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CONTINUUM SOLUTIONS FOR LONG-WAVE
EXTENSIONAL BUCKLING OF REGULAR FRAMES

Z. P. BAZANTt and M. CHRISTENSEN:
Department of Civil Engineering, Northwestern University, Evanston, lllinois 60201, U.S.A.

Abstract— Using approximation by a micropolar continuum, the extensional buckling of a multi-story, multi-
bay rectangular frame with rectangular boundary is solved by formulating the problem in terms of a system of
six linear ordinary differential equations. The buckling loads must be computed by a trial-and-error pro-
cedure because all coefficients of the 6 X 6 determinant to vanish depend on explicitly inexpressible complex
roots and eigenvectors of another 6 X 6 determinant which in turn depends nonlinearly on the initial stress.
It is shown that for tall frames consideration of long-wave buckling loads is important. Also, the continuum
approximation is found to give very accurate results, as compared with the exact solutions of large frames.

WHILE in low building frames the axial extensions of members may be usually neglected,
in tall frames they must be taken into account. Buckling modes of such frames are then
of long-wave character and the whole building frame appears to buckle as a single
column. Analysis of such buckling modes with the usual methods becomes intractable
for truly large frames, because of the overwhelmingly large number of unknown dis-
placements of joints. As a rule, however, large frames are of regular character. This
fact may be advantageously utilized introducing a continuum approximation of the
frame, which has been developed in detail in a previous article[1] and has been found
to lead to an orthotropic micropolar continuum of Eringen[2].

The aim of the present paper is to present a solution of long-wave buckling of a
large regular rectangular frame, with rectangular boundary, using the micropolar con-
tinuum approximation.. All columns of the frame will be considered to have equal cross
sections and equal initial axial forces, and the same will be assumed for the beams. This
simplification with regard to practical situations is introduced for two reasons. First,
it makes possible an analytical solution and, second, the results may be compared
with the exact solution which can be obtained by the methods of finite difference cal-
culus, as has been shown elsewhere[3]. The comparison will show that the present
solution is simpler and, especially, that the error committed by using the continuum
approximation is, for a large frame, very small indeed. This fact will give confidence
in the use of the continuum approximation for frames with variable member properties
and axial forces or frames of other boundary shapes and boundary conditions, for which
the solution of the type presented here is not feasible. In such cases the continuum
approximation may serve as a basis for numerical solutions by the finite difference
method (or finite element method), leading to a substantial reduction in the number of
unknown displacement parameters[1]. (A detailed description of such applications of
the continuum approximation is given in a separate article[4].)

The method of solution expounded in the sequel bears, in spite of greater com-
plexity, some marks of similarity with the solutions for buckling of rectangular in-
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compressible non-polar solids, which have been given by Biot{S], Wu and Widera{6]
and BaZant[7].

MATHEMATICAL FORMULATION OF THE PROBLEM
Let us consider a planar rectangular frame (Fig. 1) which is initially in equilibrium
under initial axial forces P$ in all columns and P$ in all beams. Subsequently, the
initial equilibrium is disturbed by infinitely small incremental applied forces at the sides
of frame and applied forces f, f, and moments m per unit area. The incremental equili-
brium equations for horizontal forces, vertical forces and bending moments acting on
ajoint may be approximated by the following three partial differential equations[1}:

E L% z0t kySylt py+ 2kysydytf=0
ELL%p yy+ koS700x— 2kSepa+ £, =0
2k,85(p—v.5) +2kysy(d+uy) + Lik,S:Cod ot Likys,cyyy—m=0. (1

Here x, y = horizontal and vertical cartesian coordinates (Fig. 1); subscripts x, y refer
to members in the horizontal and vertical directions but those following a comma
denote partial derivatives, e.g. u ., = 32u/9x?, ¢, = d/dy; u, v, ¢ = continuous twice
differentiable functions of x, y representing horizontal and vertical joint displacements
and joint rotations (positive if counterclockwise); L,, L, = length of horizontal and
vertical members; E, = EA,/L,, E,= EA,/L, where A,,A,= cross section areas;
k. = El,/L,, k, = EIL, L, where I,, I, = cross sectional moments of inertia; s, c; or
sy ¢, = the well-known stability functions of P} and P9, which are expressed, in the
case of constant cross-section, as follows (see [8], e.g.):
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Fig. 1. (a) The geometry of the frame solved; (b) The long-wave buckling mode; (c) The free
standing frame of approximately the same buckling load; (d) Detail of the boundaries of the
frame solved; (e) An alternate boundary support which could be analyzed similarly.
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where o =V (|P°|L/k) and s = 4, ¢ = 1/2 for P* =0. (When the cross-section is variable
along each member, the s and ¢ functions may be obtained numerically.) Finally,

s'=s(1+c¢), s"=2s"—POLjk. 3)

