JOURNAL OF THE ENGINEERING MECHANICS DIVISION

CREEP AND SHRINKAGE LAW FOR CONCRETE AT VARIABLE HUMIDITY

By Zdeněk P. Bažant, M. ASCE and Spencer T. Wu

INTRODUCTION

Structural analysis with complex constitutive laws has been made feasible by electronic computers, but for many materials realistic constitutive laws themselves are unavailable at present. This is certainly true in the case of creep and shrinkage of concrete at variable humidity. An experimentalist may point out that better controlled and better designed experiments are needed to enhance the knowledge. Yet, this is only a part of the answer. Perusing the literature, one cannot deny that a vast pool of experimental information already exists, but it remains largely untapped as far as the quantitative theoretical model is concerned. Although numerous studies have been devoted to moisture effects in concrete, no consistent constitutive law for concrete creep and shrinkage at variable humidity has yet been identified from the test data, to the best of writers' knowledge, and this task is chosen as the object of this study.

The problem is made difficult partly by the fact that the standard test specimens are during the test in a nonhomogeneous state, i.e., in a state of nonuniform stress, strain, and pore humidity. Mathematically, one faces a so-called inverse problem, because coefficients of a differential equation in space and time must be identified from a given solution, the measured data. Such problems have been studied extensively in the theories of control and optimization and became tractable only recently with the help of a computer. Application of these techniques can greatly improve the understanding of concrete behavior and should be begun on a large scale because it would be even more fruitful (and less costly) than further testing until all available experimental data are theoretically analyzed.

Apart from the identification problem, an even more complex problem is

Note.—Discussion open until May 1, 1975. To extend the closing date one month, a written request must be filed with the Editor of Technical Publications, ASCE. This paper is part of the copyrighted Journal of the Engineering Mechanics Division, Proceedings of the American Society of Civil Engineers, Vol. 100, No. EM6, December, 1974. Manuscript was submitted for review for possible publication on March 6, 1974.

1Prof. of Civ. Engrg., Northwestern Univ., Evanston, III.
that of the proper form of the constitutive equation. Here, a thermodynamic theory of the microstructural creep mechanism has proven to be quite helpful and has led to a rational form of the constitutive law (1, 3, 4, 6). The present study attempts to determine quantitatively the material parameters of this law.

A constitutive equation that is formulated in relationship to the underlying physical processes in the microstructure inevitably has a rate-type form with hidden (internal) variables. Fortunately, this form is, at the same time, particularly expedient because it eliminates the history dependence. Indeed, for the analysis of large structural systems a rate-type form is inevitable, because the storage of all stress values in all previous time steps and the evaluation of hereditary integrals, as required by an integral-type law, would make the computer storage and time requirements prohibitively large. Special cases of the constitutive equation to be considered herein have been studied quantitatively for the cases of constant humidity and both constant and variable temperature already in Refs. 9 and 10, and a different but analogous formulation was given in Ref. 8. The present study is a continuation of these works.

Constitutive Law and Its Relation to Thermodynamics of Creep Mechanism

On the microstructural level, the creep in portland cement concrete and a major part of its shrinkage are almost certainly caused by a diffusion flux of a certain component forming the solid particles [probably Ca ions (4, 6)] coupled with diffusion fluxes of water along the hindered adsorbed layers in cement gel (4, 6). This contemporaneous concept of the creep mechanism is essentially an extension and modification of the ideas of Powers (26, 27) on the disjoining pressure in hindered adsorbed layers and has been developed chiefly in Refs. 3 and 6. Under certain plausible assumptions, the mathematical formulation of this mechanism leads, for hydrostatic stress states and constant temperature, to a constitutive equation of the form (see Eq. 4.30 in Ref. 4):

\[
\dot{\sigma}^V_v + \phi^V_{v, v} \sigma^V_v + \phi^V_{w, v} \sigma^V_w = 3K^V_v \{ \varepsilon^V - \dot{\varepsilon}_s(h) \} \quad \cdots \quad (1a)
\]

\[
\dot{\sigma}^V_w + \phi^V_{v, w} \sigma^V_v + \phi^V_{w, w} \sigma^V_w = 3K^V_w \{ \varepsilon^V - \dot{\varepsilon}_s(h) \} \quad \cdots \quad (1b)
\]

\[
\sum_{\mu} (\sigma^V_{v, \mu} + \sigma^V_{w, \mu}) = \sigma^V; \quad \mu = 1, 2, ..., n \quad \cdots \quad (2)
\]

where \(\dot{\varepsilon}^V, \sigma^V = \) volumetric strain and stress; superscript \(V \) refers to volumetric component; \(\sigma^V_v, \sigma^V_w \) = hidden volumetric stresses in solids (subscript \(s \)) and in water (subscript \(w \)); \(K^V_v, K^V_w = \) (tangent) elastic bulk moduli of solids and water associated with the hidden stresses; \(\dot{\varepsilon}_s(h) = \) instantaneous shrinkage strain depending on the relative humidity, \(h \), in the capillary pores (macropores) within the material; \(\phi^V_{v, v}, \phi^V_{v, w}, \phi^V_{w, v}, \phi^V_{w, w} \) = rate coefficients associated with the microscopic diffusion fluxes of solids (\(s \)) and water (\(w \)), and their mutual coupling; \(\sigma^h = \) functions of \(h = \) values of hidden stresses in hindered adsorbed water layers that would be necessary for thermodynamic equilibrium with the adjacent capillary pores containing water vapor of humidity \(h \) (see Ref. 4); zero value of \(\sigma^h = \) is chosen at \(h = 1 \); and the dots refer to the derivatives with respect to time \(t \); e.g., \(\dot{\varepsilon} = de/dt \). Eqs. 1a, 1b, and 2 can be applied only for the stress range in which microcracking is negligible, i.e., when stresses are less than about one-half of the strength. The coefficients of Eqs. 1 and 2 may be expressed in terms of the parameters and thermodynamic variables of the microstructural model (see Ref. 4, Eqs. 4.21-4.24).

If the material is assumed to be isotropic, the deviatoric strain rates must be independent of the volumetric strain rates and must be governed by a constitutive equation of similar form but devoid of stress-independent terms, such as \(\sigma^h \) and \(\varepsilon_s \). Thus

\[
\dot{\sigma}^D_v / \sigma^D_v + \sigma^D_w / \sigma^D_w = 2G^D_v / \varepsilon^D \quad \cdots \quad (3a)
\]

\[
\dot{\sigma}^D_w / \sigma^D_w + \sigma^D_v / \sigma^D_v = 2G^D_w / \varepsilon^D \quad \cdots \quad (3b)
\]

\[
\sum_{\mu} (\sigma^D_{v, \mu} + \sigma^D_{w, \mu}) = \sigma^D; \quad \mu = 1, 2, ..., n \quad \cdots \quad (4)
\]

in which \(\sigma^D = [\sigma^D_v] = \sigma^D_v = \sigma^D_j[\delta_{ij}] = \) deviatoric stress tensor; \(\varepsilon^D = [\varepsilon^D_j] = \varepsilon^D_i = \varepsilon^D_j[\delta_{ij}] = \) deviatoric strain tensor; \(\sigma = \sigma^0 = \) stress tensor; \(\varepsilon = \varepsilon^0 = \) strain tensor; \(i, j = \) subscripts for cartesian coordinates \(x_i, x_j = 1, 2, 3; \delta_{ij} = \) Kronecker delta; \(\sigma^D_v, \sigma^D_w = \) similarly defined deviatoric tensors of hidden stresses in solids (\(s \)) and water (\(w \)); \(\phi^D_{v, v}, \phi^D_{v, w}, \phi^D_{w, v}, \phi^D_{w, w} \) = rate coefficients; and \(G^D_v, G^D_w = \) (tangent) elastic shear moduli (of solids and hindered adsorbed water), associated with the hidden stresses.

