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The delayed thermal dilatation of cement paste and concrete is caused by the diffusion of molecules of water
and other species along mono- or multimolecular layers. Applying thermodynamics to this diffusion mechanism,
the macroscopic constitutive equation is derived for the case of constant water content. Three different components
of thermal dilatation are distinguished: (1) pure thermal dilatation, due to thermal dilatation of constituents; (2)
thermal shrinkage or swelling, due to differences in latent heat (and entropy) along the diffusible layers; (3)
hygrothermic dilatation, due to a change in relative vapor pressure with temperature at a constant water content.
The first two components lead to delayed recovery while the third one results in continued delayed thermal
dilatation. The dependence of these components on the water content is discussed. The theory is important for the
thermoviscoelastic analysis of prestressed concrete reactor pressure vessels.

1. Introduction

In the design of concrete structures it has been
generally assumed that the temperature dilatations
occur simultaneously with the temperature change
in the given small element of the structure, and that
the thermal dilatations do not depend on the water
content of concrete. Experiments [6,7, 11, 12] have
shown, however, that these assumptions are not true.
Concrete exhibits also a delayed response to tempera-
ture change, and this response depends strongly on
the degree of water saturation. These observations
have serious implications for the stress analysis of
certain modern concrete structures, such as prestressed
concrete reactor pressure vessels, in which tempera-
ture induces large stresses. It is obvious that for such
structures an accurate representation of thermal
dilatations is rather important.

It has been recognized long ago that the main
source of the delayed response of concrete to load
or change of ambient humidity is the diffusion
of water. In terms of adsorbed water this effect has
first been described by Powers [8, 9]. He was also
first to discuss the problem from the viewpoint of

thermodynamics. A constitutive equation for creep
and shrinkage, based on Powers’ ideas, has been devel-
oped by the author, for both volumetric and deviatoric
deformations, in 1968 [1], and further refined in
1969 [2] . The intent of the present paper, which is
based on Part Il of author’s unpublished report [2],

is to apply this theory to thermal dilatations and to
discuss their dependence on water content. The
physical arguments leading to the present theory will
be outlined only briefly because they have already
been presented in detail in refs. [1, 2] where an
extensive bibliography can also be found. The method
of stress analysis must be left out of consideration in
this paper, although it has already been developed

in report {3].

2. Diffusible layers

Portland cement paste is a strongly hydrophylic
porous material (of average porosity 0.40 to 0.55),
whose solid microstructure contains a large number of
thin layers of water molecules along which a diffusion
of water takes place. These layers are therefore called
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diffusible layers. The layers which are no more than
about 10 molecules thick represent hindered adsorbed
water layers. The layers which are about one or two
molecules thick correspond to what is called
evaporable interlayer hydrate. The thinnest of the
capillaries, i.e. layers filling pores which are little more
than 10 molecules thick, can be eventually also
counted to the diffusible layers. The rate of diffusion
increases with the thickness of layer, and therefore
the longest delays in creep are due to interlayer
hydrate, and the shorter delays to capillary water.
Cement paste also includes macropores containing
water vapor (and air), freely adsorbed water at the
solid surface, and at higher humidities liquid (capil-
lary) water. Diffusion along the diffusible layers
involves not only water but also the molecules of
other species forming the solid structure. These
molecules can dissolve into the layer, diffuse along it
(with the water molecules) and precipitate in the
macropores near the boundary of layer (or can run
through the reverse process). This process may lead to
gradual changes in the solid microstructure. The

exact physico-chemical description of these
phenomena is still unresolved but the forthcoming
general mathematical formulation does not require
such details.

The basic idea is that the time-dependent macro-
scopic deformations are caused by a change of thick-
ness of diffusible layers resulting from diffusion, i.e.
from the transport of matter between the layers and
the macropores (in either direction), or between
different parts of layers. The diffusion may be
induced by changes in stress, in temperature and in
humidity of vapor in the macropores.

