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Abstract

This paper surveys the available results on the size e�ect on the nominal strength of structures Ð a fundamental
problem of considerable importance to concrete structures, geotechnical structures, geomechanics, arctic ice
engineering, composite materials, etc., with applications ranging from structural engineering to the design of ships

and aircraft. The history of the ideas on the size e�ect is brie¯y outlined and recent research directions are
emphasized. First, the classical statistical theory of size e�ect due to randomness of strength, completed by Weibull,
is reviewed and its limitations pointed out. Subsequently, the energetic size e�ect, caused by stress redistributions
due to large fractures, is discussed. Attention is then focused on the bridging between the theory of plasticity, which

implies no size e�ect and is applicable for quasibrittle materials only on a su�ciently small scale, and the theory of
linear elastic fracture mechanics, which exhibits the strongest possible deterministic size e�ect and is applicable for
these materials on su�ciently large scales. The main ideas of the recently developed theory for the size e�ect in the

bridging range are sketched. Only selected references to the vast amount of work that has recently been appearing
in the literature are given. # 1999 Published by Elsevier Science Ltd. All rights reserved.

1. Introduction and classical history

The scaling, i.e., the change of response when the spatial dimensions are scaled up or down while the
geometry and all other characteristics are preserved, is a quintessential problem of every physical theory.
If the scaling is not understood, a viable theory does not exist. The scaling phenomena are particularly
intricate in ¯uid mechanics. In that ®eld, the scaling problems have been receiving major attention for
more than a century. In solid mechanics, by contrast, the attention to the problem of scaling ¯uctuated
and has been keen only in the very early and very recent history. This article will attempt a compact
review of the history and the main results. A detailed exposition can be found in the comprehensive
book by BazÏ ant and Planas (1998) and extensive reviews in BazÏ ant and Chen (1997), BazÏ ant (1997a,b)
and BazÏ ant (1999).
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The question of size e�ect on the strength of ropes was discussed by Leonardo da Vinci (1500's),

already a century before the concept of stress emerged in Galileo's work (Williams, 1957). Galileo (1638)

rejected the size e�ect law proposed by Leonardo, consisting of inverse proportionality of the strength

of rope to its length, and speculated on the size e�ect on the bones of large animals, calling their

bulkiness the ``weakness of the giants''. Half a century later, Mariotte (1686) contributed, on the basis

of his extensive experiments, a major idea which underlies the statistical theory of size e�ect. He

observed that ``a long rope and a short one always support the same weight unless that in a long rope

there may happen to be some faulty place in which it will break sooner than in a shorter'', which he

called the principle of ``inequality of matter whose absolute resistance is less in one place than in

another''.

Subsequently, not much happened until Gri�th (1921) experimentally demonstrated that the nominal

strength of glass ®bers increases from 42,300 psi to 491,000 psi when the diameter is decreased from

0.0042 in. to 0.00013 in. He observed that ``the weakness of isotropic solids... is due to the presence of

discontinuities or ¯aws''. ``The e�ective strengths of technical materials could be increased 10 or 20

times at least if these ¯aws could be eliminated''. This observation provided the physical basis of

Marriotte's statistical idea. The mathematics of the statistical size e�ect, consisting in the weakest-link

model for a chain and the extreme value statistics, emerged in the works of Tippett (1925), Peirce

(1926), Fisher and Tippett (1928), FreÂ chet (1927) and von Mises (1936) (see also: Freudenthal, 1956,

1968, 1981; Freudenthal and Gumbell, 1956; Evans, 1978).

The principles of the statistical size e�ect were completed by Weibull (1939, 1949, 1951, 1956). He

concluded that the tail distribution of low strength values of an extremely small probability cannot be

represented by any of the previously known distributions and introduced a new statistical distribution

that now bears his name. This distribution was later justi®ed theoretically on the basis of some

reasonable hypotheses about the statistical distribution and the role of microscopic ¯aws or microcracks

(Freudenthal, 1968, 1981). Many re®nements and extensions of Weibull theory have later been proposed

and continued until today (Evans, 1978; Beremin, 1983; Ruggieri and Dodds, 1996; Xia and Shih, 1996;

Lei et al., 1998; Kittl and Diaz, 1988; Kittl and Diaz, 1990, 1989; Zaitsev and Wittmann, 1974; Mihashi

and Zaitsev, 1981; Wittmann and Zaitsev, 1981; Zech and Wittmann, 1977; Mihashi, 1983; Mihashi and

Izumi, 1977; Carpinteri, 1986; Carpinteri, 1989).