To make an analytical solution possible, the frame of rectangular boundary will be
considered to be compressed on top and bottom between two rigid frictionless plates
which slide on the frame, except that the central point is fixed, as is shown in Fig. 1.
This is not a practical case but numerical analyses have shown that the buckling load
of this frame is almost the same as the buckling load for the usual case of a free-standing
frame fixed at the base if its height equals 1/4 of the height of the frame considered
here and the properties are identical. Furthermore, because the horizontal incremental
axial forces are negligible, as the analysis below will confirm, the solution for a frame
with completely fixed top and bottom boundaries will be almost the same.

The buckling mode will be assumed to be sinusoidal in the vertical direction,

u(x,y) = Up—U(x) cosyy
v(x,y) = V(x) sinyy
¢ (x,y) = R(x) sinvyy (4)

where U, V, R are functions of x only and U,, y are constants, y = 7/H. These expres-
sions identically satisfy the conditions on displacements at the bottom and top bound-
aries, namely v = ¢ = 0 for y =0 and y = 2H. The expression for the shear stress o,
at these boundaries is[1] (kysyu,+2k,s,¢)/L L, and it is seen that it also vanishes
identically, as is required by the third and last of the boundary conditions on top and
bottom.

The joints at the free left and right faces of the frame will be considered to have no
incremental applied moments M., M® and vertical forces T, T® but in general to have
a nonzero incremental horizontal applied force PL, P2, positive when oriented into the
frame. The boundary ¢onditions are most conveniently expressed when the frame is
imagined to extend beyond the actual boundary joints at the sides of the frame, and the
continuum boundary is imagined to be located at midlength of the first imaginary beams
extending beyond the boundary (in detail, see [1]). The continuum approximations to
the incremental axial compressive force, shear force and bending moment in the hori-
zontal beams are (cf. [1]):

Po=—L,Fu,, T,= (ki$tw—2k,s.¢)/L,
M, Z%L.rkxs.r(l —Cz) Pz %
The boundary conditions at the left side x=—a are PL=P%, TL=T,, Mt =M, —
(TE+ Pdv ;) L./2 and those at the right side x = a are obtained by replacing M, with
—M,[1], the positive sense of T, T?, M*, M® being considered the same as for the
force upon boundary joint due to the internal forces in the imaginary members. Substi-

tuting (5), and T* = T® = M = M* =0, the boundary conditions at the sides take
the form:

Pl=—L,E,u,forx=—a;, PP=—L,ELu_forx=a (6a)
S3U.p =250, kpsy(1—cp)p . =xPv forx=Fa. (6b)

In the sequel it will be further assumed that P? = — PL, which means that only
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antisymmetric deformations and buckling modes will be considered because they can
be naturally expected to yield much lower buckling loads than the buckling modes in
which the frame deforms symmetrically about the vertical axis (bulging).

When expressions (4) are substituted into (1), all functions of y may be eliminated
and (1) is reduced to a system of three ordinary differential equations

—(ERL3) U s2+ (Y?k,sy) U+ 2(ykys, )R = — X (x)

— (YELY)V+ (kos2)V e —2(kesS2) Rz =—Y (x)

2 (vkysy) U—=2(kysy)V o+ (kpsy+2k,s, —y?L2kys,c,)) R + (L2kys,C.) R oo = M (x).
(7)

To make analytical solution possible, the incremental horizontal loads at the sides
of frame will be assumed to be sinusoidally distributed,

PL=— PR = P*cosvyy (8)

where P* = constant. The boundary conditions on U, ¥ and R result by substituting
(4) and (8) into (7),

L.EU_ =*P* s.V,=23R, k;s.(1~c)R,==P%W ,forx=Fa. 9)

COMPUTATION OF CRITICAL LOADS

The problem has been formulated in terms of a system of three simultaneous second-
order ordinary linear differential equations (7) with six boundary conditions (9). For
the analytical solution it is convenient to transform equations (7) to a system of six
first-order equations by defining six new unknown functions of x,