Any diffusion is governed by the differences or
the gradients in partial Gibbs’ free energy u, (called
also chemical potential [51); subscript d refers to
the diffusible layer. For a small diffusion rate, the
average speed of migration of molecules along the
diffusible layer in a given cross section of layer, v,
may be assumed as proportional to grad u4. Thus

V=—apq grad py , ¢))

where a = rate constant and pq = mass density in
diffusible layer; p4 is introduced as a dimensional
constant for convenience. Because diffusion is a
thermally activated process, dependence of the

rate constant on absolute temperature 7 must obey
the Arrhenius equation [4], i.e.

a=ay & 2/ ®RD

(1a)
where a; = parameter independent of T', R = gas
constant, 0, = activation energy of this type of
diffusion; ay- itself further depends on the N
thickness & of diffusible layer (probably a; =ay87,
where m > 2, ay = constant).

The partial Gibb’s free energy u is normally
defined as uy = Ug — TSy +pgpg !, where py =
pressure, Uy = total energy per unit mass, Sy =
entropy per unit mass [5]. The total differential of
g, which may be determined according to the first
and second laws of thermodynamics, is [5]:

dug=—S,dT +p3'dp, . )

In a thin diffusible layer the state of stress cannot
be expected to be hydrostatic. Then the expression
for 4 must be enlarged as follows:

g=Ug =T Sy +paoz' - PdgS;€i; >
where s;; and e;; are the deviators of stress and strain
in the diffusible layer (s;; =ezx =0); —pq is
volumetric component of stress tensor, and Pag is
the value of p4 for s; ;i = e = 0. However, if stresses
and deformations are small the term pdpgl is small
of first order while the term p,;s;se;; is small of
second order and can thus be dropped without
committing any significant error (in detail cf. [2]).
Therefore eq. (2) may be adopted for thin diffusible
layers, provided that —p is understood as the volu-
metric component of stress tensor.

The form of the relationship between the stresses
and the strains in the diffusible layer can be derived
either from uy or from the partial Helmholtz free
energy, F . The latter is here more convenient. It is a
function of temperature T and transversal strain e in
the diffusible layers, i.e. Fy = Fd(el, T); €y = Al /1,
where [, is the average transversal distance between
molecules in the chosen initial state and Al; is the
change of /; . In general Fy would also be a function
of the strains €,, €3 along the diffusible layer. But
€, and €, are not independent variables because the
average longitudinal distance of water molecules
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Fig. 1. Idealized hindered adsorbed water layer.

must be the same as the distance of the minima of
the potential energy of the attractive and repulsive
forces of molecules at the surface of solid particle.
Obviously this distance is determined by the state of
the solid surface.

The stress conjugate to —e; is a negative normal
stress or transversal linear pressure which will be
called disjoining pressure, P disj (fig. 1). It is defined
as Pag = — p'alo (8F4/9¢€;). Analogously, the
volumetric pressure py = 8F 4/3(pq 1) because. pal =
volume per unit mass. Both Pgisj and py are also func-
tions of T and €; but no other variable. This may be
expressed as follows:

dpdig' =—Ci(dey — aydT),

dpg = — Cy(dey — a,dT); 3)
where

Cy =— Bpgisjlde; = pg, (B%F4/del)

Cy = dpg/de; = B2F4/de; (o3,

Cre) = 3pgsilT = — p3 | (92F4/0e;3T),

Crap =3pg/dT = 32F4/d(p3 ") oT . (3a)

The constants C; and C; may be regarded as elastic

moduli and @y, &, as certain coefficients of thermal
dilatation of the diffusible layer.

Applying classical thermodynamics it must be kept
in mind that only the avarage behavior of sufficiently
large ensembles of molecules can be predicted. For an
adsorbed layer not more than a few molecules thick
it makes thus no sense to distinguish between the
pressure at various distances from the solid surface.
Therefore the pressures py and Pgisj represent only
the averages over an ensemble extending over the
full thickness of layer, over a sufficiently large area
of the solid surface and over a large number of
diffusible layers of the same type. Thus, e.g., p4
should be understood just as a notation for
o 1(3?7(1 /dN) where N is the number of molecules
in the above mentioned ensemble and %, is the
Helmholtz free energy of this ensemble (corresponding
to the partition function of the canonical ensemble
in statistical thermodynamics).