Until the mid 1980's, it was generally believed that if a size e�ect is observed, it must be of statistical

origin, described by Weibull theory. Consequently, mechanicians generally paid no attention to size

e�ect and believed it should be relegated to the statisticians [the subject was not even mentioned in

Timoshenko's (1953) monumental History of the Strength of Materials ].

The reason for the long ignorance of a non-statistical, mechanistic size e�ect is doubtless the fact that

the classical well-established theories of elasticity with a strength limit, plasticity or any theory in which

the material failure criterion is expressed in terms of stress and strain exhibit no size e�ect. In other

words, the nominal strength of the structure does not depend on its size when geometrically similar

structures are compared. The nominal strength is a parameter of the load having the dimension of

stress. It is typically de®ned as the load divided by the square of the characteristic dimension of the

structure, in the case of three-dimensional similarity, or the load divided by the characteristic dimension

and the thickness, in the case of two dimensional similarity, although de®nitions such as the maximum

stress in the structure, or the stress at any homologous points of the structure can serve equally well.

The linear elastic fracture mechanics (LEFM), in which all the fracture process is assumed to occur in

one point, the crack tip, exhibits the strongest possible size e�ect, in which the nominal strength is

inversely proportional to the square root of structure size. However, this is true only if the cracks are

large and geometrically similar, and not if they are microscopic, having a length that is a material

characteristic. In that case, which is typical of fatigue embrittled metals and ceramics, the e�ect of
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cracks intervenes only through the macroscopic material strength and there is again no deterministic size
e�ect.

2. Power scaling and Weibull theory

It is self-evident that the size e�ect is determined by some characteristic length in the mathematical
formulation of the structural analysis problem. In the classical theories of failure such as plasticity,
elasticity with the material strength limit, viscoelasticity, viscoplasticity, etc., no characteristic length is
present. On the basis of this fact alone it is possible to prove that the scaling of any quantity in any
physical system must be expressed by a power law of the size D of the system (for ¯uid mechanics, see
Barenblatt, 1979; Sedov, 1959; and, for solids, BazÏ ant, 1993; BazÏ ant and Chen, 1997). For the case of
the scaling of strength or any quantity with the dimension of stress, the exponent of the power law is
zero, which, in solid mechanics, came to be called the case of no size e�ect.

In linear elastic fracture mechanics (LEFM), there is also no characteristic length present (the material
strength is not a material parameter in LEFM). So the scaling must also be a power law. From the J-
integral it is easy to show that the exponent of the power law for strength or any quantity of the
dimension of stress must be ÿ1/2. In the plot of the logarithm of nominal strength versus the logarithm
of structure size, the scaling laws of plasticity and LEFM are represented by a horizontal straight line
and a descending straight line of slope ÿ1/2, respectively.

Weibull statistical theory, too, as it turns out, involves no characteristic length. Indeed, calculations
con®rm that the scaling law for the size e�ect on nominal strength is a power law, the exponent of
which is ÿnd/m, where m is a parameter of the Weibull statistical distribution called the Weibull
modulus, and nd=1, 2 or 3 for uni-, two-, or three-dimensional geometric similarity. The fact that
Weibull theory contains no characteristic length is an objection to the applications of this theory to
quasibrittle materials for which a characteristic length obviously exists, being dictated by the size of
material inhomogeneities or the characteristic size of the fracture process zone (FPZ).

To calculate the size dependence of the nominal strength of structure, it is convenient to introduce a
size-independent stress measure called the Weibull stress. This formalism was proposed by Beremin
(1983) and extended by Ruggieri and Dodds (1996) and Lei et al. (1998) to take into account the
contributions from the elements of the plastic zone at fracture front calculated by ®nite elements.