Analysis of Constitutive Equation

According to Eqs. 2 and 4, the (macroscopic) stress is assumed to be a resultant of all hidden stresses. This means that the constitutive equation may be visualized by means of a Maxwell-type chain, shown in Fig. 1(a), in which the layer-shaped "diffusion elements" are characterized by rate coefficients \(\phi^V_{v, v}, \phi^V_{v, w}, \phi^V_{w, v}, \phi^V_{w, w} \), the springs model the instantaneous response of solids and (hindered adsorbed) water, and \(\dot{\varepsilon}_s \) is superimposed on the deformation of the model in the volumetric case.

The Maxwell chain model, consisting of dashpots and springs of age-dependent moduli, that was previously developed for the rate-type creep law of aging concrete at \(h = 1 \) and reference temperature \(T_0 \) (the reference conditions), is a special case of the present model (5, 9). Indeed, adding Eqs. 1a and 1b (and noting that \(\sigma^h = \varepsilon_s = 0 \) at \(h = 1 \)) one can see that the well-known relations for a spring-dashpot Maxwell chain [Fig. 1(b)]:

\[
\sigma^V = \sum_{\mu} \sigma^V_{v, \mu} \left(\frac{\sigma^V_{v, \mu}}{3K^V_v(t)} + \frac{\sigma^V_{w, \mu}}{3K^V_w(t)} \right) = \varepsilon^V; \quad \mu = 1, 2, ..., n \quad \cdots \quad (5)
\]

are a special case of Eqs. 1 and 2, provided that

\[
\phi^V_{v, v} + \phi^V_{v, w} = \phi^V_{w, v} + \phi^V_{w, w} = \frac{K^V_v(t)}{\eta^V_v(t)} = \frac{1}{\tau^V_v} \quad \cdots \quad (6)
\]

\[
K^V_v + K^V_w = K^V_v(t); \quad \sigma^V_v + \sigma^V_w = \sigma^V \quad \cdots \quad (7)
\]

in which \(\sigma^V = \) volumetric total hidden stresses; \(K^V_v(t) = \) total bulk modulus at age \(t \) corresponding to \(\sigma^V_v \); \(\eta^V_v(t) = \) (dashpot) viscosity at age \(t \); and \(\tau^V_v \)
The question whether a chain of the Maxwell type or of the Kelvin type should be considered is in classical viscoelasticity solely a matter of choice because either of these two chains can approximate any viscoelastic behavior with any desired accuracy. This also holds in the case of time-variable (aging) materials, e.g., concrete, but the Maxwell chain is preferable for two reasons: (1) Its differential equations (8,9) are of the first order in \(\epsilon \) while those for

\[
\begin{align*}
\alpha & \quad \sigma_{\mu, \omega} \quad \sigma \\
\mu & \quad 1 \quad 2 \quad 3
\end{align*}
\]

FIG. 1.—(a) Model Interpreting Structure of Constitutive Equation at Variable Humidity; (b) Maxwell Chain Model as Special Case

the Kelvin chain are of the second order in \(\epsilon \) (though of first order in \(\epsilon \)) and this somewhat complicates the integration; and (2) when the physical interpretation in terms of hindered adsorbed layers is considered, it is more appropriate to superimpose the stresses in solids and water than the strains in solids and water, and this condition is satisfied only by the Maxwell chain.

Identification of the material parameters of Eqs. 5-7 for the case of reference conditions \((h = 1, T = T_0) \) is the first problem to be tackled. It has already been resolved; see Ref. 9 with the computer program listed in Ref. 5. Moduli \(K_\mu(t) \) may be regarded as functions of \(\log \tau_\mu \), and the plot of \(K_\mu(t) \) versus \(\log \tau_\mu \) at fixed time \(t \) is called the relaxation spectrum. This spectrum is discrete and is actually an approximation of a certain continuous spectrum. Obviously, for a discrete approximation of a continuous function, different choices of discrete coordinate values may give equally good approximations. Thus, the log \(\tau_\mu \) values may be chosen in advance arbitrarily, provided that they are sufficiently densely distributed and cover the whole time range of interest. (In fact, it is impossible to attempt determination of \(\tau_\mu \) from test data, because a problem with a nonunique solution and an unstable dependence of \(\tau_\mu \) on the data would result.) It is most convenient to select \(\eta_\mu = \eta_{\mu}(t)/K_\mu(t) \) to be independent of \(t \), constraining thus \(\eta_{\mu}(t) \) and \(K_\mu(t) \) to vary proportionately (see Refs. 9 and 10). Further, a suitable choice is one of \(\tau_\mu \) values distributed uniformly on the logarithmic scale, i.e., \(\tau_\mu = \tau_1 10^{n-1} \). For applications in structural analysis, the number, \(n \), of hidden stresses should be kept to a minimum. A sufficient accuracy is achieved with \(a = 10 \), i.e.,

\[
\tau_\mu = \tau_1 10^{n-1}; \quad \mu = 1, 2, ..., n
\]

(8)

After specifying the values of \(\tau_\mu \), one can determine moduli \(K_\mu(t') \) for age \(t' \) by expanding the relaxation curve for constant stress applied at age \(t' \) in a series of real exponentials, called Dirichlet series (8,9); this is best done by the method of least squares. (The relaxation curve can be obtained from a set of creep curves for various ages at loading by solving a Volterra integral equation numerically (9); also see the computer program in Ref. 5.) However, for \(\tau_\mu \) values spaced too closely, moduli \(K_\mu \) are unstable functions of the test data, i.e., quite different \(K_\mu \) values can give equally close fits. This is true even of the spacing in Eq. 8. Nevertheless it was found (8) that this unacceptable feature can be avoided by including into the least-square condition of optimum fit a penalty term of the form \(\Sigma \eta_{\mu} (w_1(K_\mu - 1)^2 + w_2(K_\mu - 2K_\mu)^2) \), with \(w_1 \) and \(w_2 \) being suitable weight factors. This forces \(K_\mu \) to be a "smooth" function of \(\mu \), which is physically a natural property to require.

The preceding analysis evidently applies not only for the volumetric behavior, but also for the deviatoric behavior.