=U,Fy=U,F;=V,F,=V',Fs=R,Fs=R'. (10)
where primes stand for derivatives. If these variables are substituted into (7) and the

relations F, = F,, F;= F;, Fg= F; are included, the following system of first-order
equations may be obtained:

Fi 010 0 0 o Fy
F, a0 0 0 ay 0-||F;
F; _ 0 0 0 1 0 0 F;
F; 0 0 a3 0 0 agll|Fs
F3 0 0 0 0 0 1 Fs|
Fg g 0 0 ag ag 0 Fegl (11)
where .
= yk,syl (ELLY), Gys = 2vk,s,/(ELLL)
= yE, L% (k,s% ass = 2k;Sz/ (koS

61 = —2')'kysu/ (L.’tk.ts.‘l,‘c.’l.‘)’ Qgq = 2Kk S y) (L2k S 2C2)
ags = — (2kos.+ 2k, sy —yiL2ikysyC) [ (L2k s 1Cy) - (12)
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Note that the coefficients of equation (11) are not symmetrical, although those of the
original equations (7) are.

Because the coefficients of equations (11) are constant, the solution may be sought
in the form

Fi=Ke* (i=1,2,...,6). (13)

Substitution into (11) yields a system of homogeneous linear algebraic equations for
K, which admit non-zero solution only if their determinant vanishes. This condition
requires that the admissible values for A are the eigenvalues of the matrix of equations ~
(11). The equation for A (characteristic equation) may be brought to the form

NS — (@1 + Ggs + Ags + Augligs) N* + (21065 + Q21043 + Aa3065 — A5y + A21a46064) N2

— (a21043045 — A2504306,) = 0 (14)

which is a cubic equation for A2. (Thus, if \ is a root, so is — \.) There are six roots
A= A1, Az, ..., A\¢ Which are in general complex (although in practical computations
A1, .- - » Ay Were usually real and A5, A¢ imaginary). The roots will be assumed to be all
distinct, i.e. no double roots exist. (This has been found to occur in nearly all of the
practical cases computed; in the very few cases in which double roots occurred, the
input values have been slightly modified to avoid this situation which would necessitate
a different program of solution.) The solution of the system of homogeneous algebraic
equations when the value of A; is substituted will be denoted as K, .. ., Ki. These are
in general complex numbers and represent the j™ eigenvector of the matrix of equations
(11), which is determined uniquely except for an arbitrary multiplier, The general
solution of equations (11) may then be written in the form

F,= CKleM*+ C, K%M+ . - -+ CgKbe** (j=1,...,6) (15)
where C,,...,Cy are arbitrary constants, which in general must be considered as
complex although again, as in the case of the eigenvalues, C,, . .., C, were usually real

and C;, Cg were imaginary.,

When all incremental applied forces at the boundary are zero (P* = 0), the boundary
conditions (9) furnish a system of six linear homogeneous equations for C,, C,, . . ., Cs.
The critical values of Pj (for a given P}, usually P} = 0) are then determined by the con-
dition that the determinant of these equations must be zero for buckling to occur. The
coeflicients of the determinant, however, depend on PY in a very complicated manner;
they are functions of the complex roots and eigenvectors of matrix (11), which do not
possess explicit expressions and, according to (12), depend nonlinearly on s,, c,,
sy, Sy which in turn are nonlinear functions of P¢. Thus, although the problem has the
nature of an eigenvalue problem, it is much more complicated than its usual form. Con-
sequently, some sort of trial-and-error procedure must be applied in an effort to find
out for which value of PY incremental deformation is possible without any incremental
loads. The points on the vertical axis of symmetry will be forced to undergo incre-
mental horizontal displacements u = 1 —cos yy, i.e.