In Weibull theory, the size e�ect on the nominal strength arises from the fact that the larger the
structure the greater the probability to encounter in its volume a material element of a given critically
small strength. The theory works well and its hypotheses are well justi®ed when the failure occurs as
soon as a macroscopic ¯aw becomes a propagating macroscopic crack. The underlying hypothesis is that
the inception of macroscopic crack growth in one small element of the structure causes failure, which
means that small representative volumes of the material in the structure interact in the same way as the
links of a chain, that is, in series coupling. However, when a large FPZ or a long stable crack, or both,
can develop before reaching the maximum load, the series coupling model of a chain, underlying the
weakest link theory, becomes inapplicable and the statistical size e�ect gets overpowered by the e�ect of
stress redistributions on the maximum loads with the inherent energy release (BazÏ ant and Planas, 1998).

In the case of quasibrittle materials, which exhibit a non-negligible material length and typically grow
a large FPZ and large cracks before the maximum load, applications of the classical Weibull theory are
questionable for several reasons (BazÏ ant and Planas, 1998):

1. The power law of size e�ect, as already mentioned, implies the absence of any characteristic length of
the material or structure.

2. The stress redistributions, along with the consequent energy release caused by a large FPZ or stable
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crack growth before the maximum load, engender a deterministic size e�ect, which is ignored.
3. In Weibull theory, every structure, as can be shown, is mathematically equivalent to a uniaxially

stressed bar of a variable cross section, which means that no information on the structure geometry
and the failure mechanism is taken into account.

4. The theory predicts rather di�erent size e�ects for two- and three-dimensional scalings, which
contradicts experimental evidence.

5. The theory does not agree well with the recent test results for concrete structures and sea ice plates,
which show that the doubly logarithmic size e�ect plot of nominal strength versus size is not a
straight line but a descending curve whose slope is getting steeper as the size increases, approaching
the LEFM slope -1/2.

6. The classical Weibull theory ignores spatial correlations of the failure probabilities of neighboring
material elements, while generalizations based on some hypotheses about load sharing have been
purely phenomenological, not re¯ecting the nonlocal characteristics of damage evolution.

3. Quasibrittle size e�ect and its history

The hypostatic property of quasibrittle materials is that fracture propagation depends both on the
fracture energy of the material, Gf , and material strength, s0. This fact implies Irwin's (1958)
characteristic length l0 � EGf=s20, which approximately characterizes the size of the FPZ (E = Young's
modulus). Thus the key to the quasibrittle size e�ect is a combination of the concept of strength or yield
with fracture mechanics.

Application of LEFM to concrete was ®rst considered by Kaplan (1961) but subsequent test results
showed signi®cant disagreements (Kesler et al., 1971; Leicester, 1969; Walsh, 1972; Walsh, 1976).
Leicester (1969) conducted tests of geometrically similar notched beams of di�erent sizes, ®tted the
results by a power-type size e�ect, and observed that the optimum exponent was greater than ÿ1/2, the
value required by LEFM. He tried to explain it by noting that the strength of the stress singularity for
sharp notches of a ®nite angle is less than for sharp cracks. This explanation, however, is questionable
because notches of a ®nite angle cannot propagate, and because the singular stress ®eld of notches of a
®nite angle gives a zero energy ¯ux into the notch tip. Besides, Leicester's power law for size e�ect
implied nonexistence of a characteristic length. Based on more extensive tests of geometrically similar
notched beams of di�erent sizes, Walsh was the ®rst to make the doubly logarithmic plot of nominal
strength versus size and note that it appears to be transitional between plasticity and LEFM, although
he did not attempt to make a mathematical analysis and obtain a formula.

A di�erent type of quasibrittle size e�ect was brought to light by Hillerborg et al. (1976) (see also
Petersson, 1981), who extended the models of Barenblatt (1959) and Dugdale (1960) to formulate the
cohesive (or ®ctitious) crack model for concrete characterized by a softening stress-displacement law for
the crack opening. By ®nite element analysis, they showed that the failures of plain concrete beams
exhibit a deterministic size e�ect, which agrees with the test data on the modulus of rupture.