In similarity with relaxation times \(\tau_\mu \), and because of Eq. 6, it is necessary to choose the rate coefficients. An expedient choice is

\[
\frac{\phi_{\mu}^V}{\phi_{\mu, \omega}^V} = \frac{\phi_{\mu}^D}{\phi_{\mu, \omega}^D} = \frac{\phi_{\mu}^D}{\phi_{\mu, \omega}^D} = \frac{k_1}{\tau_\mu}; \quad \frac{\phi_{\mu}^V}{\phi_{\mu, \omega}^V} = \frac{\phi_{\mu}^D}{\phi_{\mu, \omega}^D} = \frac{1 - k_0}{\tau_\mu}
\]

(9)

This choice ensures that Eq. 6 is satisfied and implies that a significant coupling, characterized by \(\phi_{\mu, \omega}^V, ..., \phi_{\mu, \omega}^D \), can exist only between diffusion processes having a rate that is of the same order of magnitude. Physically, this assumption seems to be a reasonable one because diffusion is a rate process without memory. (According to Eq. 12 in the sequel, \(k_0 = 1 \).)

The present constitutive equations differ from those of viscoelasticity primarily by the fact that hidden stresses \(\sigma_\mu \) are split into two independent components, \(\sigma_{\mu, \omega} \) and \(\sigma_{\mu, \omega} \), due to solids and hindered adsorbed water. One reason for this splitting relates to the processes in the microstructure (see Sections 4.4 and
4.5 in Ref. 4, and two further reasons exist: (1) A separate parameter for the state of water in the hindered adsorbed layers is necessary to model that part of shrinkage that is delayed with regard to pore humidity change; and (2) creep at constant h depends on stress (up to about 0.4 of the strength) nearly linearly, while creep during drying depends upon stress distinctly nonlinearly (20, 21, 34). Because the time-dependent deformations are caused primarily by the diffusion of solids rather than water (as shown in Ref. 4), the law of solids diffusion must be essentially linear and the coupling between the diffusion of water and the diffusion of solids must be nonlinear. To model these two distinct time-dependent processes, two separate variables, σ_{wp} and σ_{wp}', evidently are needed. (In the sequel, the nonlinear coupling is modeled by coefficients ψ_{wp} and ψ_{wp}^D).

Another important difference from the classical viscoelasticity is the presence of terms σ^h. They depend on pore humidity h and represent the values that σ_{wp} must have in thermodynamic equilibrium with water vapor of humidity h in the macropores. Consequently, they are additive to $-\sigma_{wp}$ and are multiplied by the same rate coefficient, expressing the fact that creep and shrinkage are merely different facets of the same physical phenomenon. Terms σ^h cause those stress-independent humidity-dependent deformations (i.e., shrinkage) that occur with a certain delay after a change of humidity h in the capillary pores. The fitting of various data, as well as direct evidence (11), confirmed that the delayed shrinkage is of the same order of magnitude as the instantaneous shrinkage, modeled by the term, ϵ_s, in Eq. 1.

Material Parameters.—Using the methods outlined subsequently, the dependence of the material parameters upon pore humidity, progress of hydration, relaxation time, and stress has been identified as shown in the following. The rate coefficients are expressed as:

$$\phi^V = \frac{1}{\tau_{wp}}$$

$$\phi^D_{wp} = \frac{1}{\tau_{wp}}$$

$$\phi^V_{wp} = \frac{1}{\tau_{wp}}$$

$$\phi^D_{wp} = \frac{1}{\tau_{wp}}$$

$$\phi^V = \phi^D = 0; \tau_{wp} = 0.05 \times 10^{-n-1} \text{days}; \mu = 1, \ldots, n; n = 7$$

in which $\phi = \psi^V = \rho^D = 1$ for $h = 1$ and very small stress, while for general h and a higher stress (see Fig. 2):

$$\phi^V = 10^{-n} \sqrt{1 - n}; \psi^V = 1 + \left(\frac{\sigma^V_{wp} - \sigma^h_{wp}}{\sigma^V_{wp}}\right)^2; \psi^D = 1 + \left(\frac{\sigma^V_{wp} - \sigma^h_{wp}}{\sigma^D_{wp}}\right)^2$$

$$\rho^V = \rho^D = 1 + \left(\frac{\sigma^V_{wp}}{\sigma^h_{wp}}\right)^2 + \frac{J_2(\sigma^D_{wp})}{\sigma^2_{wp}}$$

in which $\sigma^h = 10^{-h^{1/2}} \sigma_c; \sigma_{wp} = 10^{-h^{1/2}} \sigma_c$;

$$a_\mu = 3.6 - 0.095 (\mu - 1)^2; \quad \sigma_c = 0.0414 \text{N/mm}^2 (6 \text{psi})$$

The (tangent) elastic moduli are expressed as

$$K_{wp} = 0.9 K_{wp}; \quad K_{wp} = 0.1(2 - h) K_{wp}; \quad G_{wp} = 0.9 G_{wp}$$

in which ν is the Poisson ratio for elastic deformation and creep at $h = 1$ and is known to be nearly independent of creep deformation and age; $\nu = 0.18$ (4, 24). Parameters E_{wp}, \ldots, E_{wp}^D can be determined from the uniaxial creep compliance function, $J(t, t')$, by a program listed in Ref. 5. t_e is the equivalent hydration period, defined (7) at constant temperature as (see Fig. 2):
\[t_e = \int_0^t \beta_h \, dt; \quad \text{with} \quad \beta_h = \left[1 + (3.5 - 3.5h)^4 \right]^{-1} \]

(23)

Despite the restriction to working stress range, nonlinear behavior may occur in tension. This must be considered when the test data on shrinkage are analyzed. It is assumed that for uniaxial tensile stress \(\sigma \) and strain \(\varepsilon \) the instantaneous \(\sigma - \varepsilon \) diagram is of the Ramberg-Osgood type, i.e., \(\varepsilon = \sigma / E + 2 (f'_t / E) (\sigma / f'_t)^3 \), in which \(f'_t \) = failure stress in tension. Accordingly, the tangent elastic modulus in tension is \(E_{tan} = E/(1 + 6 \sigma^2 / f'_t^2) \). Assuming that moduli \(E_p(t_c) \) depend on maximum principal tensile stress \(\sigma \), similarly as \(E_{tan} \) depends on \(\sigma \), all \(E_p(t_c) \) must be replaced by

\[
E_p(t_c) \left(1 + \frac{6\sigma^2}{f'_t^2} \right)^{-1}
\]

(24)

When \(\sigma \) reaches \(f'_t \), a macroscopic crack is formed and the stress drops to 0.

To determine pore humidity \(h \), the macroscopic water diffusion through concrete must be analyzed. Fortunately, it has been found that as a very good approximation this problem may be considered independent of the deformations. Diffusivity

**FIG. 4.—Fits of L’Hermite and Mamillan’s Uniaxial Compression Creep Data (20) [\(t' = \text{age at loading}; \text{prisms} \ 7 \ \text{cm} \times 7 \ \text{cm} \times 28 \ \text{cm} \text{approximated as} \ 7.5-\text{cm diam. cylinders}; \ 28-\text{day strength} = 35.9 \ \text{N/mm}^2 (5,200 \ \text{psi}); \text{room temperature; concrete of French type} 400/800; \text{350 kg cement/m}^3; \text{water-cement-sand-gravel ratio} = 0.49: 1: 1.75: 3.07; \text{Seine gravel. Measured \(J \) values at} t - t' = 0.01 \ \text{day for ages} t' = 7 \ \text{days to} 730 \ \text{days shown were} 248, 196, 190, 172, 144 \ \text{in} 10^{-3} / \text{psi} (14.5 \times 10^{-4} \ \text{per N/mm}^2). \text{Drying exposure began at age} t_0 = 2 \ \text{days. Fits for} f'_t = 2.76 \ \text{N/mm}^2 (600 \ \text{psi}), \ 1.70 \ \text{N/mm}^2 (260 \ \text{psi}), \ S_0 = 0.0003, \ C_0 = 0.161 \ \text{cm}^2/\text{day} (0.025 \ \text{sq in.}/\text{day}), \ B = 0.4. \text{Data points for} 12.26 \ \text{N/mm}^2 (1,777 \ \text{psi}) \text{are not fitted since they are in high stress range.}]

**FIG. 5.—Fits of L’Hermite and Mamillan’s Creep and Shrinkage Data (20) at Various Humidities (Same Parameters as in Fig. 4.)