Because of high porosity (which equals 0.40 to
0.55 on the average, 0.28 as a minimum) and high
internal surface (about 5 X 106 cm? per cm3) of
cement paste, the total thickness of all hindered
adsorbed water layers intersecting a unit length is
not small with respect to unity. Further it follows
that for small macroscopic deformations of concrete
the relative change of average thickness of hindered
layer must be small. The change of dimensions of the
nonsaturated macropores (containing air bubbles),
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and the change in the water content of the macro-
pores caused by deformations, must be small, too.
Consequently, the humidity & of water vapor in the
macropores is practically independent of the macro-
scopic deformation. Furthermore, the location x,
(fig. 1) of the end of the diffusible layer, the half
thickness of layer at this point, §,, and the
volumetric pressure at this point, p,, all are functions
of # and T only. Humidity 4 can further be regarded
as a function of T and the water content w per unit
volume of porous material. If w is constant (at
variable T'), then §, and x,, are also approximately
constant.

The values of p,, 5, and x, provide the boundary

conditions for the diffusion along the diffusible layers.

The eqs. (1-3) and the functions p,(h,T), §,(h, T)
and x,(k, T) are all what is needed to determine the
response of a diffusible layer of known geometry at a
prescribed variation of load, temperature and water
content w. Variation of water content w adds more
complexity to the problem than the other parameters.
In the sequel only constant w will be considered. This
is the case for a perfectly sealed, very mature
specimen, at a variable, but almost uniformly
distributed temperature.

3. Deformation due to diffusible layers

The qualitative character of response of material
at a constant w can be obtained most simply,
assuming one layer of constant thickness § 4 and
length f4 = 2x,, with a unidirectional diffusion
(fig. 1). The thickness § 4 is now imagined to
represent the total thickness of all diffusible layers
intersecting a unit length (64 < 1); fy characterizes
the effective average area of the diffusible layers in a
unit volume and is called the area factor of diffusible
layers (f4 <'1). The small change of thickness &4,
caused by deformation, will be denoted by €.
Obviously de; in eq. (2) equals de4/84. If the
diffusible layer were incompressible in volume, the
speed of flow of water molecules at the end of layer,
v, would satisfy the relationship & yuds = fydey. For a
compressible layer the conservation of mass requires
to subtract the volume f383de; from fydeg, ie.
dqudt =f4(deq — 54de; ). According to eq. (3),

= _ —El._,
where
Paisi = — 9qisj/fa - (5)

Here p 4 is the average disjoining pressure over the
area of the diffusible layer and 0 gisj is the resultant of
Pgisj OVver a unit cross section of porous material. The
speed of flow, v, may be also expressed according to
eq. (1) as follows

v=—apg Agld, 6

where d is a certain effective distance giving the
average gradient and Al 4 is the difference between
the average values of uy within the diffusible layer
and the value at its boundary. Because of eq. (2),

Ay =(S, =S AT +p7' (85— Bp), (D)

where AT is the change of temperature T with

respect to temperature Ty in the initial equilibrium
state (AT =T — T), Ap 4 is the change of the

average value p 4 of pressure p4 relative to the initial
equilibrium state; Ap,, is the change in pressure p, at
the end of layer, due to a change in T and ;.S 4 is the
average entropy per unit mass in the diffusible layer
and S, is the entropy at the end of layer. According
to eq.(3), the value Apj is related to Al—’disj as follows:

G
Aﬁd=aAdej +C2(a2 —al)AT. (8)

The significance of the entropy term in eq. (7) is
given by the second law of thermodynamics. If the
zero level of entropy is chosen as the entropy of
water vapor in the initial equilibrium state, then

Sa—S‘d=(Qdﬁ_Qa)/T ’ . (9)

where Q, = latent heat of free adsorption per unit
mass at initial temperature T, initial humidity A,

and the corresponding thickness §, at the boundary of
diffusible layer; Q4 = average latent heat of water in
the diffusible layer (hindered adsorbed layer) per unit
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Fig. 2. Approximate form of the dependence of the

hygrothermic coefficient upon humidity 4. The two marked

points are results from two different tests, one (x) by

B.M.Jensen on concrete (cf. [2]) the other by G.E.Monfore

(Portland Cement Assoc., Skokie, Ill.) on mortar (privately
communicated).

mass in the initial state. Because the latent heat of
adsorption is increasing as the thickness of the
adsorbed layer decreases, Qd — @, is always positive.

