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Introduction

A Correlation Study of Formulations of
Incremental Deformation and Stability
of Continuous Bodies

In the past a number of different linearized mathematical formulations of the infinitesi-
mal incremental deformations of continuous bodies under initial stress have been pro-
posed. The best-known formulations are reviewed, tabulated, and subjected to a com-
parative study. It is demonstrated that they can be derived as special cases of a unified
general formulation, and are all correct and mutually equivalent. In each formulation,
the incremental elasticity constants and the incremental material stress temsor have a
different significance. Their mutual relationships are established. Thus the analysis
of a problem which has already been solved according to one formulation need not be
repeated for another formulation. Furthermore, the connections to the various definitions
of the objective stress rate are shown. The arbitrariness of choice between the infinitely
many posstble forms of incremental equilibrium equations corresponds to the arbitrari-
ness in the definitions of (a) the finite strain tensor, (b) the material stress tensor, (c)
the objective stress rates, (d) the stability criterion, and (e) the elastic material in finite
strain. For demonsitration of the differences, the problems of surface buckling of an
orthotropic half space and a column with shear are studied. It is shown that the pre-
dicted buckling stresses can differ almost by a ratio of 1:2 if the proper distinction be-
tween various formulations is not made.

ways is well known and has often been pointed out. It is also

THE general problem of infinitesimal elastic stability
of three-dimensional continuous bodies, as well as the closely re-
lated problem of small incremental deformations of a medium
under initial stress, have been studied by many researchers.
Various authors, however, have chosen different mathematical
descriptions of the incremental deformation. In the stability
theory this has led to various formulations which appear to be
considerably different from each other.

The fact that stresses and strains may be defined in various
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clear that such differences must be projected in the incremental
equilibrium equations and other relationships, and that the
various formulations must be equivalent. Nevertheless, it seems
that no specific discussion of various formulations has been pre-
sented so far. Such a discussion is needed because different
formulations continue to be used at the present time. Although
in the theoretical literature only one formulation, namely, the
formulation associated with the Cauchy-Green strain tensor
[6, 10, 11, 13-17, 19, 21, 23, 26, 27, 29, 34-36]! is now generally
preferred, other formulations [5, 8, 18, 25, 30, 37] seem to pre-
vall in the analysis of practical problems. The results of these
analyses are often distrusted because it is not immediately ob-
vious whether the differences are caused only by a choice of dif-
ferent mathematical formulation.

For the sake of simplicity, only rectangular Cartesian coordi-
nates will be used. The coordinates of material particles in the
initial stressed state under consideration will be denoted by =:

1 Numbers in brackets designate References at end of paper.
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In equation (23) and the first line of column ¢ in Table 1 the
fraction § should be changed to 2. _

In the 4th line after equation (28), following the reference
grickets, the last bracket should be followed by F F,; = 8, +

€kr.

In the 5th line after equation (22d) following ¢, the phrase “if
coordinates z,’ are used,’ should be inserted.

In equation (31) F,, should be replaced by Ey.

In the 3rd line of footnote 7, equation (7) should be (13).

In equation (226), the last minus sign should be changed to a
plus sign.



(i = 1, 2, 3) and the coordinates of the same particle after the
incremental displacement u; will be designated by z;* = z; + u;.
No formal distinction will be made between the subscripts re-
ferring to the initial and the final configurations.? Subscripts
preceded by a comma will denote partial derivatives with respect
to z; (not xz:’), e.g., ui.; = Ou:/0z;. Doubly repeated subscripts
will imply summation over the range 1, 2, 3. To avoid lengthy
discussions, attention will be restricted to the case of ‘“‘dead”’
loads, i.e., loads which do not change direction and magnitude
during the incremental deformation.

The best-known formulations of equilibrium equations for
small incremental deformations which will be discussed here can
all be written in the form

T+ pofi =0 (in the whole volume) 1)
niTij= Py (on stress boundary) (1a)

with the following expressions for 7;;:
Ty = 0%+ Thux (Trefftz) (2a)
Ti; = oy + Thwa + 5Thea — $The  (Biot) (2b)
Ty = of + Thwg - T,?ie,-k (Biezeno and Hencky) (2¢)
Ty = 0f + Thwa — Then + Thew  (Biot, Southwell) (2d)

Here py is the initial mass density; n; is the unit outward normal
in the initial state; f; and p; are the inecrements of mass forces and
surface loads (considered as ‘‘dead’ loads); e;; and w;; are the
linearized incremental tensors of strain and rotation, i.e.,
€ij = %(ui,]‘ + u;,:), (3)
T?j is the stress tensor (of Cauchy) in the initial state; 7;; is a
certain nonsymmetric incremental stress tensor whose significance
will be explained after equation (12). Tensors o7, aibj, aij
0¥ represent certain incremental material stress,tensors. They
are labeled by different superscripts because each of them has a
different significance as will be demonstrated later by equations
(14b), (16b), (17¢), and (20a). These tensors are all symmetric
and are related to e;; by Jinear relationships. For p; = f; = 0,
equations (1) and (1a) represent conditions of neutral equilibrium.
Expression (2a) can be traced back to Trefftz [34, equation
(29)]. The stability theories presented by Goodier and Plass

1
wi; = Uiy — )

2 The notation which does make such a distinction [10, 35] is, of
course, superior. Here, however, such a notation is not suitable be-
cause it does not allow the introduction of the relative displacements
u; and other incremental quantities, which are convenient for the

[14, equation (10)], Pearson [27], Hill [13], Prager [29], Trues-
dell and Noll [35], Green and Adkins [15], Kappus [10}, Novozhi-
lov [26], Koiter [19}, Nemat-Nasser [23], and others [1, 2, 6, 10,
16, 21, 36] are all based on expression (2a). A special type of
stability criterion (for bodies with preseribed boundary dis-
placements) presented by Hadamard [12] also implies equation
(2a).