At the same time, stability analysis of postpeak strain softening damage revealed that its localization
into a damage band engenders a deterministic size e�ect on the postpeak de¯ections and energy
dissipation of structures (BazÏ ant, 1976). The crack band was shown to play a role similar to a sizable
FPZ. Approximate energy release analysis has led to a simple formula for the size e�ect law in
quasibrittle structures with a large crack at maximum load (BazÏ ant, 1984): sN0 (1+b )ÿ1/2 where b=
D/D0=relative size of structure characterizing its brittleness and D0=constant.

Later, this simple law was derived on the basis of asymptotic energy release analysis and equivalent
LEFM (BazÏ ant and Kazemi, 1990; BazÏ ant and Planas, 1998). This also led to expressing the geometry
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e�ect on the coe�cients of this law through the LEFM energy release functions. Measurement of the
size e�ect on the maximum load of notched specimens were shown to provide a simple means for
determining the fracture energy and the e�ective length of FPZ, as well as the R-curve, and were
embodied in a standard RILEM Recommendation (1990). The aforementioned size e�ect law was
shown to agree with the test data of Walsh (1972) as well as with many subsequent test data of a much
broader range, including not only concrete and mortar but also rocks, ®bre-polymer composites, tough
ceramics, sea ice and wood. The law was shown to also closely match the ®nite element results of the
simple crack band model (BazÏ ant and Oh, 1983), used in commercial codes (e.g. DIANA, SBETA;
Cervenka and Pukl, 1994), as well as the cohesive crack model (BazÏ ant and Planas, 1998).

The late 1980's saw a great surge of interest in the quasibrittle size e�ect and many researchers made
valuable contributions (Planas and Elices, 1988, 1993, 1989; Petersson, 1981; Carpinteri, 1986; to name
but a few). Recently, the problem of size e�ect in concrete structures has become a major theme at
conferences (BazÏ ant, 1992a, 1992b; Mihashi et al., 1994; Wittmann, 1995; Mihashi and Rokugo, 1998;
BazÏ ant and Rajapakse, 1999).

4. Recent studies of energetic size e�ect in quasibrittle structures

The source of the energetic size e�ect, brie¯y stated, is a mismatch between the size dependence of the
energy release rate and the rate of energy consumption by fracture. A signi®cant part of the former
increases as the square of the structure size, while the latter increases in proportion. Therefore, the
nominal stress must decrease to reduce the energy release rate of structure so as to achieve a match.

Two simple kinds of size e�ect may be distinguished:

1. the size e�ect in structures with notches or large cracks at the maximum load, and
2. the size e�ect when the failure occurs at the initiation of fracture from a smooth surface.

The former is typical of reinforced concrete structures in which the reinforcement makes possible
stable growth of large cracks before the maximum load, and it also occurs in situations in which there is
a large compressive stress parallel to the crack (e.g., the fracture of dams). The latter occurs when the
maximum load in a material with a large FPZ is reached at fracture initiation from the surface (e.g., the
modulus of rupture test).

A strong compressive stress with insu�cient lateral con®ning pressure produces damage in the form
of axial splitting cracks. This damage localizes into a band which can propagate either laterally or
axially.

In the case of axial propagation, energy gets released only from the band and not from the rest of the
structure. Because this energy release is proportional to the length of the band, there is no size e�ect.

In the case of lateral propagation, the stress in the zones on the sides of the compression damage
band gets reduced, which causes an energy release that grows in proportion to the square of the
structure size, while the energy dissipated in the band grows linearly with the size. Similar to tensile
fracture, the mismatch of energy release rates inevitably produces a size e�ect. Because of the size e�ect,
the failure by lateral propagation must prevail for su�ciently large sizes. Under the assumption that the
spacing of the axial splitting cracks in the propagating band is independent of the structure size, a
similar size e�ect law as for tensile fracture is obtained, except for an additive constant. However,
minimization of the strength indicates that the crack spacing should increase with the structure size, in
which case the analysis leads to a slightly di�erent size e�ect formula which approaches in the doubly
logarithmic plot an asymptote of slope ÿ2/5 rather than ÿ1/2. This formula was applied to describe the
size e�ect on the breakout of boreholes in rock (BazÏ ant and Planas, 1998), revealed by tests of Carter
(1992) and Carter et al. (1992).
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A particular type of compression failure is observed in ®ber composites with unidirectional
reinforcement (Rosen, 1965; Argon, 1972; Budiansky, 1983; Budiansky et al., 1997). It involves
transverse propagation of a kink band in which the ®bers undergo microbuckling. Axial shear-splitting
cracks develop between the ®bers and the axial normal stress transmitted across the kink band gets
gradually decreased during microbuckling and probably approaches some ®nite residual value. Recent
size e�ect tests of geometrically similar PEEK-carbon ®ber specimens revealed the existence of a
signi®cant size e�ect (BazÏ ant et al., 1999). Analysis of the energy release during the propagation of the
kink band, coupled with plasticity type analysis of the residual carrying capacity, led to a size e�ect
formula that is similar to that for compression fracture of concrete. This formula matches the test
results reasonably well.

