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SUMMARY

The constitutive equation is assumed in a very general form which includes as special cases non-linear
creep, incremental elasto-plasticity as well as viscoelasticity represented by a chain of » standard solid
models. Subdividing the structure into N finite elements, the problem of structural analysis is formu-
lated with a system of 6N(n+ 1) ordinary non-linear first-order differential equations in terms of the
components of stresses and strains in the elements. This formulation enables one to apply Runge-
Kutta methods or the predictor—corrector methods.

INTRODUCTION

The problems of creep, elasto-plasticity or viscoelasticity represent initial-boundary value
problems in space co-ordinates x, y, z and time ¢. For integration in space co-ordinates, some
approximate method, such as the finite element method,%2 the finite difference method® or
various series expansions, may be adopted. In such an approach, the state of deformation or
stress is characterized with a finite number of variables for which a system or ordinary differential
equations may be obtained. The practical solution, however, has been carried out by a simple
step-by-step method as a sequence of elasticity problems,*!! without regard to any formulation
by a system of ordinary differential equations. If a comparison with the well-known numerical
methods for the initial-boundary value problem in ordinary differential equations!? is made, it
may be found that the step-by-step methods used (eventually improved by iterations in each step®)
correspond to the crudest type of numerical methods, the Euler method, which is actually almost
never used for computer integration of ordinary differential equations because more powerful
methods are available. These include, for example, the Runge—Kutta methods and the predictor—
corrector methods. The generalized algorithm of these methods has so far been formulated only
for the linear rate-type creep of ageing materials (concrete),’® and tested by a few analyses of
inhomogeneous prestressed concrete structures.

CONSTITUTUTIVE EQUATION

Attention will be restricted to small deformations and the stress-strain relations will be considered
under a very general form:

n i
e= e, £,=A,6+8 (u=1,..,n) )
p=1

* This paper is largely based on the author’s Report No. 68/2, Approximate Analysis of Linear and Nonlinear
Creep Problems, Department of Civil Engineering, University of Toronto, December, 1968, prepared under
the sponsorship of Ford Science Foundation. Further refinement was obtained in connection with the pre-
liminary research for the National Science Foundation project, Grant No. GK-26030.
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where

=C(o.e,1), A,=Afoc,1) (1a)
Here & = (&, &y, &, Vayp Yyoo Yaz) © = column matrix formed of strain components in Cartesian
axes x, y, z; superscript T stands here and in the sequel for the transpose of a matrix;
€, ..., €, = column matrices of partial strains, of a form analogous to €; &, ..., €} are column
matrices, analogous to &, whose sum represents the column matrix of inelastic strains,
€% 0 =(040,,0, Ty TynTe )T = column matrix formed of stress components; A ..., A,
square matrices (6 x 6) of the partial incremental elastic constants; A is a square matrix funct1on~
and C 4 is a column matrix function of o, &, and time ¢. The function C may contain terms inde-
pendent of ¢ and &,. Such terms represent the rate of thermal dllatatlon or shrinkage. The remain-
ing terms represent the rates of creep strains. A dot as in & or & denotes the time rate which may
be considered here as a part1a1 derivative with respect to time ¢, e.g. &€ = Jg/0t. The matrices A,
and matrix functions A and C clearly cannot have arbitrary forms but must satisfy the well-
known invariance requlrements and certain inequalities following from thermodynamics.

It should be noted that the constitutive equation (1) includes, for example, the following
special cases:

1. The typical non-linear creep law of rate-type (such as the primary creep of metals or,
approximately, creep of concrete at high stress) if n = 1, A, is independent of o, € and ¢, and ¢,
is independent of z.

2. The non-linear elastic material in small strain, which may approximate a strain-hardening
elasto-plastic material (see Reference 1, equations 12.8, 9, 11, 14) during loading, provided the
state of ideal plasticity has not been reached, so that both A and A‘1 exist. In this case ¢ = load
parameter rather than time; n = 1, C, = 0; A, depends only on c (1nclud1ng its second invariant).

3. The general linear viscoelastic matenal described by a chain of standard solid models (or
Kelvin models),1® each of which is associated with one of the variables €, ..., €,. This occurs if
D ,— S are independent of o, €, ¢ and '8 ,— S are linear functions of o, €.

4. The standard solid body if, in addition to item 3, n = 1.

5. The linear creep of an ageing material, such as concrete, if the conditions are the same as in
item 3, except that D,—s and C —s depend on ¢.

6. The creep law of congcrete at variable water content and temperature, if D,—s and C —5
depend on the solution of the independent problems of water diffusion, heat conductlon and
hydration reactions.