The equilibrium equations corresponding to expression (2b)
are due to Biot [4, 3, equation (I1.5.20)]. Identical equations
were obtained, using different approaches, by Neuber [24, equa-
tions (61) and (50)] and by Prager [28, equations (17) and (18)].

The equilibrium equations corresponding to expression (2¢)
have been deduced by Biezeno and Hencky [3, equation (20) or
equation (5)].

The equilibrium equations corresponding to expression (2d)
were introduced by Biot [4, 5, equation (1.7.32)]. They were
also used by Neuber [25, equations (12), (1), (3), and (15)]. It
can be easily verified that for a uniform initial stress field, that
is for T = 0, these equilibrium equations may also be written
in the form ’

(U'gj + Tl?iw]‘k + T;c)jwik).j + pofi = 0

which was used by Neuber [23, equation (16)]. A special form
of equation (3a) in the coordinate system whose axes z; coincide
with the principal directions of initial stress was presented already
by Southwell [31, equation (16)]. (It should be noted that the
term in parentheses in equation (3a) does not have the significance
of 7:;, as will be later discussed, and may not be substituted for
74; in boundary condition (1a).)

(3a)

Incremental Stresses and General Form
of Incremental Equilibrium Equations

The work per unit initial volume which is done at the incremen-
tal deformation will be denoted by W. The variation of éW
which corresponds to the variation 8u; of infinitesimal displace-
ments %; compatible with the boundary conditions of place may
be expressed in either of the following two forms:

W
oW

S;j5e.~,- where Sij = T% 4+ Oij
T}du;; where T} = Th+ 7

(4a)
(4b)

in which €;; = certain incremental finite strain tensor = a sym-
metric tensorial function of the displacement gradient wy,;, such
that W = 0 when u.,; expresses a rotation. Equations (4a)
and (4b) represent definitions of the incremental stress tensors
gi5 and 7, ii-

formulations that are associated with other than Cauchy-Green Tensor o;; may be assumed as symmetric since €;; = €. It
finite strain tensor. vanishes for a rigid-body rotation because in this case fe;; =
Nomenclature
Cijm = incremental elastic initial states and oy = S; — T§ = objective material
moduli their difference stress increment
¢;; = incremental linear- T:} = mixed (Piola-Kirch- referred to initial
ized strain tensor hoff) stress tensor configuration
12 fi = initial body force per referred to the ini- (symmetric)
unit mass and its tial configuration, 75 = T3 — TP = mixed stress inere-
increment unsymmetric ment referred to
n? = unit outward normal u; = displacement incre- the initial config~
at the surface ment = z;" — x; uration, unsym-
v, pi = initial surface load V = volume of the body metric
and its increment zi, zi’ = rectangular Carte- w;; = incremental linear-
S = surface of body sian coordinates of ized rotation
8:; = objective material a particle in initial .
Superscripls
stress tensor re- and final configu- e s
ferred to initial rations a,b,c,d ef = 1nd¥v1dual formula~
configuration €; = increméntal  finite tions, Table 1
T, T?j, AT = Cauchy’s stress ten- strain tensor Superscript
sor in final and po = initial mass density ~ = objective stress rate
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¥ = 0. Owing to the invariance of the expression for work,
¢ensor o;; is objective (i.e.; invariant-at any observer transforma-
tion (35, 10, 29, 16] ). - Thus o;; is a tensor which may be used in
stress-strain relations. 1f there exists an incremental strain po-
tential, U(e:;), o:; may be also defined by the equation Si; =
oU /d¢;; which leads to (4a) if U is identified with W. For adia-
batic conditions U represents the total energy, while for iso-
thermic conditions U is the Helmholtz free energy.

Tensor 7, is in general unsymmetric, unless u;,; represents pure
(i.e., symmetric) deformation. From equation (4b) (as well as
equation (13) derived later) it can be concluded that T;‘} or
T?j + 7i; must represent the total forces in the directions xi, z»,
z3 acting on the sides of a deformed element which was originally
(in the initial state) a unit cube. Thus tensor T} is equivalent
to the mixed (Piola-Kirchhoff) stress tensor (of the first kind)
[353, 16, 11] which is, however, referred to the initial stressed
state rather than a natural unstressed state as in the usual defini-
tion. Sometimes the mixed tensor is also called Lagrangian [29]
or Boussinesq’s [21] stress tensor, or ‘‘pseudostress.”’

The relationship between o:; and 7;; may be derived by sub-

tracting equations (4a) and (4b). Thus
70U, = 000 + Tide; — u; ;) = o0u,; + Todley; — ei)
; O(€py — €pq)
= l:o’ij + qu —p;'l—l,;qu_] 6“,’.1' (5)

where the relations oi;8e;; = o04;0u;; and T9du;; = Todeid
based on symmetry of ¢;; and T¥ have been utilized. Equation
(5) is satisfied for any u.,; if, and only if,

o) —
Ty = 0y + qu ﬁa"%.—e”g)
. inj

(6)
For infinitesimal incremental deformation, w;,;, oi;, and 7i; are
infinitely small of first order while T9, is finite. Therefore it is
sufficient if the finite strain tensor is expressed exactly only up to
second order terms in u;, ;.

The stress tensor of Cauchy after the incremental deformation,
T':; (which is also called Eulerian stress [29] or “true stress’
since it represents forces in the directions z;, s, ;3 acting on a
unit cube which has been cut out after the incremental deforma-
tion in point x;’), may be expressed with the help of the mixed
tensor T}kj (or 7;;) as follows {29, equation (IX.4.3)] or [11, p.
439]:

bx,-'

Ty=50 Tid =t = (Th + Tius)d 1 (7)
T

where J = det (0x:’/dx,) = Jacohian of the transfermation.?