The size e�ect is important for the failure of ¯oating sea ice plates in the Arctic. One problem that
has been extensively investigated is the capacity of ice plate to carry concentrated vertical loads or its
resistance to an object trying to penetrate the plate from below. Aside from the need to analyze
fracture in a plate on elastic foundation, a particular di�culty in this problem is the ®nding that the
radial cracks emanating in a star pattern from the loaded area reach only through a part of the
thickness, the depth pro®le of these vertically growing cracks being quite variable. The problem has
recently been analyzed in great detail numerically, and the calculations have again revealed a size
e�ect that represents a bridging between plasticity, applicable for ice plates less than about 0.2 m
thick, to LEFM, applicable for thicknesses over about 0.5 m (BazÏ ant and Kim, 1998a, 1998b). The
results of this analysis agree reasonably well with experiments. The size e�ect is also manifested
acoustically (Li and BazÏ ant, 1998).

Another type of size e�ect in ice which has proven to be easy to analyze is the e�ect of ice thickness
on the propagation of long thermal fracture caused by rapid cooling in the Arctic. These fractures can
run for tens of kilometers and, curiously, are not bypassing the areas of thick ice but pass straight
through them. An energy release analysis of the size e�ect showed that the critical temperature drop
that causes propagation of such thermal cracks is inversely proportional to the ÿ3/8th power of ice
thickness. It came as a surprise that the exponent was not ÿ1/2, however, it was found that this
apparent anomaly is caused by the fact that the ¯exural wavelength of the ¯oating ice plate, governing
the decay of the unloading bending moments away from the fracture, is proportional not to the ice
thickness but to its 4/3rd power.

Recent experiments have further demonstrated that ®ber composites, e.g. of carbon-epoxy type,
exhibit a strong size e�ect, and that the size e�ect is reasonably well described by the aforementioned
size e�ect law for quasibrittle tensile fracture (BazÏ ant et al., 1996). In the case of such composites, an
additional di�culty is that the energy release functions of LEFM must be calculated taking into account
the orthotropy of the material. Demonstration of the existence of the size e�ect implies that that it
ought to be taken into account in the design of large load-bearing fuselage panels, hulls of large ships,
ship decks, bulkheads, stacks, masts etc. The statistical size e�ect of course also occurs in composites
(e.g. Jackson et al., 1992).

Important fracture experiments on sea ice, and size e�ect tests of by far the broadest range ever
conducted, have been reported by Dempsey et al. (1995) (also Mulmule et al., 1995). They deal with the
horizontal propagation of full-through cracks (induced by horizontal forces of ¯at jacks inserted into a
vertical notch) in ¯oating notched fracture specimens of sizes from 0.5 m to 80 m. Good agreement with
the aforementioned size e�ect law has been found. Extrapolation up to sizes of several kilometers was
found to agree with the measurements of horizontal forces exerted by a moving ice ¯oe on an oil
platform in the Arctic, while previous predictions based on the laboratory strength of sea ice were an
order of magnitude higher. In detail, see the article by Dempsey et al. (1999) in this volume.

In view of the energetic mechanism, it is not surprising that the size e�ect also a�icts the static
fatigue crack growth in quasibrittle materials such as concrete. The Paris-Erdogan law for static crack
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growth needs to be corrected with a factor based on the aforementioned size e�ect law. Such an
extended formula has been shown to agree closely with test results.

