflections and apparently inappropriate remedial 
prestressing, one would have to expect a major strength reduction due to size effect on the 
compression-shear failure seen in the photograph. Analysis of this collapse would offer a 
unique opportunity to check and calibrate the size effect theory but, incredibly, all the 
technical information was after litigation sealed by a court verdict. Scientific ethics 
demands this verdict to be reversed, in the interest of progress (imagine, e.g., that all the 
technical information on the collapse of Tacoma Narrows Bridge were suppressed).   
 
Another reason why structural collapses have not been more numerous is that most codes, 
unwittingly, hide a partial (thought imperfect) protection against size effect in an excessive 
value of the load factor for self-weight, which is 1.4 for the self-weight acting alone, 
according to the current ACI code. In small structures, the self-weight is a negligible part 
of the load, and so the value of self-weight load factor does not matter. But in a very large 
bridge, self-weight alone is the decisive loading case. Now, how could the self-weight be 
40% larger than assumed in design? This is inconceivable (except as a sabotage). At most 
it could differ by a few percent. So very large structures are penalized by almost 40% 
compared to small ones. This way most codes give a covert protection against the neglect 
of size effect.48 But such covert protection is insufficient, by far, for very large structures. 
It also exhibits an incorrect trend from the viewpoint of size effect,48 as well as other 
wrong features. E.g., it gives greater protection to unprestressed or normal concretes 
compared to prestressed or high-strength concretes, because they lead to heavier structures  
(although the opposite should be the case because they are much more brittle); it gives too 
little protection to columns compared to beams; etc. This covert size effect should be 
eliminated and replaced by introducing the proper size effect in the code formulae. 

QUESTION OF CONCERN TO CONCRETE SOCIETIES: LEGAL EXPOSURE 

In the face of ever increasing diversification of science, it is nowadays impossible for the 
code-making committees, typically composed of the best and most renowned engineers, to 
follow in detail all the recently solidified scientific advances relevant to the building code 
article or recommended practice that they are developing. Nevertheless, keep informed 
they must. A quarter century ago, when the experimental data were scant and scattered, 
and only a handful of scientists espoused a coherent scientific theory, it was entirely 
plausible and defensible for concrete societies to ignore the size effect. When a failure 
attributable to size effect occurred, they could not be held liable. Not any more. The 
experimental evidence has become undeniable and the theoretical basis solid. Virtually all 
the researchers in fracture mechanics of concrete and entire research-oriented societies and 
committees in this field (e.g., IA-FraMCoS, ASCE-EMD, ACI Committee 446) have no 
doubt that a significant non-statistical size effect exists in all the brittle failures of concrete 
structures. Consequently, ignoring the size effect for the sake of simplicity, or even 
sanctioning a simplistic or partial consideration of size effect that is now known to imply a 



significantly increased risk of failure of large structures, is no longer acceptable. It might 
expose concrete engineering societies to legal liability when another catastrophe occurs.       

CONCLUSION 

At the dawn of this century, the size effect in brittle failures of concrete structure has 
become an established fact. It is time to introduce it into the design codes and practice. 
Ignoring it will cause large structures to be failing with the frequency of about one per 
thousand or more, instead of less than one per million as generally considered tolerable for 
engineering structures. The human society must not be knowingly exposed to such a risk. 
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Fig. 1 Size Effect Tests of (a) Shear Failure; (b) Torsional Failure; and  
(c) Punching Shear Failure  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                             

 
Fig. 2 (a) ACI-445F database of 398 data points; (b) Portion of the database for beams from 

10 to 30 cm deep (vc, f'cr and f'c are in psi)  

'
cr

c

f
v

100

(a) Entire database

1

6

10

Small
size

Large
size

'2 crc fv =

= required average
compressive strength

'
crf = required average

compressive strength

'
crf

(in.) d

'2 crc fv =

'2 cc fv =

(b) Portion of database
for small size range

12 in.

1

6

3 50

4 in.