FORMULATION IN TERMS OF ORDINARY DIFFERENTIAL EQUATIONS

The finite element method in the displacement approach®? will now be considered. The given
body is assumed to be subdivided into N constant-strain elements (tetrahedera, for instance).
Denote by r the column matrix of all displacement components in all nodes, and by N the number
of all components. It will be assumed that r does not contain the displacement components which
are to be zero because of the given support conditions. The strains € in the ith element are
related to r as follows:
el) — pi g )

where b is a rectangular matrix depending on co-ordinates alone, with 6 rows and N columns,
of which only the columns with the numbers of the displacement components of the nodes of the
ith element are non-zero.

Consider an infinitesimal time increment df, at the beginning of which the values
e, g, ... e of o, &,..., &, in each element are known. From equation (1) it follows that

dot®) = D(de® — 90 dr) 3)
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where
(i) — (i)~ 0(4) — ;
DW= ¥ AN e = 3 el (3a)
“ #

Here D represents the matric of incremental elastic moduli. Because 8% d¢ can be determined,
according to (1a), from the initial values of 6¥, £{¥, ..., £{¥) in the interval dz, equation (3) may
be regarded as an incremental elastic stress-strain law with prescribed initial strains %9 dz.

To determine the equilibrium conditions for the infinitesimal increments dr, consider an
arbitrary virtual displacement 8r, satisfying the boundary conditions of place. The virtual work
done by the prescribed increments dF of the applied nodal forces F is

(3r)TdF (4a)
The associated virtual strains in the ith element are 8&® = b §r. The virtual work of the stress
increments is 3, (86')T de*®) V'@, which equals, according to equations (3) and (2).

(6r)T %1 (b9T D@ pt) dr — DT D g0 dn v (4b)
i

where V' is the volume of the ith element. According to the principle of virtual displacements,
expressions (4a) and (4b) must be equal for any r. This is verified if, and only if K dr —F°ds = dF
or

i = K-1(F+ K9 (5)
where
K = Izv: bOT D B P (6a)
i=1
. N
Fo = 3 pOT DD g0t ped) (6b)
i=1

Here K represents the incremental stiffness matrix (of size N x N), which is non-singular as long
as the structure is stable, and ¥° is a column matrix of nodal force rates equivalent to inelastic
strains.

Unlike in an elastic problem, the system of differential equations (5) alone is insufficient for
solving r, and must be completed by equations (1), written for each element. If equations (5) are
combined with (2), and K, F? are expressed with the help of equations (6a, b), (3a) and (1a), the
following equations can be obtained:

80— AW(eD, e, 1) 60 = CH(0t,e®,1)  (u=1,..,n5i=1,..,N) (7a)
% é;‘i) = b(i){iz b(’i)T[§ ALi)(c(i)’ s;‘i), t)]—l b(i) V(i)}—l {F(I)
+ I EAD(eD, e, N[ CO(e, e, D]V} (i=1,..,N)  (Tb)
U » Iz

The equilibrium equations (5) and geometric relations (2) are implied in equation (7b). Equation
(7a) expresses the stress—strain law. The functions A}}" and C;}" describe the material properties
in the centroid of the ith element.

Equations (7a,b) represent a system of 6(n+ 1) N non-linear ordinary first-order differential
equations for the unknown components of ¢‘” and &{?. For the sake of brevity it is convenient to
combine ¢'¥ and s}}" in one column matrix denoted by X, namely

T T T T T T
XT = (a7, ...,a®™" g%, g% eM7 | el ®)
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Furthermore, denote the right hand side of system (7a,b) by R(X, ), which is a column matrix
function. The left hand side of system (7a, b) has the form L(X, f)X where L is a square matrix
function. Finally, denote the column matrix function L-(X, #) R(X, ¢} by f(X, 7); note that L1
exists as long as the structure is stable. The system (7a, b) may thus be concisely written as follows*

X =f(X,7) &)

NUMERICAL INTEGRATION

Having formulated the problem in terms of equation (9), which is a first-order matrix differential
equation in standard form, higher-order numerical methods, such as the second- or fourth-order
Runge-Kutta methods or the predictor—corrector methods,'? can be applied. These methods will
clearly converge faster and allow larger time steps to be used without numerical instability, as
compared with the conventional Euler process. However, the economics in computer time has so
far been demonstrated only for the second-order Runge-Kutta method,!® and research here is
still continuing.

In any of the step-by-step numerical methods, equation (9) is replaced by a system of algebraic
matrix equations that can be solved successively. Each of these equations can be regarded as a
matrix formulation of a certain linear elasticity problem with initial strains. Examining their
physical significance, any numerical method may be formulated as a sequence of linear elasticity
problems, independent of the method adopted for the analysis of each of the elasticity problems.15: 18
This enables the extension of the step-by-step algorithms to finite elements with variable strains,
as well as to other than finite elements methods,!® which may sometimes be of advantage, as has
been demonstrated in Reference 15 where the finite difference method was applied for bending
of a rectangular plate in each time step.
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