3 For reader’s convenience let us show how equation (7) may be
obtained. Imagine within the given body an arbitrary infinitesimal
parallelogram of area dS and unit normal »;, defined by two line ele-
ments dz; and éx;. After the incremental deformation, dS, »; dz;,
&x; are transformed in dS’, »;’, dz;’, 8x;. The force acting on dS from
one side must be the same, whether it is determined from 7 or T5.
Hence

Tijvi'dS’ = ThwudS (7a)
Here
vi'd8' = Ejmndzy bz, = éjm,,-b;—xiz; ?T';’ . Xpdy
where €;,, = permutation symbol. Furthermore,
oz’ .., -
bf;llc v;’'dS’ = Jepedrpdry = JndS (7b)

.because
~ ox;’ dxy' Oz, Jé
i e . = JE
T dx, dxp O, gl

Expressing »wdS according to (7b), it is seen that (7a) is satisfied for
any .; if. and only if,"equation (7) is valid.
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For small incremental deformations, J ~1 = 1 — w4, so that
ATy = Ti; — T = 7o + Thuga — Thuxi ®)

It should be noted that the relationship between AT}, and
Ti; is independent of the choice of the form of finite strain tensor
€;;, while the relationship between o;; and 7:; (or o;; and AT:;)
depends on this choice.

The equilibrium conditions may be obtained from the principle
of virtual work. For the equilibrium state after the incremental
deformation, this principle yields the equation’

f SWdv = f po(f? + f)budV + f @) + p)dudsS
Q2] [§9) ()

n

9)

which must be satisfied for any variation éu; compatible with the
boundary conditions of place; f; and p; are the incremental forces
per unit mass and the incremental surface loads (dead loads); V'
= volume, 8 = surface of the body in the initial state. The as-
sumption that the initial state is an equilibrium state may be ex-
pressed by the principle of virtual work as follows:

f THou, AV = f poffdudV + f pdudS (9a)
() (42] S)

If (9a) is subtracted from (9) and the relations o:;0e; = 0:;6u
and (4a) are noted, the following equilibrium condition for the in-
cremental deformation is obtained:

f T 0u; AV =f pof,-6u,dV+f pdu,dS (10)
4% 4%] 8

Here the left-hand side may also be written in the form

O(bu; fe)
f i 209 gy o f 2 (rebudV
" ox; " ox;

- f Ti,0udV  (11)
v

Applying the Gauss theorem {29, 16] to the first integral in the
last expression, it is found that equation (10) is equivalent to the
following condition:

f 'anijéu,-dS _ f 'r,~,-_j5u,-dV = f pof,~5u,~dV
S) ) )

+ f pdudS (12)
(&)}
where n; is the unit outward normal at the surface. To satisfy
this condition for any du;, it is necessary and sufficient that
Tiji + pofi = 0

n;Ti; = Py

(in volume V) (13)

((')-n stress boundary) (13a)

This is the general form of the differential equilibrium equations
for incremental deformations. These equations also corroborate
the physical significance of 7:; as explained after (4b).

It should be noted that equations (4a)~(13e) are valid irrespec-
tive of the material properties as well as the choice of the form
of €j.

Special Forms of Incremental Equilibrium Equations

The common basis from which various special formulations
may be obtained is equation (6), expressing the incremental
mixed (Piola-Kirchhoff) tensor (of the first kind) as a function of
the general incremental finite strain tensor €;. Some of the in-
finitely many admissible forms of ¢;; will now be considered.

1 Substituting the classical Lagrangian (Green’s) finite strain
tensor
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€5 = e; + Fupu,i (14)
for €;; in equation (6), it can be verified that
Ty = V?j + ngui.k (14a)

Superscript a is used here and in the sequel to denote quantities
which are conjugated with €. The relationship between the
objective material stress increment ¢f; and the increment ATi;
of the true stress follows from equation (8);
‘ng = ATij - T:?Ju;.k - Tl(c)iuj.k + T?juk,k (14b)
It isseen that equation (14a) is identical with (2a). The formu-
lation of stability theory used by Trefftz, Pearson, Hill, ete., is
thus connected with the classical Lagrangian finite strain (or
Cauchy-Green tensor). It is also noteworthy that, according to
equation (14b) of (14a), the tensor

S =TY+ o (14¢)

appears to be identical with the Piola-Kirchhoff tensor of the
second kind (33, 16, 10, 29] except that it is referred to the initial
stressed state under consideration rather than a natural un-
stressed state.

2 Considering the expression (4a) for work, it may be conve-
nient to look for such a formulation that the work THde;; be ex-
pressed as the work done by the components of T3 on the dis-
placements u; as if T?,- were forces kept constant during the in-
cremental deformation. In the special case of a symmetric trans-
formation wu.,; = w,.i, called pure deformation, this work equals
exactly T?/ui,j (per unit initial volume).* Consequently, ¢; =
u;;. For a general, unsymmetric transformation, the expression
for ¢;; may be obtained if the transformation u;,; is decomposed
into a pure deformation e; (at which the work equals The:),
followed by a rotation (at which the work is zero). This decom-
position is called polar decomposition [35, p. 52]. Up to the
second-order terms in u;,;, the finite strain tensor e?j defined by
this decomposition is® [3] :

6?;‘ = €; + %uk.iuk,j - %ekiekj (15)

The incremental elastic moduli C;;x: and the objective material
stress increment ¢;; which is conjugate to e?j will be denoted by
C?j}c[ and 0'?]-. Substituting €;; = e?j in equations (6) and (8), it

can be obtained

Tip = ol + TRt — 3 (Thea + Tl(c)iejk) (16a)
0’?;‘ = ATij - Tl?jui.k - Tl(c)iuj.k + T?juk,k
+ 5(Thea + They) (16b)

Obviously, equation (16a) coincides with equation (2b), obtained
first by Biot [4]. Also it should be noticed that the objective
material stress tensor

8% = TY + o (16¢)

4 Note that this is not equal Tj¢j;; e.g., for a uniaxial extension,
eh = w1 + 3ul, while (assuming 77, as constant) the work equals

11UL,1-

5 This second-order approximation may be simply obtained as
follows. The transformation of any vector dz; at the incremental
deférmation u;,;, and its transformation at the pure deformation
¢; defined by the foregoing decomposition, are given by the rela-
tionships

dz’ = (8 + uiddz;,  da” = (8 + &)dz; (@)

where 8; is Kronecker delta. F¥or rotation dzy’dzy’ = dxp"dz”.

