1 Books

1.1 Textbooks and Monographs

1.2 Published Lecture Notes

1.3 Books Edited, with Chapters Contributed

2 State-of-Art Articles and Research Review Articles

3 Contributed Wikipedia Articles

W3. “Energy-Consistent Objective Stress Rates.” Contributed to Wikipedia in 2013 by Z.P. Bažant (with J.
4 Research Articles in Refereed Journals and Book Chapters

1958

1961

1962

1963

1964

1965

1966

1967

27. Bažant, Z.P. (1967). “Linear creep problems solved...

1968

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

289A. = 310 = Part 7 of this series.

1993

1994

1995

1996

1997
1998
1999

2000

2001

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

In Press:

5 Selected Other Articles – Public Policy

6 Published Biographies and Volumes Dedicated to Bažant

A3’, Editorial, “Prof. Bažant Visiting CTU (Czech Technical University) in Prague” (Professor Zdeněk P. Bažant opět na ČVUT v Praze), Prašská Technika 2003 (No. 2), 10–11.

A10. Ta-Peng Chang and Jenn-Chuan Chern (2007), Proc., Asian Special Workshop on Concrete Technology in Honor of the 70th Birthday of Prof. Zdeněk P. Bažant,” National Taiwan University of Science and Technology, Taipei, Nov. 2

A13. Sarah Ostman, “Concrete Results” (life story and achievements of Bazant), McCormick Magazine, Fall 2012.

7 Research Articles in Conference Proceedings

......many.

257–278.

in Geomechanics, ed. by Z. Eisenstein, held at University of Alberta, Edmonton, Vol. 3, 1137–1152.

and Damage”, ed. J. Mazars and Z.P. Bažant, held at E.N.S., Université Paris VI, Cachan, 1988)

tural failure be explained by fractal nature of cohesive fracture?" 284–299.

“Consequences of ignoring or mis-judging the size effect in concrete design codes and practice.” Proc., 3rd Structural Engineers World Congress, Bangalore, India, Nov. (a slightly expanded version was published, with authorization, as article 473).

“Recent progress in energetic probabilistic scaling laws for quasi-brittle fracture.” Proc., IUTAM Symp. on Scaling in Solid Mechanics (held at the University of Cardiff, UK, June), Springer, pp. 135–143.

“Recent multi-decades of prestressed concrete bridges: How to avoid them and how to exploit their monitoring to improve creep prediction model”. ibid., pp. 827–834.

“How to enforce non-negative energy dissipation in microplane and other constitutive models of softening damage, plasticity and friction.” Computational Modeling of Concrete structures (EURO-C Conf., Schladming/Rohrmoos, Austria), N. Bí čaní et al., eds., Taylor & Francis, London, pp. 87–91.

“Statistical aspects of quasibrittle size effect and lifetime, with consequences for safety and durability of large structures.” in Fracture Mechanics of Concrete and Concrete Structures— Recent Advances in Fracture Mechanics of Concrete (Proc., FraMCoS-7, 7th Int. Conf. held in Jeju, Korea, plenary lecture), B.-H. Oh, ed., publ. by Korea Concrete Institute, Seoul, pp. 1–8.

“Nonlocal boundary layer (NBL) model: overcoming boundary condition problems in strength statistics and fracture analysis of quasibrittle materials,” ibid., pp. 135–143.

“Misconception on variability of fracture energy, its uniaxial definition by work of fracture, and its presumed dependence on crack length and specimen size,” ibid., pp. 29–37.

“Recent multi-decades of prestressed concrete bridges: How to avoid them and how to exploit their monitoring to improve creep prediction model”. ibid., pp. 827–834.

“Excessive multi-decades of prestressed concrete bridges: How to avoid them and how to exploit their monitoring to improve creep prediction model”. ibid., pp. 827–834.

“Excessive multi-decades of prestressed concrete bridges: How to avoid them and how to exploit their monitoring to improve creep prediction model”. ibid., pp. 827–834.

Discussions and Rebuttals in Journals

Over 60 items