U=0for x=0,and U, =1 (16)
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and the values of load parameter P*, needed to sustain this deformation, will be deter-
mined for various values of P, until the case P* = 0 is obtained. The two boundary
conditions involving P* in equation (9) are now replaced by condition (16) and the anti-
symmetry condition U ,(—a) = U ,(a). Together with the remaining four conditions
(16), the boundary conditions yield, after substitution of expressions (15) for the
new variables F; given by (10), the following nonhomogeneous system of linear alge-
braic equations for C,, . . ., Cq:

_[Ofori=1,...,5
]Zb“cj_{l fori=6 a7

where
by; = (Ki—2Kis;/s}) €% by = b, ei®
by = (Ki— QK3) e, by = (Ki+ QKj) e, Q = PY/[k,s,(1—c,)]
bs; = Kj(ere+ e 29), bg; = Ki. (18)

The right-hand sides of these expressions are complex numbers. The value of load para-
meter P* needed to sustain the imposed incremental deformation may be determined
from the first boundary condition (9) which, upon substitution of expressions (15),
provides

6
P*=L,E, S C;Kie Mo, (19)
i=1

The above method of solution has been programmed using complex Fortran vari-
ables where appropriate (e.g. for \;, Ki, C;, b;). The characteristic roots \; and the
eigenvectors have been computed using standard library subroutines. The critical
value of P has been determined by the following procedure, analogous to the ‘regula
falsi’ method: (1) Select some value of P} and compute the corresponding P*. (2) If
this P*-value is negative, increase, and if it is positive, decrease the PJ-value. Then
compute again the corresponding P*. (3) Continue changing P9 until P* switches sign.
Then determine the value of PY for which P* would vanish if linear interpolation
applied, and compute the corresponding P*. (4) Correct the value P} using again linear
interpolation, compute new P* etc., until the change in P* is negligible.

In applying the above algorithm, caution is necessary not to use an excessive
change in PY because the lowest critical value could be missed. Nevertheless, after
some computing experience only about seven analyses for seven different values of
P were necessary to find the lowest critical value with about seven digits exact.

NUMERICAL STUDIES

The solution described above has been programmed in Fortran I'V and a number of
frames has been analyzed (using computer CDC-6600). In addition to verification of the
method, the objective of these studies was to determine the magnitude of the error in
comparison with the exact (and more complex) solutions which have been published
previously by the authors[3]. The comparison is shown in Fig. 2. It is seen that the
micropolar medium is indeed a very good approximation to large regular frames when
the overall behavior with axial extensions is considered. One may thus expect the
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Fig. 2. Critical loads per column for a typical frame. The present solution (dash-dot lines) is
undistinguishable from the exact solution given in [3] (solid lines), except where shown.

continuum approximation to yield accurate results even in other situations[4] in which
exact solutions are not possible.

Furthermore, it is of interest to make comparison with the buckling loads for short-
wave modes without axial extensions. It is known that in such modes, which have
usually been considered in analysis, the buckling load is only slightly less than the
Euler load for an isolated column (when sway is not prevented). From Fig. 2 it is seen,
that in tall frames the long-wave buckling loads can be much smaller.

From Fig. 3 it is seen that for the relatively frequent cases of the higher beam-to-
column stiffness ratios and very small ratio of frame slenderness (H/B) to column
slenderness, the distribution of vertical displacements across the frame width deviates
more from the exact solution{3] and has short-wave components. This waving is false
and has never been found in the exact solution[3]. But even in these cases the buckling
load is still very close to the exact value and the average of the short-wave component
approximately coincides with the exact solution.

A discussion of the non-dimensional parameters on which the buckling load depends
has been presented in a previous paper[3], on the basis of an exact solution, and thus
need not be repeated here.

CONCLUSIONS
1. In tall building frames with a large number of stories the long-wave buckling
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Fig. 3. Distributions of the amplitude or vertical joint displacements across a frame width at

buckling for 20 bays per width and various beam-to-column stiffness ratios k,/k,, frame height-

to-width ratios H/B and column slenderness ratios L,/r,. Dashed lines show the present solu-

tion where it differs from the exact solution from [3] shown by solid lines. Distribution of

column extensions are the same. For P} less than the buckling value, the distributions are

appreciably different (not shown) only if either P}/Py, is not small or the distribution has short-
wave components.

load can be much smaller than the usually considered short-wave buckling load in
which axial extensions are neglected.

2. Although the problem has the nature of an eigenvalue problem, it is much more
complicated than its usual form because all coefficients of the 6 X 6 determinant to
vanish depend on the initial stress nonlinearly and in a complicated manner which
involves explicitly inexpressible complex roots and eigenvectors of another 6 X6
determinant. Nevertheless, a numerical solution of any desired accuracy can be
obtained by a procedure analogous to the ‘regula falsi’ method.