Thus the following must hold
(ks + ur Dde;@ri + urdda; = (8 + €)dx;G + &)dzy ()
This equation is satisfied for any dz; if, and only if,
&+ deud; = ei; + Juriur; ()

Replacing ¢; by e; in the second-order term, equation (15) is ob-
tained.
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is different from the Piola-Kirchhoff tensor of the second kind
[35, 16, 10, 29] given by equation (14¢).

3 In general, any tensor polynomial in €f; or e{?, whose first-
order term equals e;; might be adopted for representation of ;.
Thus the tensor.

= 1
€5 = €55 b Uk MUg,; + aeye; + begen + caijeklekl
+ ddgeen  (17)

where a, b, ¢, d are arbitrary constants and &;; is Kronecker delta,
is the most general expression for an admissible second-order ap-
proximation to a certain finite strain tensor e;;.

It is interesting to consider the finite strain tensor

c 1
€5 = €5 F U, Mp,; — €ri€r; (17a)

which represents the so-called logarithmic strain because €§; =
U — %um? = the second-order approximation to In (1 + ey).
The substitution of € for ¢;; in equations (8) and (13a) leads to
the relationships

T = 0% + Thpuin — Thiea — Thie (17b)
0% = AT — Tiwy — Thoa + Thues (17¢)

In this manner one could obtain infinitely many forms of
equilibrium equations, in each of which ¢;; would be defined in a
different manner. It may be verified, however, that no admissible
expression for €;; leads to equation (2d) used by Biot and Neuber
(as well as to equation (3a)). The closest admissible expression is
(2¢) which differs from (2d) by the term T%u;,‘k. For materials
of small volume compressibility (nonporous materials) this dif-
ference is, of course, negligible.

Relationships Between Various Definitions
of Incremental Elastic Moduli

All of the equations introduced so far are valid without regard
to the material properties. Let us now consider that the material
behaves in the infinitesimal incremental deformation as elastic
(while the initial stressed state may still include other than elastic
strains, e.g., plastic strains). Then

of; = Chuewn,
Ulz?j = C?jklekh
. . 18)
Gy = Cijlclekh
‘Tliij = Chuen
where Cy;, ... are the incremental elastic moduli associated
with afj, ete. It is easy to verify by substitution that equations
(14), (16a), (17b), and (2d) (or equation (4a) for the various forms
of 7:;) are mutually equivalent and represent the same material
if the following relationships between the incremental elastic
moduli hold:

C?jkl = C?jkl - %(5”77% + 5jo?k + 61’ij% + 6jlcT?l (19a)
;,':jkl = Czb'jlcl + %(51'17'1(‘)1: + 6le?k + 5.‘kT,?l + BjkTg (19b)
Che = Chia — 8uTy (19¢)

Another relationship which correlates C?,—u and C?jk has been
shown by Biot [5, equation (11.4.25)].

Obviously all of these relationships satisfy the necessary condi-
tions of symmetry for the incremental elastic moduli, that is,
Ciirt = Ciont = Cijue

In addition, relationships (19a) and (19b) also preserve the
symmetry condition Cijzi = Ci;; which must be fulfilled by
Cuy s, and Clr if a potential for infinitesimal incremental
deformations exists.

Relationship (19¢), however, does not satisfy the latter sym-

metry condition, and if the potential exists
Cha # Chus (20)

This asymmetry, which is an inconvenient formal feature of equa-
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tion (2d) devised by Biot and Neuber (or equation (3a) obtained
by Southwell), disappears only for an incompressible material.

In the sequel an expression for the incremental material stress
tensor au, corresponding to equation (2d), will be also needed.
Equations (2d) and (8) yield

a a
0%y = Cimen = AT;; — Thw;, — Thwa (20a)

The relationship of the material stress increments ol and
0‘,-1]- is, according to (16b) and (20a),

ofy = oy + 3(Then + Thew) — Thew (200)

which is a relationship known from Biot’s theory [15, equation
(11.2.22)]¢.

With the help of boundary conditions (1la) or (11a) it is possible
to determine how the incremental elastic moduli can be measured.
This topic has been dealt with in detail by Biot [3] and a rela-
tionship of moduli ngk; and ij}cz to the ‘“‘measurable slide
moduli” [5] has been derived. Using this relationship and
equations (19a, b, ¢), the moduli Cf;; and C§;; may be also de-
termined from measurements.

Objective Stress Rates

If the increment of deformation is associated with interval At
of time ¢, then lim (o0;;/At) = objective stress rate of Tij,
At — 0

lim (e;;/At) =
At — 0

deformation rate d;;, lim (w;;/At) =rotation
At —> 0
rate w;,
dij = %(vi.j + v;..),

where v; is the velocity of particle. The various time rates ob-
tained from of, o% 0¥, oF represent the objective tensor
rates (stress fluxes), i.e., tensors which are invariant at any ob-
server transformation [35, 10, 29, 16]. The objective rates of
the stress tensor T:; obtained from the expressions (14b), (16b),
(17¢), and (20a), are as follows:

w;; = %(vi.j - vj.i) (21)

for ofy ... T% = Ty — Tapwin — Tiwje + Tijun (22a)
for o ... T?j = Ty — Thir — Tiwin — Tiorn

+ 3(Tipdy, + Tady)  (22b)
for o, ... T = Ty — Twwjp — Trwa, + TV (22c¢)
for o ... T8 = Ty — Twwy — Trwy (22d)
where

Ty = lim (AT./At)
at— 0

Because AT, is the change of stress (of Cauchy) in a given par-
ticle, 7; must represent the material rate which is expressed as
Ti; = Tijun + 0T:;/0t [29]. (If the material properties are
defined by equation (18) for At — 0, the material is called hypo-
elastic.)