C in the diffusion equation for \(h \) depends strongly upon \(h \) (7); approximately (see Fig. 2):

\[
C = C_1(t_c) \left[0.05 + \frac{0.95}{1 + (4 - 4h)^6} \right]
\]

(25)

By fitting Wierig’s data (31) on vapor permeability \(c \), which is approximately proportional to \(C \), it has been found (see Fig. 3) that

\[
C_1 = C_0 (0.3 + 3.6 \ t_e^{1/2}), \ \text{or} \ C_0 (0.55 + 2.35 \ t_e^{1/2})
\]

(26)

in which the first expression applies to regular (type I) cements and the second applies to early strength (type III) cements. The diffusion equation for \(h \) also contains term \(h_1 \) due to self-desiccation of sealed concrete caused by hydration. It may be expressed (for water-cement ratios of about 0.45) as
The finite rate of moisture transmission at the exposed surface of the concrete has been handled (7) in terms of the equivalent surface thickness, D_h, which has been considered to be 1.25 mm for all test data analyzed.

FIG. 6.—Fits of Hansen and Mattock's data (17) on Effect of Size on Shrinkage and Creep of Cylinders Drying at $h = 0.50$ [Cylinders sealed at ends; 28-day cylinder strength ≈ 41.4 N/mm² (6,000 psi); Elgin gravel (92% calcite, 8% quartz), maximum Size 19 mm (3/4 in.); ASTM Type III cement, 237 kg/m³ (500 lb/cu yd); cured 2 days in mold and 6 days in fog at 22°C; loaded and exposed to drying at 8 days of age; compression stress $\approx 1/4$ of 8-day strength; $E = 25,500$ N/mm² (3,700,000 psi); measured h in axis of cylinder is indicated in figure. Fits for $f_c = 3.45$ N/mm² (500 psi), $S_c = 1.79$ N/mm² (260 psi), $S_o = 0.0011$, $C_o = 0.206$ cm²/day (0.032 sq in./day), $B = 0.$]

FIG. 7.—Fits of Creep and Shrinkage Data of Troxell, Raphael, and Davis (30) [Unsealed Cylinders, Diameter 102 mm (4 in.), Length 356 mm (14 in.); 28-day Cylinder Strength ≈ 17.2 N/mm² (2,500 psi), Stress $= 1/3$ Strength; 22°C; ASTM Cement Type I; Water-Cement-Aggregate Ratio 0.59: 1.5 : 5.67; Granite Aggregate, Maximum Size 38 mm (1.5 in.). Fits for $f_c = 2.76$ N/mm² (400 psi); $S_c = 2.07$ N/mm² (300 psi); $S_o = 0.008$; $C_o = 1.61$ cm²/day (0.025 sq in./day), $B = 0.4.$]

Examination of Material Parameters and Fits of Data

1. Functions ϕ_p in Eqs. 10–12 account for the fact that specimens that have dried up to a uniform and time-constant pore humidity h creep less for a lower h (14,16,23,28,29,34) (see Fig. 2). Functions ϕ_p, as well as Eq. 15, are conveniently given as exponentials; the exponents of 10 approximately indicate the distance of the shift of the response function to the left in the logarithmic scale.
time scale. [In specimens in which the drying process is well advanced but equilibrium between macropores and micropores has not yet been reached, a more complicated dependence on water loss Δw of the specimen is obtained (see Fig. 9).]

2. Functions ψ_μ^V and ψ_μ^D reflect the fact that simultaneous drying accelerates creep. (This acceleration is so strong that for normal cross-sectional dimensions it overrides ϕ_μ.) The equilibrium value of stress in water, σ_μ^w is reduced when h drops, magnifying the rate coefficients, ψ_μ^V, ψ_μ^D (Eq. 13). Since σ_μ^w is a scalar, it can appear only in combination with σ_μ^V and not with σ_μ^D. The squares

![Graph: Creep Strain vs. Days](image)

FIG. 8.—Fits of Wittmann’s Data (34) on Creep at Various Constant Water Contents [Solid Cement Paste Cylinders, Diameter 18 mm, Length 60 mm; Water-Cement Ratio 0.4; Cured in Water for 28 days at 20°C, Then Dried in Oven at 105°C for 2 days, Resaturated for 3 months at Various Constant Humidities h Shown, at 20°C. Then Tested at Constant h under Stress 15.3 N/mm2 (=0.2 of Failure Stress). E = 21,400 N/mm2 fr 1 min Test Duration. Strain at 1 hr Creep Duration is Subtracted from All Values Shown. Fits for $S_1 = 1.655$ N/mm2 (240 psi), $S_0 = 0.004$, $C_0 = 0.161$ cm2/day (0.025 sq in./day). $B = 0.4.$]

in Eq. 13 cause nonlinear dependence of drying creep upon σ_μ^V, and thus indirectly upon σ. Thermodynamically, squares must appear here because the diffusion fluxes in the hindered adsorbed layers can depend only on an invariant, i.e., a square, of the gradient vector of the potential causing diffusion. This dependence reflects the excitation of the solid molecules when hit by the diffusing water molecules (4). The imparted energy increases the probability that the solid molecule may later jump over its activation energy barrier into an adjacent equilibrium position as a result of thermal fluctuations in energies. Since thermal movements are randomly oriented, the direction of the jumps is independent of the direction of the impinging molecule but depends on the gradient of the

![Graph: Creep Strain vs. Days](image)

FIG. 9.—Fit of Parrot and Illston’s Data (25) on Drying Creep [Hardened cement paste slabs 150 mm x 150 mm x 20 mm, water-cement ratio 0.47. Strength on 9.5 mm x 9.5 mm x 20 mm prisms was about 26.1 N/mm2 (3,870 psi) (reached in 15 min). Wet cured for 7 days, then either sealed or dried in vacuum to given h for 14 days and then sealed. Loaded by uniaxial stress 8.89 N/mm2 (1,290 psi) at 28 days of age. Fits are shown for $S_1 = 2.76$ N/mm2 (600 psi), $S_0 = 1.38$ N/mm2 (200 psi), $S_0 = 0.0003$, $C_0 = 0.203$ cm2/day (0.032 sq in./day), $B_0 = 0.8 + 0.2$ ($\mu - 1$); Δw = volume of water lost per unit volume of paste, assumed proportional to $(1 - h)$; final h values in sealed specimens were estimated as 0.98, 0.6, 0.4, 0.15, as indicated.]
potential of solids because this gradient reduces the activation energy barrier in the direction of gradient. This explains why the nonlinear diffusion effects intervene in rate coefficient \(\phi^{V}_{V} \) and \(\phi^{D}_{D} \) for solids diffusion (4).