3. A continuum approximation of large regular frames under initial stress by an
orthotropic micropolar medium is a very good model for the study of overall behavior
of such frames.
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Résumé— En utilisant une approximation par un milieu continu micropolaire, le flambement extensionel
d’une poutre rectangulaire multiétages et multi-sections est résolu en formulant ce probléme en termes
d’un systéme de six équations différentielles linéaires ordinaires. Les charges critiques doivent étre calculées
par un procédé numérique parce que tous les coefficients du déterminant 6 X 6 4 annuler dépendent explicite-
ment de racines complexes non-exprimables et de vecteurs propres d’un autre déterminant 6 X 6 lequel dé-
pend a son tour non linéairement de la contrainte initiale. Il est montré que pour des structures hautes, il est
important de considérer des charges de flambement & ondes longues.

Egalement, il est trouvé que I'approximation du milieu continu donne des résultats trés précis, comparés
avec les solutions exactes des grandes structures.

Zusammenfassung — Unter Verwendung von Annaherung durch ein mikropolares Kontinuum wird die
Ausdehnungsknickung eines Baurahmens mit vielen Stocken und Fichern gelost. indem das Problem in
Ausdriicken von sechs linearen gewéhnlichen Differentialgleichungen formuliert wird. Die Knicklasten
miissen durch eine Probiermethode errechnet werden. weil alle Koeffizienten der zu verschwindenden 6 X 6-
Determinante explizit von inexpressiblen Wurzeln und Eigenvektoren einer anderen 6 X 6-Determinante
abhiingen, die wiederum nichtlinear von der Anfangsspannung abhingt. Es wird gezeigt, dass fiir hohe
Rahmen die Beriicksichtigung von Langwellenknicklasten wichtig ist. Auch wird gefunden, dass die Kon-
tinuumanniherung im Vergleich mit den exakten Losungen grosser Rahmen sehr genaue Resultate gibt.

Sommario— Usando approssimazione a mezzo di un continuo micropolare, il problema della deformazione
in estenzione di un telaio rettangolare a molti piani e a molte campate e avente confine rettangolare viene
risolto formulandolo a mezzo di un sistema di sei equazioni differenziali ordinarie lineari. I carichi producenti
la deformazione devono venir calcolati con una procedura per tentativi perché la sparizione di tutti i co-
efficienti del determinante 6 X6 dipende esplicitamente dalle radici complesse inesprimibili e dagli auto-
vettori di un altro determinante 6 X 6 che a sua volta & una funzione non lineare delle sollecitazioni iniziali.
Viene dimostrato che per alti telai ¢ importante considerare i carichi che producono lunghe deformazioni
ondulate. Si & scoperto inoltre che I'approssimazione ottenuta col continuo da risultati molto accurati a
paragone delle soluzioni esatte di grandi telai.

AGerpakT — Ha OCHOBE amnmpOKCMMalLMM MMKDOIOJAPHBIM KOHTHHYYMOM NpO0JeEMa pa3aBHXKHMOTO
BBIIYYMBAHHS MHOTO3TaXHOH, MHOTONPOJIETHOH PaMBl C MPAMOYTOJIbHOM IPaHULIE PEIIAeTCs NpH (OpMy-
JMpPOBAHHH €ro Yepe3 CHCTEMY 6 JIMHEHHBIX OOBIKHOBEHHBIX AuddepeHunanbabIX ypaHeHuit. s BoKCIe-
HHsI KPUTHYECKOH MPOLOJILHON HAarpy3kM HYXHO NPHMEHHThL METOA MOAGOpa, Tak Kak Bce KOIGQHUHMEHTHI
onpenenurens 6 X 6, 0OpalualoIKech B Hy/lb, 3aBHCAT SIBHO OT HEBBIPAXAEMBIX KOMILIEKCHBIX KODHe#t H
COOCTBEHHBIX BEKTOPOB APYIOro ONpeAETUTENsA, KOTOPBIH [0 OYEPEAH 3aBHCHT HEJIMHEHHO OT HAYabHOTO
HanpsokeHus. IToka3aHo, YTO AJISA BHICOKHMX PaM BaXXHO YYMTHIBATH AJIMHHOBOJIHOBbIE HAIDY3KH, BbI3blBa-
OLLHE TIOTEPH NPOAOJLHON ycTOHuMBOCTH. KpoMe Toro, 3ta anmpoKCHMAUHs TO3BOJUT HOJMYYHTh OYEHb
TOYHBIE PE3YJILTATHl B CPABHEHHHU C TOYHBIMH PEIICHHAMH Ui GOJILIUMX paM.