It is readily recognized that expression (22a) is the Truesdell’s
stress rate [29, 10, 22] and expression (22d) is the corotational
stress rate, due to Jaumann (29, 10, 35, 22]. The stress rates
(22b) and (22¢) probably have not been used so far.

Thus it may be concluded that the Truesdell’s stress rate cor-
responds to the use of the classical Lagrangian strain tensor €
in the theory of incremental deformations or stability, and to
Trefftz’s equations of neutral equilibrium. The correspondence
between the Truesdell’s stress rate and the stability theory lead-
ing to Trefftz’s expression (2a) has already been shown by Masur
[22].

The corotational (Jaumann’s) stress rate corresponds to neu-
tral equilibrium equation (2d) or (17b), due to Biot [5] and

¢ Biot’s notation and terminology is: ¢ = s;; = ‘‘incremental
stresses,” o} = t;; = “‘alternative stresses,” C&; = By,
Cijkt.

ikl =
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Neuber [25] but has no corresponding form of finite strain tensor
unless the material is incompressible. The fact that for the ma-
terial Tukl = Cg/kldkl the incremental potential exists for certain
moduli such that Cijkl # ij, and is nonexistent if C?jkl >~
Ckh,, is to be regarded as an inconvenience of the corotational
(Jaumann’s) stress rate (22d). This feature disappears for the
stress rate (22c) which corresponds to the finite strain tensor
(17a) (logarithmic strain) and the Biezeno and Hencky’s neutral
equilibrium equations given by (2¢) and (17¢). The difference
between (22¢) and (22d) can be important, of course, only for
materials of high volume compressibility such as porous ma-
terials.

Another often used rate is the convected stress rate, dug to
Cotter and Rivlin [29, 10, 35]:

Tfj = Tij + Tikvk.j + Tjkvk.i

It seems that no corresponding equation of neutral equilibrium
has been devised. It may be verified that if the strain tensor

(23)

(which represents a second-order approximation to e, /(1 + ey))
were used in equation (8), the corresponding stress rate would
equal expression (22e) plus the term Tvx . But no finite strain
tensor could lead to equation (22¢) itself. Hence, for strongly
compressible materials the convected stress rate (22¢) leads to
the same kind of inconvenience as the corotational (Jaumann’s)
rate (22d).

Oldroyd’s stress rate [10] equals Truesdell’s rate (22a) if the
term T'sjur 1 is omitted. Therefore, for an incompressible material
this rate also corresponds to the classical Lagrangian tensor €.
But for compressible materials the corresponding incremental
moduli are again nonsymmetric if the incremental potential
exists.

(22¢)

e _ 1 8
€5 = € + Uk, Uk,; — SCkiCkj

Stability Criterion

The diversity of admissible forms of equations considered
hitherto is projected in other theorems of the theory of stability
and incremental deformations. As an example consider the
criterion of infinitesimal stability [35, 32, first attempt 7]. To
avoid lengthy discussions let us restrict attention to conservative
systems with dead loads. Then a given stressed state is infinites-
imally stable if the work done at any further infinitesimal incre-
mental deformation compatible with the boundary conditions of
place is greater than or equal the work of given initial surface
and volume loads. Noting that according to (4a) W = ,]e.,
+ 3Cijueizen (for small e;), this eriterion may be expressed as
follows:

f (Tz;f” 2Cijkleijekl)dV > f
(V) )

pof, 2 wdV

+ f pludS (24)
(S) )

Subtracting equation (9a¢) written without the sign &, the
sufficient condition of stability under dead loads is obtained in
form of the inequality:

f [3Cmesien + Tiile; — e)1dV > 0 (25)
"

which must be satisfied for any kinematically admissible incre-
mental displacements wu;.” The special forms of the general
criterion (25) are obtained by selection of a certain finite strain
tensor €;;. If the classical Lagrangian form €f; is substituted and

” From criterion (25) it can be concluded that the body is at the
limit of stability when the variation of (25) is zero. Using this con-
dition, equation (7) for p; = f; = 0 can be deduced from ecriterion
(25) [1].
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the equality Cijxieijext = Cijuui jur, is considered, the stability
eriterion (25) takes on the form

f (Caa + 8uTR)ws e, dV > 0 (26)
(V)

presented by Trefftz [34, equation (26)]. For the special case of
an elastic body with displacements prescribed at the whole
boundary, this criterion was obtained by Hadamard ([12], equa-
tions (VI.18, VI1.20); [9]; cf. also [27]), [13, equation (15)], [35,
equation (68b.2)], [29, equation (X.4.15)]8 It is easy to verify
that equation (26) is also equivalent to the criterion given by
Pearson [27, p. 137, equation (13)], Hill [13, equation (22)],
Prager {29, equations (4.18, 4.22), p. 219], Truesdell and Noll
[35, equations (68b. 19)] and Goodier and Plass [14, equation
(15)].

Substituting for Cjy; from equations (19a) and (196), other
forms of criterion (25) may be obtained, e.g.,

f (Chia + 2(B84T0 — 84T — 8,15 — 8,,T)]
V)

X uy, 5, dV > 0 (27a)

f [Chinr + 5@uTh — 8,78 — 8T — 8,,T%)]
(M

X gy >0 (276)

Elastic Materials in Finite Strain

In the preceding, only the incremental properties were assumed
to be elastic, while the initial state could have been inelastic.
Let us now examine the relationship between the definition of an
elastic material and the formulation of incremental deformations.
The elastic material may be defined by the condition that a cer-
tain material stress tensor be a tensorial function of a certain
finite strain tensor. If the Piola-Kirchhoff stress tensor of the
second kind and the classical Lagrangian strain tensor with
respect to the unstressed state are used, the definition of the
elastic material may be written as follows {353, 16]:

Ti; = Fof, (EQ)F;,/ 0 (28)

where F;, = 0x;/0X, = transformation matrix with respect to
the stress-free state, .\'; and x: coordinates of a particle in the
stress-free state and after deformation, respectively, Jo =
det (Fir), Ef; = Cauchy-Green deformation tensor [35, 16] =
FiFy = 0w + €h,where €f, = classical Lagrangian finite strain
tensor as referred to the stress-free state; f,s = given tensorial
function.