3. Coefficients \(\phi^{V}_{V} \) and \(\phi^{D}_{D} \) reflect a different, linear type of coupling of the diffusions. They express a drag of the diffusing water molecules upon

4. Coefficient 1.2 in Eq. 16 causes the acceleration of creep by drying to be more pronounced in volumetric than in deviatoric deformations. This accounts for the fact that at simultaneous drying the apparent Poisson ratio for uniaxial creep drops with time [becoming as low as 0.05; (see Ref. 24, p. 23)] and the lateral creep is little affected by drying (22) (see Fig. 11). In terms of creep mechanism, this probably corresponds to the fact that the increase of diffusion rate due to drying in hindered adsorbed layers of one orientation should not affect much the diffusion rate in layers of another orientation. (The Poisson ratio is thus zero for the effects of drying.)

5. Functions \(\rho^{V}_{V} \) and \(\rho^{D}_{D} \) express the progressively nonlinear dependence of creep upon stress at higher stress levels. Note that the stress appears in Eq. 14 only in the form of tensor invariants, which guarantees that incremental (tangent) moduli exhibit isotropy. (At very high stress near failure this condition need not be met because of extensive stress-induced microcracking of one prevalent orientation.) Also, the increase in Poisson ratio near failure stress in the uniaxial tests cannot be modeled by Eq. 14 because it is known to be caused by microcracking and to be accompanied by a development of anisotropy. Instead, choosing \(\rho^{V}_{V} = \rho^{D}_{D} \), no direct dependence of Poisson ratio upon stress is assumed.

6. Functions \(\phi^{V}_{V} \) and \(\phi^{D}_{D} \) depend on \(\tau_{V} \) (or \(\mu \)) because the intensity of the influences of pore humidity and of drying varies with creep duration.

7. The components of delayed shrinkage of various magnitudes of the delay with regard to a change in pore humidity (the shrinkage delay spectrum) are about equally large for all delays \(\tau_{V} < 20 \) days and become negligible for \(\tau_{V} > 20 \) days. This is modeled by Eq. 19 for \(\sigma_{V}^{h} \). Term \(h^{20} \) in the humidity dependence allows one to model the large difference in shrinkage between sealed specimens and specimens in water. Eqs. 18 and 19 predict swelling in water to be about 20% and (autogeneous) shrinkage of sealed specimens to be about 5% of the maximum shrinkage. The age dependence of delayed shrinkage (clearly apparent in Ref. 20) is partly caused by the age dependence of \(E_{V} \) (Eq. 21), and more by that of \(C \) (see item 11 following).

8. Coefficients 0.1 and 0.9 in Eq. 20 correspond to the assumption that the ratio of transverse stiffness of water and solids in the hindered adsorbed layers (or the ratio of spring constants in Fig. 1) is large, being taken as 9:1. This assumption was confirmed by data fitting and also appears reasonable realizing that the bulk modulus of water is much less than that of cement paste (6). As the implication of this fact, and in contrast with widespread opinion (26,27), hindered adsorbed water does not play a major role in resisting the externally applied load (6). Nevertheless, it does introduce large forces into the material, due to the term, \(\sigma_{V}^{h} \) [representing a resultant of disjoining pressures (4)]. Furthermore, coefficient 0.1 in Eq. 20 also models the mild decrease of elastic modulus when \(h \) drops, as indicated by tests (23,28,35). (By contrast, some other tests indicate an increase, but this is probably merely due to the

FIG. 10.—Computed Stress Distribution in Cylinders at Various Times Due to Shrinkage and Drying Creep [(a) Computed from Fits of Data in Figs. 4 and 5; (b) Computed from Fits in Fig. 6; \(x = \) Radius Coordinate; \(R = \) Radius; \(d = \) Diameter. Times from Start of Shrinkage or Creep: Case a, Curve 1—1 day, Curve 2—15 days, Curve 3—37 days, Curve 4—130 days, Curve 5—1,030 days; Cases b—d, Curve 1—5 days, Curve 2—22 days, Curve 3—100 days, Curve 4—164 days, Curve 5—2,150 days. Two-Digit Numbers Indicate Computed Humidity at \(x = 0 \) or \(x = R/2 \), as percentage]

the molecules of solids (probably CA-ions) that arise as the solid molecules are directly knocked out of their equilibrium positions by the impinging water molecules (4). The jumps then occur, in contrast with the previous case, in the direction of the gradient of water potential (rather than solids potential). They must be much less frequent than the previous type of jumps because
lack of separation of the short-time creep, which is smaller at lower values of \(h \). Eq. 20 gives a small decrease in \(E \) with \(h \) through the high \(h \) region, in which the large pores are being emptied, and a larger decrease through the low \(h \) region, in which the narrowest pores, with firmly held water capable of resisting higher stress, are being emptied.

9. Coefficient \(\beta_n \) in Eq. 23 interprets the diminution of the hydration rate (and thus also the rate of aging) as humidity \(h \) drops. Eq. 23 is confirmed by fitting the present data and also agrees (21,33) with more direct observations (including the fact that portland cement cannot be stored permanently at humidities above 50%).

10. The assumptions regarding the tensile behavior, though unimportant for creep data, affect appreciably the early shape of the shrinkage curves (Fig. 6), and even more the magnitude of shrinkage stresses (Fig. 10). The tensile stress-strain diagram of a small element of a nonhomogeneous material, e.g., concrete, depends on the degree of restraint and the tensile zone size. While without restraint the tensile behavior is usually brittle, with a linear \(\sigma-\epsilon \) diagram ended by a sudden appearance of a macroscopic crack, a restrained concrete may exhibit considerable tensile ductility due to gradual microcracking (as is exemplified best by the behavior of ferrocement). The peaks of shrinkage stresses, self-equilibrated within the cross section, are usually localized and the adjacent concrete provides a restraint. This is the reason for using a curved tensile stress-strain diagram, as given by Eq. 24. The failure stress, \(f' \), is considered, for the same reason, equal to the tensile strength in bending (modulus of rupture \(f'_b \)), which is higher than the direct tensile strength. Under these assumptions, the stress analysis predicts no macroscopic cracks to form in the tests shown in Figs. 4-7. Indeed, no such cracks have been reported. (However, if the tensile behavior were assumed to be linear and brittle, the analyses would predict macroscopic cracks to form.) Also, no extensive cracking, except for microscopic bond cracks, is revealed by micrographs of ordinary drying concretes (18). Moreover, if macroscopic cracks were produced by shrinkage, the tensile strengths of wet specimens and of drying specimens would have to differ substantially, which is not found in reality.

11. The humidity dependence of diffusivity \(C \) (Eq. 25), determined in Ref. 7, largely controls the shape of the shrinkage curves, while the age dependence of \(C \) (Eq. 26) is important for the age effect upon shrinkage (Fig. 5). Reference diffusivity \(C_r \) was adjusted, in the case of Fig. 6, to optimize the fit of the \(h \) values in the core, which have been, fortunately, also reported for these data (17).