The change Ap, of pressure p, caused by a change
of T at constant water content w may be expressed
as follows:

Ap, =pa0xaAT ,  where PagXa = (8p,/dT),,

(10

in which py, is the initial value of p,. The coefficient
K, can be expressed in more detail. Namely, p, is
approximately given by the expression (see [8, 1, 2]):

p,=pR/M)Tnh, (1)

where R = gas constant, M = molecular weight of
water. This expression is the same as the Kelvin
equation for the pressure in the capillary water and

is valid so long as the mass density at the end of the
diffusible layer is approximately equal py =1 g/ cm3,
the density of liquid water. Such an assumption
about mass density seems to be admissible if the

free adsorbed layer is at least as thick as a monomole-
cular layer (which means that, at 25°C, # > 0.12).
According to eqs. (11) and (10)

K 1

Ky =575 7, (12)
& “hylnhy T,
where
K = (3n/dT),, . (13)

Fig. 3. a) The simplest possible model for the interaction of

the diffusible layer with the elastic components of cement
paste and concrete. b) A more accurate model used in ref. [2].

The coefficient k is called hygrothermic coefficient.
It represents a change of humidity per 1°C at a
constant water content w. The theoretical analysis
[2] as well as experiments showed that « is always
non-negative. The approximate values and dependence
of k on A is given in fig. 2 (cf. [2]); for =0 and
h=1, K satisfies the obvious limit condition k = 0.
For the intermediate humidities for which x has the
maximum value, the first term in eq. (12) is about
10 to 20 times greater than 1/T, so that
K, = k/(h In h). The change of p, with T depends
thus primarily on the hygrothermic coefficient «.
Substituting egs. (8), (9), and (10) into (7), eq. (7)
into (6) and (6) into (4), the following equation may
be obtained:

d(Aey) 1 [(d(Aogi)
A G

dr K
d(AT '
+ag X801y (o — oy AT, (14)
where
__led —Cza _
4= 5 %=y o =84,

(15)
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, Pa —
aq =f4 [52(1?0 (Qd—Qa)+a2-0l1:|,

0 =7 — K,. (159

4. Constitutive equation at constant water content

For the interaction of a diffusible layer with the
solid framework of material it is necessary to
assume some simplified rheological model. The
simplest possible model consists of two springs and one
diffusion element representing the diffusible layer
(fig. 3). Because concrete differs from cement only in
that it contains an additional elastic component, the
aggregate, the model may be applied to both cement
paste and concrete but, of course, with different
values of parameters.

The extension of the model corresponds to the
volumetric strain €, defined as one third of the
specific volume change. The load on the model re-
presents the total volumetric stress ¢ in the porous
material.

Because of static equilibrium within the material,
the stress in the solid framework equals ¢ — o, where
g, is the volumetric resultant of the stresses in the
fluid part, i.e. the free adsorbed layers and capillary
water in the macropores, whose state is independent
of the deformation of the solid framework. Approxi-
mately

6a=_pafa’ (16)

where f,, is a certain area factor depending on the
water content w in the material. The value of £, is
constant if the water content w is kept unchanged.
The change Ag, is then simply equal —f,Ap, and,
substituting expression (10),

Aoy = —p, kAT . a7

The spring corresponding to the volumetric elastic
modulus K interprets the instantaneous deformations
of cement paste or concrete. Its coefficient of linear
thermal dilatation is ¢,. The spring with modulus
K and thermal dilatation coefficient a, interprets
the elastic restraint imposed by the solid framework

on the deformation e4 of the diffusible layer. Using
the geometrical and equilibrium conditions of the
model in fig. 3, the following relationships are
obtained:

Ao — Ao

a
Aed=Ae~( Ky +abAT),

Aogy; =40 — Ao, — K, (Aeg — a,AT)

KC
= (1 +K—b) (Ao — Ag,) — K Ac

+ K (o +a) AT . (18)

These relationships preclude that no aging (no
hydration) is going on so that K}, and K, may be
assumed as time-invariable. Substitution of expressions
(18) into (14) provides, after rearrangement:

1d(A0) v,/

d_(déte_) tere=rTar ke

+a$+‘pawu, (19)
where

K-1=k ' +(K +Kg !, (20a)

K l=k KT, (20b)

v=9q K J(K. +Kg), (200)

o= Cpure + g

Qoo = Qoo + a°°_hyg + a°°sh’ , 21

Qpure = (K (o +ap) + Ky(oq + a))/(K, +Ky),

f | (21a)
Qpyg =7§Pa0(%ﬁh_0 + 7-6 ) (21b)
awpure =0, tag, (21¢)