For incremental deformations, superposed on finite deforma-
tions,

AT =T, — T?j = [0T';;/OF 1) #r AF o, (29)
(Note that AT;;, defined by equation (13a), is not an objective
stress increment.) Substitution of equation (28), rearrangement
and omission of higher-order terms [16, equations (21.7-21.8)],
[35, equations (68.16-17)]? leads then to the relationship

8 From (26) it was deduced by Hadamard [35, equation (68b.3)]

that in each point of body the inequality
(Cha + SuTidNehewjug 2 O (27¢)

must be satisfied for any two vectors i, u;. This is a necessary (but
not sufficient) local condition of infinitesimal stability. However, if
displacements are prescribed on the whole boundary and the initial
stress is homogeneous, equation (27¢) is also a sufficient condition,
irrespective of the shape of the body [35, equation (68b. 18)]. Equa-
tion (27¢) may be also given alternate forms if moduli Chy or C§p are
used.

% The procedure leading from (29)-(30) is not given in detail be-
cause it may be found in a book by Jaunzemis [16, p. 492].
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Clers = AT; — Tojin — (30)

/ 0
Triuin + Tijue
where

s = FOFNFRpF(f,,/OF 1) /o (31)

It is recognized that expression (30) represents the material
stress increment of; (equation (14b)), from which the Trefftz’s
equations of neutral equilibrium (equation (2a) or (14a)) may be
obtained by application of equation (8).

For other forms of definition of an elastic material [18, 30, 37]
which are not based on the Piola-Kirchhoff tensor of the second
kind, the derivative 0T:;/0F.. needed in equation (29) is given
by complex expressions (even if only second-order terms are con-~
sidered).

However, simple expressions for (i in ad formulations are
possible if the material is hyperelastice, i.e., is defined by potential
energy per unit initial volume. Then, according to the discussion
following equation (4),

Chu = 02U JOeldey, Cly = 02U JOelded,

C?jkl = OZU/Oégjale (31a)

Example of Buckling of an Orthotropic Half Space

To demonstrate the formal ditferences between various the-
ories, let us consider the problem of surface buckling of an in-
compressible elastic orthotropic halfspace z: < 0. The discussion
will be restricted to the plane-strain problem in the plane (), x2).

First, the orthotropic two-dimensional stress-strain relation-
ships for infinitesimal incremental deformations must be intro-

duced. In terms of moduli Cfy; (equalion (14b)), these relation-
ships are

a a a
011 = Clinen + Chizzen

(1 @
Ci211e11 + Cagazen

0% (32)

0%z = 2CT1een

Introducing the condition of incompressibility in plane strain,

e;1 = — €ay, the relationships (32) take the form
o} — oo = 2N7e,, g% — 0% = 2N %y
(33)
o2 = 2Q%;
in which ¢¢ = (¢%; + ¢32)/2 and
Ne = $(Ctin1 + CBo2 — Clizz — Clant),  Q* = Claiz (34)

There are thus only two independent elastie constants, Q¢ and
Ne, For an isotropic material No = @,

Proceeding in an analogous manner, one can obtain for a?,
and o¥; equations of the same form as (33) in which

Nt = 1(Chinn + Chaze — Clizz — Clann), Qb = Cla1z (34a)
Ne = 3(Chi1 + Cae — Cliee — Chonr), Q¢ = Clziz (34h)

Because equations (20a) for stress g;; with nonsymmetric moduli
(% differ from equations (17¢) only by the effect of volume
compressibility,

A'd = ATC, Qd e Qc
Uxing the relationships (19a, b, ¢), it may be established that
Né = No 4 (T + T8), Q4 =@ + §(T + Tz) (360)
Né = Ne + 3(Th + ), Q4= Q+ 3(Th + %) (36b)
terms of moduli N9 @9 and formulation (2d), the exact
solution of surface buckling of an orthotropic incompressible half
space in plane strain was presented by Biot [5, pp. 204-212].
In his solution the axis of orthotropy is assumed as parallel to the

surface of the half space z: < 0 and the initial stress field is con-
sidered as uniaxial compression T?l = ——P(ng = 7% = 0.
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The resulting dependence of the buckling stress P, on.the ratio
N4/Q?% according to Biot’s formula [5, equation (IV.4.41), p.
211] is plotted in Fig. 1 as-curve c.

If other equilibrium equations and other incremental moduli
are used, the whole analysis need not be performed again, because
at each stage of analysis relationships (26a, b) or (19a, b, c) must
be satisfied (although the equations may look quite different).
To obtain the solution in terms of moduli N+, @ or N?, @b, the
relationships (36a, b) may be substituted into the resulting
formula for the diagram in Fig. 1 (curve ¢). This substitution
takes on the form

N2 /Qb = (N4/Q? + Por/2Q%)/(1 + Pur/2Q9)
Neo/Qe = (2N9/Q¢ 4+ Py /2Q%)/(2 + P.:/2Q%)

(37a)
(37b)

Using these relationships, the plots of buckling stress Py as a
function of N¢/Q* or N*/Q* may be obtained from curve ¢ in Fig.
1. They are represented by curves a and b. It is seen that the
differences between various formulations of stability theory, i.e.,
between the various definitions of the incremental moduli, can
be substantial. It is found, for instance, that the values of P,
for the case N2/Q* = 0.75 and the case N4/Q? = (.75 are almost
in the ratio 1:2. Differences disappear for N* = @, i.e., for an
isotropic incompressible half space. It is especially noteworthy
that the ratio between the values N4/Q¢, N?/Qb and N*/Q* lead-
ing to the same P, approaches 1:1:1 as N4/Q¢ tends to zero (or
P — 0), which is the case of a strongly orthotropic medium.