12. An interesting feature of stresses induced by shrinkage is the large tension that may appear in the core of the specimens after a long period of drying (Fig. 10). This is obviously due to the fact that the core is drying and shrinking relatively late, after the compression stresses previously induced in the core have been largely removed by creep and after the surface region has already shrunk and dried up, thus, diminishing its own capability to further deform by creep. Note that the stresses due to drying creep (never before studied) are appreciable, though smaller than the shrinkage stresses (Fig. 10). The latter are highest for diameters over 15 cm (6 in.).

13. The functions of \(h \) and \(t \) in Eqs. 10-23 should be considered to be only approximate, e.g., replacing \(\sqrt{1 - h} \) in Eq. 13 with a more complicated function.
can yield a closer fit of certain particular data (those in Fig. 8), or eliminate
the vertical tangent of function $\sqrt{1-h}$ at $h = 1$. But at the present level
of experimental information such refinements seem unnecessary.

Extension to Variable Temperature

To extend the present formulation to variable temperature, it is necessary
to include instantaneous thermal dilations into Eq. 1 (4) and consider a number
of other effects:

1. All rate coefficients ϕ_{μ}, ϕ_{ν}, ..., depend on temperature and the expressions
 given previously in Eqs. 10 and 11 must be multiplied by the coefficients
 (4):

 $$\phi_T = \exp \left[\frac{U_{\mu}}{R} \left(\frac{1}{T_0} - \frac{1}{T} \right) \right] \quad \text{(28)}$$

 in which U_{μ} = activation energies of creep, analyzed in Ref. 10 (for the case
 $h = 1$); T_0 = absolute temperature; and R = gas constant.

2. Coefficient β_{ν} in Eq. 23 must be multiplied by a temperature-dependent
 coefficient (see Refs. 4 and 10), which reflects the acceleration of the hydration
 rate.

3. The values, σ_{μ}^h, of hidden stresses in thermodynamic equilibrium also depend
 on temperature.

4. In calculating pore humidities h, one must consider that diffusivity C depends
 on T (see Ref. 7), include the change in h due to temperature change at constant
 water content, as given by the hygrothermic coefficient, κ, (see Ref. 7) and
 eventually also consider the temperature change due to latent heat of adsorption.

5. Finally, above 100°C, loading of the solid skeleton by the pressure of
 steam in the pores must be considered.

Effects 1 and 2 were analyzed in detail in Ref. 10, and effect 4 was analyzed
in Ref. 7. Effect 3 may be approximately expressed by adding to the expression
for σ_{μ}^T in Eq. 19 the term

$$\sigma_{\mu}^T = p_{\mu}(\bar{S}_w - \bar{S}_0) (T - T_0) h \quad \text{(29)}$$

in which T_0 = initial value of T at which the material was in thermodynamic
equilibrium; p_{μ} = positive constants (perhaps all equal); \bar{S}_w, \bar{S}_0 = the entropy
densities of capillary water and of hindered adsorbed water, respectively (see
Ref. 4, Eqs. 4.24 and 4.29). Because the two entropies are different, warming
(or cooling) produces a difference in chemical potentials between hindered
adsorbed water and capillary water and sets off a flow out of (or into) the
hindered adsorbed layers. This flow is responsible for delayed recovery of a
part of thermal dilatation and, in addition, strongly accelerates creep, because
of the nonlinear diffusion coupling, reflected by the squared terms with σ_{μ}^h
in Eq. 13 (the terms that also account for the drying creep effect). This acceleration
of creep, which will be called hygrothermic, is best demonstrated by the tests
(19) of Illston and Sanders (Fig. 12), who call it transitional thermal creep.
These tests were performed on saturated specimens, in which the acceleration
is not complicated by effect 4 (because $\kappa = 0$ at $h = 1$).

Because σ_{μ}^T occurs in a squared term (in Eq. 13), acceleration occurs for
both warming and cooling (as is the confirmed by the 6°C curve in Fig. 12),
just as it does for both drying and wetting. The hygrothermic acceleration of
creep lasts until the thermodynamic equilibrium (equality of chemical potentials)
is restored and has physically the same source as the acceleration of creep
due to drying. But it is generally of shorter duration and begins with a shorter
lag behind the environmental humidity change because temperature change inside
the specimen occurs faster than humidity change and a uniform temperature
is reached earlier. The hygrothermic acceleration of creep (effect 3) is probably
negligible when temperature change is slow, as in the core of massive cross
sections. Similarly, as in drying creep, most (but not all) of the creep due
to hygrothermic acceleration must be irreversible upon unloading (which agrees
with the findings in Ref. 19).

An interesting property revealed by Illston and Sanders (Fig. 12) was the absence
of further hygrothermic acceleration of creep upon temperature reversal
(see curves A and B in Fig. 12). This can be explained by the relatively short
period elapsed from the previous temperature change. Although uniform temperature
has long been reached, it appears from the equations obtained herein
by fitting test data at variable humidity that the thermodynamic equilibrium
of the diffusion between macropores and micropores could not have been reached
yet in Fig. 12 at the time of the reversal. Probably, by the time of the reversal,
the difference, $\sigma_{\mu}^T - \sigma_{\mu}^n$, under square in Eq. 13 has only been reduced by the
diffusion processes to about one-half. Thus, upon temperature reversal, a difference of equal value and opposite sign must have been created and,
when squared, no change of the rate in Eq. 13 was thus produced. Due to
the limited scope of data, all relevant parameters of the present model cannot
be determined from Fig. 12. Nevertheless, it has been checked that an acceptable
fit (solid line in Fig. 12) is obtained with the parameters: $n = 3$, $G_1 = 6,700$
N/mm², $G_2 = G_1 = G_1/2$, $\tau_1 = 10$ days, $\tau_2 = 10$, $\tau_3 = 100 \tau_1$, T_0
= 40°C, $U_0 = 5,000$ cal, $p_{\mu}(\bar{S}_w - \bar{S}_0) = 0.21$ N/mm² per degree Celsius, aging
being neglected.

Computation of Strain and Stress Histories for Specified Material Parameters

All data considered herein, except for those in Figs. 8, 9, and 12, pertain
to specimens that have been in a nonuniform state in the course of the test.
Therefore, a numerical program is required for computing the stress and strain
histories for any specified values of material parameters. Such a program has
been written for a long hollow cylinder the cross sections of which may be
assumed to be all in the same axisymmetric state and undergo the same history.
The program allows for any history of loading by axial force, a torque, and
internal and external pressures, as well as for prescribed displacements. Exterior
or interior surface may be either sealed or exposed to air of given humidity
history. As a special case, the program solves a solid cylinder. Specifying internal
radius to be much larger than the wall thickness, it also solves a flat slab.

The program has been developed by extending the program used in Ref.
2. The radius coordinate, x, the only space dimension, is subdivided into a
number of finite elements with constant strain. Because the cylinder is considered
long, the longitudinal strain, e_1, is the same in all elements. The integration in time is carried out step-by-step. In each step, prior to stress and strain analysis, the humidity distribution at time t, is calculated using a Crank-Nicholson type algorithm (7).