Kby  Ja K 1

Oo, =\gF7F>+—1Ip +
hyg KCC2fd Kog ] hO In ho To( ’ )
21d
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Kal Pa
amsh——fdz[@;(Qd—Qa)'{'az—al]. (21le)

It can easily be verified that the integral of eq. (19)
for o =0 and a general prescribed function AT(?) is as
follows

t
e(t)=[A@7) 9%)—) dr
0

t
=a AT(?) + f AT(r) Lp(t;7) dr (22)
0

where
A(E1) = Qoo + (0~ Otoo) €7 9U=T) |

Ly(t, 7)=— 0A(z, )/31 = — p(a — tico) e—w(t=7)
(23)

Here A(t, ) represents the temperature in time ¢ due
to a sudden unit change of temperature introduced in
time 7(r < t). The function L1(¢, 7) may be called,
in analogy with the terminology in the theory of
viscoelasticity, the temperature memory function.

A special case of interest is the variation of |
temperature at a constant rate T, ie. AT(¢) =Tt
(fig. 4). In this case

Ae(?) = T [@oo t + (0 — aoo) (1 — e7¥Y)/y] ,
d(Ae(t)/de = T [atoo + (@ — aec) €71,
d(Ae(0))/dt =oT . (24)
Analysis of temperature induced stresses would
require to derive also the constitutive equation for
deviatoric deformations [1, 2}.
5. Discussion of temperature dilatations
In eq. (19), v is a rate constant whose inverse
has the dimension of time and represents the

retardation time, a characteristic of the delay of
response; K represents the instantaneous volumetric

Fig. 4. Response to a constant rate of temperature change and
subsequent recovery according to eq. (19).

modulus, and « is the instantaneous coefficient of
thermal dilatation. When the material comes to rest,
i.e. all time derivatives become zero, eq. (19) reads
Ae =A0 /Koo + 0oo AT. Therefore Koo is the final
volumetric modulus and ae is the final coefficient of
thermal dilatation.

It is necessary to emphasize that the attributes
“‘instantaneous” and “final” have only a relative
meaning because eq. (19) is a simplified equation
valid only for a limited range of the response delay;
for instance if ¢~ 1 = 30 days, then K should define
about a 3-day response and Koo about a 300-day
response; if ¢~ 1 =3 hr, then K should express
about a 20 min response and K« about a 30 hr
response. To fit a wider range, the model in fig. 3
would have to be enlarged by additional springs and
diffusion elements of different parameters. Eq. (19)
would then become a differential equation of higher
order and the functions A(¢, 7) and L(z, 1) would
take on a more complex form than indicated by
eq. (23).

In the sequel only the thermal dilatations at
0 =0, called free thermal dilatations, will be
discussed. These dilatations can be directly observed
only if both w and T are almost uniform throughout
the specimen. This can be practically achieved by
sealing the specimen against moisture exchange
without much reducing the heat exchange, and making
the specimen sufficiently thin for the desired rate
of change of temperature.

From eqgs. (21a—e) it is seen that according to the
physical origin three different components of free
thermal dilatation can be distinguished.
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1) Pure thermal dilatation. This is the
dilatation due solely to the coefficients of thermal
dilatation of the constituents of material, i.e. solid
particles, hindered adsorbed water layers etc. It is
interpreted by the coefficients ay,,; and Yoopure
{(egs. 21a, 21c), the first one for the instantaneous
dilatation. Because adsorbed water probably expands
more than solid particles of cement paste,

Cpure > awpum. Therefore, after the change of
temperature stops, deformation partly returns, not
proceeding further. The mechanism of the delayed
dilatation may be briefly described as follows: As the
temperature is raised, the hindered adsorbed water
layer becomes immediately compressed because of its
high thermal dilatation coefficient. Consequently, the
water molecules start flowing out of the layer, the
thickness of layer contracts and the compression is
gradually relieved until the values of the partial free
energy become adjusted.