Calculation of the size e�ect in structures with the cohesive crack model is considerably more di�cult
and is normally carried out by ®nite elements. However, it has recently been found that the maximum
loads for structures of various sizes can be calculated directly, without integrating the load-de¯ection
history (provided that no unloading occurs in the cohesive crack during the loading process). The
analysis is reduced to one homogeneous Fredholm integral equation whose eigenvalue is the structure
size for which a given relative fracture length leads to a maximum load (Li and BazÏ ant, 1997). The
maximum load may then be evaluated from the eigenvector as a ratio of two integrals. In this manner, a
parametric description of the size e�ect curve for the cohesive crack model is obtained.

The capability to correctly reproduce the size e�ect is an important check on the validity of any
computational model for a quasibrittle structure. To simulate the quasibrittle size e�ect transitional
between plasticity and LEFM, nonlocal material models must be used for the description of softening
damage in ®nite element programs. These can consist either of an integral-type nonlocal formulation or
its approximation by a second-order gradient model. As a simple approach to simulate the size e�ect,
the crack band model, in which the size of the elements in the crack band is considered to be a material
property, may be employed (BazÏ ant and Planas, 1998).

The energetic theory of the quasibrittle size e�ect is strictly deterministic, yet the material properties
are certainly random. Does this randomness have any e�ect? It does, but on the mean only little.
Studies of this question have indicated that, because of stress redistributions and concentrations due to
fracture, the mean statistical size e�ect is wiped out. The reason is that the FPZ is approximately of the
same size for structures of various sizes, and the major contribution to the Weibull probability integral
over the structure volume comes from the FPZ. The randomness of the material nevertheless intervenes
in the mean asymptotic behavior. For the size e�ect applicable to notched structures or structures with
large cracks, there is a transition of the quasibrittle size e�ect to the Weibull type size e�ect for very
small sizes for which the FPZ occupies essentially the entire structure. On the other hand, for structures
failing at the initiation of macroscopic fracture, there is a transition to Weibull type size e�ect for
structures of very large sizes. These transitions to probabilistic behavior, however, appear to take place,
at least for concrete structures, outside the size range that is of practical interest (BazÏ ant and Chen,
1997).

5. Other types of size e�ect and the fractal hypothesis

When the material exhibits time-dependent behavior such as viscoelasticity or viscoplasticity (creep), a
di�erent type of size e�ect, varying with time, is engendered. The reason is that the presence of viscosity
in the material model implies a characteristic length of the material (material viscosity divided by wave
velocity and mass density), as well as a characteristic time (the time a wave travels the characteristic
length). The characteristic length poses a limit on the localization of damage within a ®xed time interval
and thus may produce what looks as a quasibrittle size e�ect bridging plasticity and LEFM. There is a
di�erence, however. The localization limiting properties as well as the size e�ect engendered by material
viscosity exist only within a certain limited range of loading rates and durations of loading. When this
range is exceeded by a factor of 10 or more, these properties disappear. On the other hand, various
quasibrittle materials, for example concrete, exhibit size e�ect and damage bands of ®nite thickness over
an extremely broad range of delay times (load durations) or loading rates, spanning over about ten
orders of magnitude. Such behavior cannot be captured by viscosity, and the energetic size e�ect
discussed before is the proper approach.

Considerable interest and polemics have recently been generated by the idea that the physical origin
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of the size e�ect observed in concrete structures might be the partly fractal nature of the crack surfaces
and the distribution of microcracks in concrete (e.g., Carpinteri, 1994; Carpinteri et al., 1994; Carpinteri
and Chiaia, 1995). Based on strictly geometric arguments, these authors proposed what they called the
``multi-fractal scaling law'' (MFSL), to be applied to the size e�ect in failures occurring at fracture
initiation from a smooth surface. Four objections to this idea have, however, been raised (BazÏ ant,
1997b):

1. A mechanical energy-based analysis (of either invasive or lacunar fractals) predicts a size e�ect trend
that di�ers from MFSL and also disagrees with test data.