At the beginning of computation, the time steps, $\Delta t = t_r - t_{r-1}$ $(r = 2, 3, \ldots)$, should be less than the shortest relaxation time considered and, to allow reaching the long-term response, they must later be increased, usually in a geometric progression. [Sufficient accuracy is achieved with $t_r - t_1 = 10^{1/4} (t_{r-1} - t_0)$.] If the standard step-by-step algorithms were applied, the time steps could not be increased arbitrarily without causing numerical instability. However each step exactly, assuming all material parameters (i.e., $\phi_{v_0}, \ldots, G_{v_0}, \ldots$), as well as e, e_0, to be constant during the time step. An algorithm corresponding to such an exact integral is given by Eqs. 5.19–5.21 in Ref. 4. For the special case defined by Eq. 12 the exact integral considerably simplifies because Eqs. 1 split into two independent linear differential equations with constant coefficients. In this case, the exact integral of Eq. 1 can be put, after some manipulations, into the form:

$$\Delta \sigma^V = 3K' (\Delta \varepsilon^V - \Delta \varepsilon^V) \tag{30}$$

$$\Delta \sigma^V = 3K' (\Delta \varepsilon^V - \Delta \varepsilon_0) \lambda_{v_0} - (1 - e^{-\phi_{v_0} \Delta t}) \sigma^V \tag{31}$$

$$\Delta \sigma^V = 3K' (\Delta \varepsilon^V - \Delta \varepsilon_0) \lambda_{v_0} - (1 - e^{-\phi_{v_0} \Delta t}) \sigma^V + \lambda_{v_0} \phi_{v_0} \sigma^V \Delta t \tag{32}$$

in which

$$K = \sum_{\mu} \left(\lambda_{v_0} K'_\mu + \lambda_{v_0} K''_\mu \right)$$

and

$$3K' \Delta \varepsilon^V = \sum_{\mu} (1 - e^{-\phi_{v_0} \Delta t}) \sigma_{w_{r-1}} + \sum_{\mu} (1 - e^{-\phi_{v_0} \Delta t}) \sigma_{w_{r-1}}$$

$$- \Delta t \sum_{\mu} \lambda_{v_0} \phi_{v_0} \sigma^V + 3K' \Delta \varepsilon_0 \tag{33}$$

and in which

$$\lambda_{v_0} = \frac{1 - e^{-\phi_{v_0} \Delta t}}{\phi_{v_0} \Delta t} \quad \lambda_{v_0} = \frac{1 - e^{-\phi_{v_0} \Delta t}}{\phi_{v_0} \Delta t} \tag{34}$$

Subscripts r refer to discrete times t_r $(r = 1, 2, \ldots)$, e.g., $\sigma_{v_{r+1}} = \sigma_{v_{r+1}} (t_r)$; and Δ refers to an increment over time step $\Delta t = t_r - t_{r-1}$, e.g., $\Delta \varepsilon^V = \epsilon^V (t_r) - \epsilon^V (t_{r-1})$. Equations that result from Eq. 9a for the deviatoric components have the same form, which is obtained from Eqs. 30–35 by deleting $\Delta \varepsilon_0$ and $\sigma_{w_{r-1}}$ and replacing $3K'$ with $2G'$, $3K'$ with $2G'$, $\Delta \varepsilon_0$ with $\Delta \varepsilon_0$, etc. Unconditional numerical stability can be proven for the preceding formulas in the same way as for those in Ref. 9 and was also confirmed by computational experience.

Eq. 30 has the form of an elastic stress-strain relation with modulus K' and inelastic strain $\Delta \varepsilon^V$, and so the solution $\Delta \varepsilon^V$, $\Delta \varepsilon_0$ in any time step is a linear elasticity problem with inelastic strains, the handling of which by the finite element method is well known. After solving $\Delta \varepsilon_0$, the hidden stresses at t_0, can be determined from Eqs. 31 and 32. Because of the nonlinearity of Eqs. 1–4, solution of each step Δt is iterated twice. In the first computation, all material parameters dependent on stresses ($\phi_{v_0}, \ldots, K'_\mu, \ldots$) are evaluated for the stress values at the beginning of time step t_{r-1}. In the second computation (aimed at improving the values of $\sigma_{v_{r+1}}, \epsilon_{v_{r+1}}, \epsilon_{w_{r-1}}$), they are evaluated for the stress values obtained for the midstep, $(t_{r-1} + t_r)/2$, in the previous computation. All time-variable coefficients independent of stresses are always evaluated for the midstep.

When the program subroutine for the analysis of a cylinder by time steps and spatial finite elements is hooked on the optimization algorithm described in the sequel, the subroutine has to run a great number of times. This has made the computations (on CDC-6400) very expensive, even though the problem involves only one space dimension. Therefore, no analyses with two or three space dimensions have been carried out.

The finite length cylinders used as test specimens have been approximated as long cylinders, in which all cross sections must remain plane. In the case of drying, this process is probably quite acceptable when the ends of test cylinders are sealed (the case in Fig. 6), so at least the humidity distributions, if not the stress distributions, are to be the same in all cross sections. When the ends are exposed, a more pronounced difference in shrinkage between the axis of the specimen and its surface is observed (20) in the tests (unless the gage length would be very small and the specimen very long, which was not the case in Ref. 20). In evaluating such test data (Fig. 5), the value of shrinkage (20) in the axis (rather than on the surface was assumed to be closer to that of a long cylinder and was used in data fitting. The tests (Figs. 4 and 5) that were carried out on square prisms were approximated for data fitting as cylinders of a diameter that gives about the same rate of drying, according to the charts in Ref. 7. (It does not equal the diameter that gives the same volume-to-surface ratio.)

Because of the nonlinearity of Eqs. 1–4, creep and shrinkage are not additive. Therefore, to obtain the strains and stresses due to loading alone (representing the elastic solution plus creep), the program computes first the solution due to loading and drying combined, then the solution due to drying alone, and finally subtracts the latter from the former, as is actually done in measurements.

IDENTIFICATION OF MATERIAL PARAMETERS FROM TEST DATA BY OPTIMIZATION METHODS

Behavior of the test specimens is described by a differential equation in space and time, the coefficients of which are unknown and must be determined from prescribed solutions, the given data. This represents an inverse (initial-boundary value) problem, a typical problem of control theory. Such problems are presently receiving vivid attention from the mathematicians and various optimization techniques have been developed to tackle them (12). One of them is the method of quasilinearization (12,13) the discrete version of which has been applied to the present problem. Although it has been already described in Ref. 10, it needs to be outlined herein briefly, as a background to further considerations.

The measured creep or shrinkage curves are represented by discrete characteristic data points, $F_\alpha (\alpha = 1, 2, \ldots, N_\alpha)$, which must be uniformly distributed over the region of interest. (For example, they should be uniformly spaced in the logarithmic time scale.) Let $F_\alpha (p_m)$ = the theoretical solution for the same times and locations as F_α, furnished by the program described previously. Assume $F_\alpha (p_m)$ to be a smooth function of unknown material parameters p_m.
Due to this similarity, some material parameters must exist that are the same, or nearly the same, for all concretes. While the parameters characterizing the reference creep properties (at $h = 1$) are normally different for different concretes, those that modify the reference creep properties for humidity effects can probably be assumed to be nearly the same for all concretes. Thus, e.g., the parameter that equals 3.6 in Eq. 15 is for all data sets denoted by the same p_m (say P_r), whereas coefficient S_0 in Table 1 and Eq. 18 is designated by a different p_m (e.g., P_{1r}, P_{1p}, P_{1p}) for different data sets. Also, note that, aside from strains (or stresses), the values of pore pressure or water content, when given (Fig. 6), should be included among the data points, F_a, to be fitted.