1.0%
Log-normal in 
log - scale

Small size

(in.) d

v c
2

0.3

(M
Pa

)



 

0 4 8
-4

0

4

1 10

-4

0

4

0 4 8
0

0.5

1

0 4 8
0

0.5

1

0 4 8
0

0.25

0.5

(a) Normal probability paper (b) Lognormal probability paper

(c) K-S test for normal (d) K-S test for Lognormal

(e) Chi-square test

Test data

Test dataNormal 
distribution 

Lognormal 
distribution 

Sn
Sn

Normal 
distribution 

Lognormal 
distribution 

Dn = 0.078 Dn = 0.056

Normal 
distribution 

Histogram 
of test

Lognormal 
distribution 

cdf cdf

S S

'/ crc fv '/ crc fv

'/ crc fv

Fr
eq

ue
nc

ie
s

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3 (a) Cumulative histogram of data on normalized beam shear strength for small beams 

extracted from the ACI-445F database, plotted on normal probability paper, and their 
straight-line fit; (b) ditto on log-normal probability paper; (c) K-S test for normal 

distribution; (d) K-S test for log-normal distribution; (e) Chi-square test for goodness-of-fit 
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Fig. 4 (a) Probability Distribution of Shear Strength of Beams from 10 to 30 cm Deep, Based 

on the ACI-445F database, Compared to Toronto Data; (b) Failure Probability for Small 
Beam and 1 m Deep Beam.  
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Fig. 5 ACI-445F Database and Statistical Regression of Centroids of Test Data Subdivided 
into Intervals of Equal Size Ratio. (a-c) Full Database (the data retained are shown by larger 
circles and those filtered out in various cases by tiny circles); (d-f) Filtered Restricted Data 
Giving the Indicated Combinations of Uniform Mean Values of Subsidiary Parameters, Their 
Centroids and Regression Curves. 
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Fig. 6 Interval Centroids and Spread between the Maximum and Minimum Values of 
Reinforcement Ratio ρw and Shear Span Ratio a/d ; (a,b) for Full ACI-445F Database; (c,d) 
for Restricted Database with Mean ρw ≈ 1.5%, a/d ≈ 3.3; (e,f) Ditto but ρw ≈ 2.5%, a/d ≈ 3.3; 

(g,h) Ditto but ρw ≈ 0.9%, a/d ≈ 3.0.
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Fig. 7 Regression Curves Corresponding to Weighted Fitting (Dashed Curves), Unweighted 
Fitting (Dash-dot Curves) and Fitting on Centroids (Solid Curves) for Filtered Database of 

(a) Average Steel Ratio = 1.5%; and (b) Average Steel Ratio = 2.5%. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 log d (m) log d (m)

2

5

0.2 0.80.2 1
1.5

1.9
b) Bahl c) Kong & Rangan

a/d =3.0
σs = 96 psi > 50 psi

2
1

2

1

a/d =2.4
σs = 130 psi > 50 psi

5

2

0.1 1log d (m)

lo
g

v n
(M

Pa
)

ρ = 0w
. %ρ = 0 15w

. %ρ ≈ 0 33w

2
1

a) Walraven &Lehwalter

 
Fig. 8 Size Effect Test of Concrete Beams with Stirrups. (a) Deep Beam with a/d = 1; (b) 

Slender Beam with a/d = 3; (c) Slender Beam with a/d = 2.4. 
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Fig. 9 Computational Simulations of Toronto Beam with Minimum Stirrups. (a) Mesh and 
Cracking pattern at failure; (b) Load-deflection Curves Generated by Simulations; (c) Size 

Effect Fitting of the Total Shear Strength; (d) Size Effect Fitting of the Concrete Shear 
Strength 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a) Sleipner platform, 1991 b) Palau bridge, 1996

 
Fig. 10  Examples of Catastrophic Failures of Concrete Structures.  

(a) Sleipner Oil Platform, 1991; (b) Koror-Babeldaob Box Girder in Republic of Palau, 1996. 