Example of a Column in Flexure and Shear
(Timoshenko Beam)

The formal differences between various formulations of sta-
bility theory also disappear for thin bodies, such as shells, plates
and bars, if the assumption is made that the cross sections (or
normals) remain plane and perpendicular to the deflected middle
line (or surface). However, differences are encountered if shear
is considered, i.e., the cross sections do not remain perpendicular
to the deflected middle line. (Shear must be taken into account,
e.g., in orthotropic columns or built-up columns.)

As an example, consider now the buckling of a perfect pin-
ended orthotropic column of rectangular cross section of area 4
and moment of inertia I. Let axis z be the longitudinal axis and
consider that the column is initially under uniaxial stress 7'9).
The longitudinal displacements equal w, = zy/(z) where y is the
rotation of cross section. The shear angle is v = ¢ 4+ w_.
where w is the deflection in the sense of ;3 = 2; w3 = w(zx) and
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w, = dw/dz. (Equations u; = z¢(z), us = w(z) may be viewed
as assumed expressions for the first terms of Kantorovich’s direct
variational method.) As a starting point, let us use the varia-

tional principle (10). Obviously one can writef 0i0ei;dA =
(4)
MY, + Téy where M = EIY ., = bending moment; T = GAy
= shearing force; A = area of cross section; I = 2%A; E
(4)

= longitudinal Young’s modulus; @ = shear modulus for direc-
tions z and z (adjusted for the shear correction coeflicient for the
cross section considered); ¥.. = dy/dz. All components of Ty
are zero except T9;. Furthermore, u;, = ey = 2., Uss* =
W,z, C13 = €31 = %’Y, U3 = 'l/, usz = e = 0.

If the Green’s strain tensor ej; given by (14) is used and the
relation € — ey = 3(z2¢% 4+ w%) is noted, equation (10)
with 7:,6ui.; = 006, + Tod(el — ei;) now reads:

L
f [ f TT3(2% + w)dA + G AW + w.)(0Y
0 (A)
+ dw,.) + E"Il//,x&ﬁ,,:] dr = 0 (38)

where z = 0 and z = L are the ends of column. Integrating by
parts with respeet to 8y, and noting that ¥ = 0 at the hinged
ends of column, it follows, after rearrangement:

L
f (Thdw, 6w — (THIY.2).0¢ + G AW + w,.)(0¢
)]

+ dw,.) — (B°lyY..)..0¢]dr = 0 (39)
This equation is satisfied for any 8¢ and éw,, if, and only if,
— (T — EelY.). + GAWY + ws) = 0,
(39a)

THAw.. + GeA(W + w.) = 0

If the second equation is subtracted from the first one and is
integrated from 0 to z (noting that ¥.. = w = 0 for z = 0),
equations (39a) are brought to the form

d
g1 _py o g,
dr dx
p J (40)
., aw o W _
G (l//+dx>+T11dx 0

Solution of these equations satisfying the boundary conditions
w =1y, =0atz = 0and z = L may be sought in the form ¢ =
A cos mx/L, w = B sin wx/L, with A, B as arbitrary constants.
Substitution in (40) yields the characteristic equation

Th — Th(Ee + G° + E°G*/T%) + E*G* = 0 (41)

and the smallest critical value of initial stress

fc? — EeG* where ¢ = Eo + G° + EeGQ+/T%
(42)

Here T% = Eelm?/(L2A) = Euler’s critical stress for modulus
Es. 1t is easy to verify that for a very slender column, ie.,
T%/E* — 0, T%/G* — 0, expression (42) has the limit 7'%.

Solutions for the other formulations of incremental deforma-
tion may be obtained by substituting in equations (40) or (41)
the relations:

Es = B* — T,

0 1
Ty =5c¢—

Ge = b — 179 (43a)

Es = B — 2T},  Go = Ge — 319, (43b)
which represent a special case of (19a, b) for uniaxial stress. It
can be verified that a direct derivation, similar as above but

based on strain tensors e} or €, yields the same results.
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Thus, for instance, the characteristic equation (41) can take on
considerably different forms

TY10 + B2 /T%) — TH(3E» + 8G® + 4EvGY/T})

+ 4EG? = 0 (44a)
THO + E¢/T%) — Th(3E* + 6G* + 2E°G*/T%)
+ 2EGe = 0 (44b)

where

T% = EbIrz/(L2A), TS = Eelw?/(L2A).

It can be verified that for slender columns (7%; < E+) equa-
tions (40) and (42) are identical with the Engesser’s equations
for buckling with shear [33, p. 133]. These equations were
originally derived by consideration of equilibrium from the as-
sumption that, the shear force equals —Pw,., which represents

the component of initial axial force P = — 79,4 along the cross
section which is perpendicular to the deflected middle line.

Alternatively, the problem has also been solved assuming [33,
p- 134] that the shear force equals Py, which represents the com-
ponent of P along the cross section that was perpendicular to the
beam axis in the initial state. From the equilibrium condition
the equation analogous to the second of equations (40) is then
obtained (putting @ = Gf) in the form

G/ + w.) — Thy

It is interesting to note that this formulation can be found to cor-
respond to still another form of finite strain tensor, namely,
¢/ = €}; — 2euier;, and to the incremental moduli B/ = JE+ +
4TH, GF = G* + Thh.

In engineering literature the term T9Jdy/dz in the first of
equations (40) has been, as a rule, neglected. This is an admis-
sible approximation for slender columns in which T9; < E* but is
exact only for Biot’s'incremental moduli E? and Gb.