2. The fractal nature of the ®nal fracture surface cannot matter because typically about 99% of energy
is dissipated not on the ®nal fracture surface but by microcracks and frictional slips in the FPZ at
points lying away from that surface.

3. The fractal theory does not predict how the coe�cients of MFSL depend on the structural geometry,
which would greatly reduce the usefulness of MFSL for the design of structures.

4. The same formula as MSFL has been logically derived from (nonfractal) fracture mechanics, by
asymptotic expansion of the energy release function of LEFM near the surface (BazÏ ant, 1998).

Unlike fractality, the fracture explanation of the MFSL formula has the virtue that the geometry
dependence of the coe�cients of the MFSL formula can be readily determined, using LEFM.

In addition to the statistical, energetic quasibrittle and viscous size e�ects, there are three other types
of size e�ect in¯uencing the nominal strength of structures:

1. The boundary layer e�ect, arising from material heterogeneity, namely the fact that near the
boundary the microstructure of heterogeneous material is di�erent because:

(a) the aggregates or other inhomogeneities cannot protrude through the surface, and also
(b) because the Poisson e�ect causes the statistical microstress distributions to be di�erent than
those in the interior.

2. The existence of a three-dimensional stress singularity at the intersection of crack edge with a surface,
which is also engendered by the Poisson e�ect (BazÏ ant and Planas, 1998; Sec. 1.3), and causes the
portion of the FPZ near the surface to behave di�erently from the interior portion.

3. Further time-dependent size e�ects caused by di�usion phenomena such as the transport of heat or of
moisture and chemical agents in porous solids, which is manifested, e.g., through the e�ect of
structure size on the shrinkage, drying creep and cracking of concrete, due to the size dependence of
the drying half-times (Planas and Elices, 1993).

6. Closing comments on research trends

Although a large progress has been achieved in the understanding of the size e�ect in solids, and
quasibrittle materials in particular, much further research is needed. Since the physical basis of size
e�ect and the characteristic material length resides in the nonlocal behavior of the material, the
modeling of the physical processes in the microstructure which endow the material with nonlocal
characteristics needs to be greatly improved, and the bridging between the microscale of a heterogeneous
material with distributed microcracks and frictional slips on one hand, and the macroscopic continuum
description on the other hand, needs to be mastered.

Much enlightenment, though, can be gained from ®nite element and discrete element modeling of the
microstructure, especially if it can be extended to a truly three-dimensional modeling. Analytical
descriptions of the connection between the microstructural phenomena and the macroscopic continuum
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are nevertheless extremely important, for only those descriptions can provide true understanding. Only
they can capture the main aspects of the behavior and obviate the unimportant microscopic phenomena
that cancel each other on the macroscale.

While the existing nonlocal models are essentially phenomenological, relying on assumed scalar spatial
averaging of damage, the damage interactions are in reality oriented and tensorial. The e�ect of each
microcrack or slip on another microcrack or slip, which is the source of nonlocality, decays with
distance by rules dictated by elasticity. If all such behavior is taken into account, the conclusion is that
the nonlocal spatial interactions must be tensorial and directional, that is, the kernel of the spatial
integral providing the macroscopic smoothing should be based on the stress ®elds of microcracks and
frictional slips and their long-range decay. Statistical arguments on the microstructural level should of
course be also introduced to obtain the macroscopic average behavior as well as its variance.

In general, the statistical treatment of the size e�ect needs to be greatly improved with respect to
localization (e.g. BazÏ ant and Cedolin, 1991), and a full marriage of Weibull statistical theory with the
energetic quasibrittle size e�ects in the interior and in the boundary layer of structures needs to be
achieved. Simple design formulae for various design situations, for example the diagonal shear and
torsional failures of reinforced concrete beams or punching shear failures of slabs (e.g. Reinhardt 1981;
Walraven and Lehwalter, 1994; BazÏ ant and Planas, 1993), as well as the tensile and compressive
fractures of load-bearing ®ber composite structures such as ship hulls, bulkheads and decks or load-
bearing fuselage elements, need to be developed.

Finally, some segments of the engineering community need to be educated in the concepts of fracture
mechanics, including the size e�ect aspects, in order to be willing to accept new improved design
procedures, e.g., for concrete structures or ®ber composites.
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