2) Thermal shrinkage or swelling. This is the
delayed dilatation due to a4 (eq. 21e). It is caused
by the difference in the latent heats between the thin
hindered adsorbed water layers and the thicker free
adsorbed water layers. To some extent, it is also due
to the difference ay — a; between the thermal
dilatation coefficients in eq. (3). This effect may be
imagined as follows. If the temperature is raised, the
decrease of free energy in the hindered adsorbed
water layers is, as eq. (2) shows, less than that of the
thicker unhindered layers because of a higher latent
heat of adsorption. Consequently water must start
flowing out of the hindered layer and deformation
will recover, rather than proceed further. (To some
extent, thermal shrinkage is also due to the difference
ay — ay, between the thermal dilatation coefficients
ineq. (3).)

3) Hygrothermic dilatation. This is the dilatation
due to Ohyg and Qoonyg (egs. 21b, d). It is caused by a
change in the pressure p, in the free adsorbed layer,
which itself depends upon the change in free energy
of vapor or, ultimately, upon the difference in
entropies between vapor and free adsorbed layers.
(This has already been suggested as the source of
delayed thermal dilatations by Helmuth [6] and
Powers.) Considering the measured values of «

(fig. 2), it may be shown that the first term in eq. (12)

is much greater than the second term. Thus the
hygrothermic dilatation is primarily due to the

hygrothermic coefficient k. The instantaneous

~ component of hygrothermic dilatation arises in

order to restore static equilibrium between the
stresses in the solid framework and the stress
resultant in the fluid. The delayed component is
caused by the deviation from thermodynamic
equilibrium due to a change of humidity accom-
panying a change in temperature; restoration of|
equilibrium is achieved by diffusion that leads to
deformation of material. Because the hygrothermic
coefficient  is positive, oy, and Qoopyg 2T€ SO
positive. Therefore, unlike for pure thermal dilatation
and thermal shrinkage, the delayed component of
hygrothermic dilation is a continuing expansion
after warming and a contraction after cooling.

Expressions (21a—e) enable to investigate
theoretically the effect of the initial humidity 4 in the
specimen.

Examining eq. (21a), (21e) it is seen that
Opure ANd Gtooy must diminish as the water content is
decreased because f is smaller for a smaller  (fig. 5).

The hygrothermic dilatation behaves differently.
For a dry specimen and for a perfectly saturated

STEP INPUT OF
TEMPERATURE
To i
M (a) PURE THERMAL
- DILATATION
w
h=00
0 t
€ h =00 t
6‘ (b) THERMAL
h+07 SHRINKAGE
h=10
€ h=07
(c) HYGROTHERMIC
h=0.4 OR 0835 DILATATION
o} h*00 ORh=10 1

Fig. 5. Estimated typical response to a step input of

temperature for the three different components of thermal

dilatation, at various humidities 4.



316 DELAYED THERMAL DILATATIONS

Fig. 6. Family of thermal dilatation curves for various
humidities (estimated)

specimen this component is absent because the
hygrothermic coefficient x is zero for 4 =0 as well as
for 1= 1. (The latter follows by exclusion of the
opposite: If k were non-zero and positive at h =1,
then heating would cause 4 to increase above 1.0
which is impossible.) Coefficient k reaches a peak
value at some intermediate humidity, probably near
0.7 (fig. 2) because this is the humidity at which the
maximum thermal dilatations are observed (fig. 5).
Similarly as for ordinary shrinkage, the instantaneous
component will probably be relatively small.
Combination of these components may lead to
curves sketched in fig. 6. The possible magnitude of
the hygrothermic dilatation can be roughly estimated
with the help of expression (12). It was found by
measurements that k equals about 0.005/°C at
35°C and & = 0.55(cf. [2]). Thus k/(h In k) ~ 0.02,
1/T~0.001,x, =~ 0.02. The change of stress p,, also
causing shrinkage, is then 2% per 1°C or 100% per
50°C change. Therefore the magnitude of the
hygrothermic dilatation alone at a 50°C change in
temperature may roughly equal the shrinkage deforma-
tion occuring when humidity is decreased at constant
temperature from #=1 to h = 0.55.

6. Conclusion

1) The delayed thermal dilatations can be explained
by mass transport (diffusion).

2) In cement paste the mass transport (diffusion)
causing deformations occurs in thin “diffusible layers”
of water molecules, represented either by hindered
adsorbed layers, or by interlayer hydrate. The diffu-
sing molecules can be also other than water molecules.

o
] e

1 1 | 1
00 02 04 06 08 10 HMOTY

Fig. 7. Tests of Meyers [7, figs. 1, 3]. Thermal dilatation of
partially dried specimens (after a certain time); a — cement
paste (one inch thick prisms, stored at 21°C for 4 months),
b — limestone concrete,

3) The mass transport is caused by differences in
partial Gibbs’ free energy and its mechanism is
essentially the same as for creep and shrinkage. The
basic relationships (1—3) for the diffusible layers lead,
at a constant water content w, to the macroscopic
constitutive equation in form of eq. (19).