To illustrate the importance of distinguishing properly be-
tween E°, EPb, ete., consider four different (incrementally ortho-
tropic) hypoelastic materials, for which E¢/G* = 20 or E?/GP? =
20 or E¢/Gc = 20 or E//Gf = 20 at any T?. The plots of the
smallest critical stress T?l versus column slenderness L/r =
L~/4/I have been computed from equations (42), (44a), (44b),
and are shown in Fig. 2.

(43)

Conclusions

1 Expression (6) for the incremental mixed (Piola-Kirchhoff)
stress tensor (of the first kind) is the basic relationship which
provides a unified formulation of the incremental equilibrium
equations and enables to determine the relationships between
various special forms. In different formulations the incremental
material stress tensors are not identical, as is exemplified by

Table 1
Form a b c d e f
o & = e — Zewers
Finite & € = € — Yewer; € = € — epi€r; e = € €1 = ey — € e = & — 2ener;
strain & = ey + 3¢l & = en € = € — 3¢} =~ equation 23 e, = ey — 3eh
tensor equation (14) equation (15) In (1 + en)
(Green’s, (pure deformation equation (18a) if the material is incompressible,
classical part of displace- (logarithmic otherwise nonexistent
Lagrangian) ment gradient) strain)
Incremental equation (2a) or  equation (2b) or equation (2¢) or equations (2d)
equilibrium  (14a) (Trefftz) (16b) (Biot) (175) (Biezeno and (2¢) (Biot,
equation and Hencky) Neuber, South-
well)
Objective equation (14b) equation (16b) equation (17¢) equation (20a)
material (Piola~-Kirchhoff  (Biot’s alternative (Biot’s incremen-
stress tensor of the stress) tal stress)
tensor second kind)
Incremental Cin . Cla Ciut Gt Gt Cli
moduli if symmetric symmetric symmetric Cé # Ciy; Ci #= Chy
a potential
exists
Objective 7% 7 Vs i 75
stress equation (22a) equation (22b) equation (22¢) equation (22d) equation (22¢)
rate (Truesdell’s rate; (Jaumann ’s (convected rate of
if incompressible, corotational Cotter and Rivlin)
also Oldroyd’s rate)
rate)
Stability equation (26) equation (27a) equation (27b)
eriterion (Hadamard,
Pearson, Hill)
Definition equation (28)
of elastic

material in
finite strain

Buckling of
column
with shear

equations (40)
and (41)
(Engesser)

926 / DECEMBER 1971

equation (44a)

equation (44b)

equation (45)
(Timoshenko)
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equations (14b), (16b), (17¢) and (20a), and the values of incre-
mental moduli are not the same. Their muntual relationships are
given by equations (19a, b, ¢) or (36a, b).

2 The arbitrariness of choice between the (infinitely) many
possible forms of equilibrium equations for incremental deforma-
tions corresponds to the arbitrariness in the choice of (a) the
finite strain tensor, ((b) the material strain tensor, (c) the objec-
tive stress rate, (d) the form of stability criterion, and (e) the
definition of an elastic material in finite strain. The correspon-
dence between various special forms of these quantities or equa-
tions, established in this paper, is summarized in Table 1.

3 The solution procedures of a certain problem according to
different formulations must be completely analogous and satisfy
at each stage relationships (19a, b, ¢) (although the equations may
look quite different). Using equations (19a, b, ¢), it is possible to
obtain from the solution according to one formulation a solution
for any other formulation.

4 All of the formulations of incremental deformations and
elastic stability discussed in this paper, are correct and mutually
equivalent.1® But formulations in which 7;; cannot be expressed
in form of equation (6) are inadmissible, excepting the case in
which the deviation from expression (8) is proportional to T?juk.k.
In this case, however, the elastic modull are unsymmetric if the
incremental potential exists and the material is compressible.
This inconvenient feature is characteristic for the formulations
in columns d and ¢ in Table 1.

5 Although the choice of a certain formulation is ultimately a
matter of convenience, the formulation in column e in Table 1,
which is associated with the classical Lagrangian (Cauchy-
Green) strain tensor and directly follows from the condition of
frame indifference, is basically preferable. The other formula-
tions have the disadvantage that the associated finite strain
tensors do not possess exact closed expressions, which is imprac-
tical in dealing with any material in finite strain. For an elastic
material, only the formulation in column a in Table 1 admits a
simple direct expression of the incremental modili from the
tensorial function f,, defining the material, equation (28).

On the other hand, in certain practical problems [5, 18, 30,
37] other formulations might be more convenient. Biot’s equa-
tion (2b) allows a simple geometrical interpretation of stresses
0% and seems to be practical when dealing with incompressible
materials under zero initial shears [5, 37]. This is due to the
fact that with the finite strain tensor (13), representing the pure
deformation part of the displacement gradient, the nonlinear
material effects are separated from the nonlinear geometrical
effects. For instance, only for this tensor the work done at any
infinitesimal strain increments e;;, less the work expressed as a
quadratic form in e¢;;, equals the work of T?, expressed as if T?j
represented forces which are held constant during the incremen-
tal deformation.

6 When the achievable initial stresses are not small with
respect to the incremental moduli, the predicted buckling stresses
for the various well-known formulations can differ substantially
if the proper distinetion between the various definitions of the
incremental moduli is not made; e.g., in the problem of surface
buckling, Fig. 1, the differences in buckling stress almost reach
the ratio 1:2. This is important for highly deformable rubber-
like materials, or lightly strain-hardening metals in the plastic
range. On the other hand, in thin structures the achievable
initial stresses TJ; are so small that the differences in predicted
buckling loads are negligible. Undoubtedly, it is just this prac-
tical fact which has clouded the fine points of the subject.

10 Recent rejection of some of the older formulations of stability
theory has not been justified as far as the final forms of relationships
are concerned although the concepts from which some of the older
theories have been derived might have been dubious.
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