To obtain coefficients $F_{a,k}$ and F_a (Eq. 36), it is obviously necessary to compute $N_m + 1$ solutions for each curve to be fitted. The program for solving the stress and strain history must be run $N_1 N_0 (N_m + 1)$ times, N_0 being the number of curves to be fitted and N_0 the number of optimization stages. Thus, the number of repetitions becomes necessarily quite large.

Looking at the data on reference creep at $h = 1$ (89), one may see that the uniaxial creep compliance function, $J(t, t')$, representing strain at time t

![Diagram](image)

FIG. 13.—Characteristic points for Reference Creep Function $J(t, t')$. caused by a unit stress acting from time t', can be sufficiently characterized by nine values $J_1, ..., J_9$ shown in Fig. 11 (and given in Table 1). In a subroutine of the program, $J(t, t')$ for any t and t' is computed by interpolation from the four closest J values (or, beyond the extreme points, by extrapolation), assuming J to depend linearly upon $\log (t - t')$ and upon $t' - t$ with $n = 0.3 + 0.3/(1 + t - t')$. From $J(t, t')$, another subroutine then computes $E_a(t)$ (from Eq. 22), using an algorithm developed in Ref. 9, and listed in an improved form in Ref. 11.

For reasons of numerical instability, it is expedient to treat as material parameters the values, $J_1, ..., J_9$ (see Fig. 13), rather than the values, E_a, in Eq. 22. In each data set, some of these values, e.g., $J_1, ..., J_9$, have directly been measured and are thus fixed in advance. Others, e.g., $J_1, ..., J_9$, have not been measured and must be estimated. These must be included among the unknown parameters, p_m, to be found by optimization.

To set up a general program, all material parameters that are unknown at least for some data may be included, for programmer’s experience, among
the p_m. Then, of course, for some of the simultaneously optimized data sets a certain parameter, e.g., p_i, is known in advance. Despite this, it is convenient to treat p_i as unknown, but A_{im} and B_i must then be assigned values that assure the solution of p_i to equal the known value p_i^*. This can be assured if all B_i and A_{im} for $m = 1, ..., N_m$ (Eq. 37), except A_{ii}, are set equal to 0.

Finally, it need be stressed that optimization can provide the best fit only within the limitations of the type of functions introduced in Eqs. 10-27. The choice is partly a matter of intuition, but is greatly helped by a quantitative theory of creep mechanism (3,4,6). Although a number of different functions have been tried, the functions in Eqs. 10-27 should not be regarded as the best possible choice. They are only acceptable.

Conclusions

1. The constitutive law for creep and shrinkage of concrete at variable humidity can be formulated in a rate-type form with hidden stresses, the current values of which fully characterize the past history. This fact considerably simplifies the step-by-step creep analysis.

2. The hidden stresses are of two types: (a) Those in solids; and (b) those in (hindered adsorbed) water. This separation is necessary to account: (a) for the delay of drying creep and of a substantial part of shrinkage with respect to a change in the pore humidity; and (b) for the contrast between the near linearity of creep at constant pore humidity and the distinct nonlinearity of drying creep in the working stress range.

3. While the creep parameters for constant humidity vary considerably from concrete to concrete, the ratios in which the properties are modified by humidity effects are nearly the same for all concretes. The same holds for shrinkage.

4. The success in fitting the creep and shrinkage test data for variable humidity, as well as in fitting the data for constant humidity and variable temperature (9,10), corroborates the theory based on irreversible thermodynamics from which Eqs. 1-4 were developed (4,6) and, in particular, confirms the following: (a) Drying creep and a substantial part of shrinkage are delayed with regard to the pore humidity; (b) although hindered adsorbed water (or interlayer water) introduces large forces into the solid microstructure of cement gel, it represents, in terms of elastic stiffness, a relatively soft component and receives only a small part of the externally applied load; (c) the mobility of the solids in cement gel is caused mainly by the presence of water; (d) this mobility is increased by diffusion coupling when water molecules diffuse simultaneously; and (e) this coupling between diffusions of solids and of water is nonlinear and is probably the source of the acceleration of creep by simultaneous drying.

5. In the constitutive law presented, creep and delayed shrinkage are not linearly additive and are both governed by the same hidden stresses. This reflects the identity of their physical mechanisms.

6. A realistic estimate of shrinkage stresses, as well as of stresses induced by drying creep (never before studied), has been reached (Fig. 9).

7. The step-by-step integration in time may be based on Eqs. 28-33, which allow arbitrary increase of the time step without causing numerical instability.

8. Identification of the material parameters from test data represents an inverse nonlinear initial boundary value problem that can be solved by an optimization algorithm based on a least-square condition. Simultaneous fitting of data sets for different concretes is requisite.

9. In contrast with the existing formulations of creep at variable humidity, the constitutive law presented is consistent in the continuum mechanics sense because it is tensorially invariant, does not contain the time explicitly, and includes only local material variables.

10. The law presented satisfies the requirement of compatibility with the previously established rate-type creep law at constant humidity (9) and at variable temperature (10).

11. The creep and shrinkage law of concrete at variable humidity is now available for practical applications. It is necessary in the design of special structures. For the design of ordinary structures it is too complicated, unless it could be embodied in a standard generally available program.

Acknowledgment

The present study represents a part of a project sponsored by the United States National Science Foundation under Grant GK-26030. Zissis Moschovidis of Northwestern University is to be thanked for helping to prepare a part of the computer program.

Appendix I.—References

34. Wittman, F., "Einfluss des Feuchtigkeitsgehaltes auf das Kriechen des Zement-

APPENDIX II.—NOTATIONS

The following symbols are used in this paper:

\[E, E^\mu = \text{Young's modulus and modulus of } \mu \text{th spring of Maxwell chain}; \]
\[G, K = \text{shear modulus and bulk modulus}; \]
\[G^w, G^b, K^w, K^b = \text{moduli for water and solid for } \mu \text{th unit of chain in Fig. 1, corresponding to } K \text{ and } G; \]
\[h = \text{pore humidity (relative vapor pressure)}; \]
\[t, t^\mu = \text{time and equivalent hydration period}; \]
\[\epsilon^v, \epsilon^b = \text{volumetric strain and deviatoric strain tensor}; \]
\[\epsilon^v, \epsilon^b = \text{instantaneous shrinkage strain}; \]
\[\nu = \text{Poisson ratio}; \]
\[\sigma^v, \sigma^b = \text{volumetric stress and deviatoric stress tensor}; \]
\[\sigma^{w^a}, \sigma^{w^b}, \sigma^{D^a}, \sigma^D = \text{stresses in water and solids in } \mu \text{th unit of chain in Fig. 1, corresponding to } \sigma^v \text{ and } \sigma^b; \]
\[\phi^{w^a}, \phi^{w^b}, \phi^v = \text{rate coefficients in Eqs. 1-4}. \]