4) Thermal dilatation has three components of
different physical origin: (1) pure thermal dilatation,
due to thermal dilatation of constituents; (2) thermal
shrinkage or swelling, due mainly to a difference in
latent heats (and entropies) between the diffusible
layers and free assorbed water layers; (3) hygrothermic
dilatation, due to a change in humidity of water
vapor in the pores at a constant water content.

5) The delayed pure thermal dilatation and thermal
shrinkage are negative, i.e. represent recovery of
thermal dilatation, while the hygrothermic dilatation
is positive, i.e. represents continued thermal dilatation.

6) The recovery of thermal dilatation must be
maximum at saturation (% = 1) (fig. 6). This means
that concrete in thick structures (such as concrete
nuclear reactor vessels), which is always close to
saturation, has relatively the largest recovery of ther-
mal dilatations.

7) The long-time thermal dilatation as well as the
instantaneous thermal dilatation may, if the hygro-
thermic dilatation is sufficiently large, exhibit
maximum at some intermediate humidity, such as
0.7. Theoretically the delayed recovery might here
eventually be reversed to continued dilatation (fig. 6).

8) At very low humidities the delayed effects in
thermal dilatation should almost vanish (fig. 6).

The present fragmentary experimental results have
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Fig. 8. Test of Helmuth (6, fig. 8], 1.1 in. thick hollow tubes
of cement paste; unsealed, but the exchange of water with
the bath proved to be insignificant at this temperature rate
(specimen cured for 50 days at 21.5°C and & = 1.0).
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Fig. 9. Test of Wischers [12, fig. 14]. Prisms 10 X 10 X 50
cm of cement mortar in a water bath, after six months curing
under water and room temperature.

not yet shown anything contradicting these conclu-
sions. The results obtained by Meyers (fig. 7) [7],
Helmuth (fig. 8) [6] and Wischers (fig. 9) [12] are
reproduced here to demonstrate the qualitative
agreement with the present theory.

7. Basic notation

a =rate of flow constant in eq. (1)

fasfq = effective area factor for the macropores and
for the diffusible layers

h = humidity (relative vapor pressure) in the
macropores

P4.P, = volumetric pressures in the diffusible layer
and at their boundary

Pais = disjoining pressure

t = time

K, K. =instantaneous columetric modulus and
effective long-time volumetric modulus

Q = latent heat in the diffusible layer

S = partial entropy per unit mass

T = absolute temperature

« = thermal dilatation coefficient (in general)

€, €4 = volumetric strain, total or in the diffusible
layer

¢ = rate constant for volumetric deformation

0,04 = thickness of diffusible layers

K = hygrothermic coefficient

u = partial Gibbs’ free energy

8,84 = total volumetric stress in the porous mate-
rial or in the diffusible layers

0, = volumetric stress due to fluid in the macro-
pores

G4 = mass density in the diffusible layer

A stands for a change with respect to the
initial equilibrium state.

Subscripts

d = diffusible layer

a = boundary of the diffusible layer

0 = initial equilibrium state

bar, as in P4, stands for the average value over the
diffusible layers,
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APPENDIX (added in proof)

It is necessary to note that conclusions 5 and 6, as
well as figs. Sc and 6, are restricted to the tempera-
ture range in which the change Apg, in saturation
pressure pg,, is negligible. For high temperatures
(above 100°C) eq. (10) must be expanded as follows:

Ap, = paoxaAT + Apg, . (25)

In eqgs. (21b) and (21d) the terms Pag (...) must be
enlarged as follows;

p (*K + —1) + 9Pt
30 \hg In h, T, daT

The last term in this expression is of the same sign
as the first one but does not depend upon 4. As a
result, the hygrothermic dilatation (fig. 5¢) of sealed
specimens (4 = 1) at very high temperature should be
quite large and offset the other two components re-
presenting recovery, so that after a temperature
change the dilatation should continue rather than
recover as in fig. 6.

(26)



