CREEP AND SHRINKAGE IN REACTOR CONTAINMENT SHELLS

By Zdeněk P. Bažant,¹ M. ASCE, Domingo J. Carreira,² and Adolf Walser ³

INTRODUCTION

In the design of a concrete containment shell for a nuclear reactor, the limit state is of primary importance and stresses due to service loads are of secondary importance because cracking of concrete is admissible; the leak-tightness of the containment is assured by the steel liner. Nevertheless, to achieve high durability and good composite action, and to properly choose the percentage, diameter, and spacing of mild reinforcement, it is desirable to limit the width and spacing of cracks and the strains in the liner under service loads. For this reason, evaluation of stresses due to service loads is also required in the design, even though it is clearly of secondary concern. One of the service loads is the effect of creep and shrinkage. According to the current design practice (15), attention is paid only to the effects of the overall creep and shrinkage of concrete walls upon the strain of the liner and the prestress loss. Consideration of the differences in creep and shrinkage between various structural parts and across the walls of the shell is not specifically required (15,17).

The purpose of this study, which is based on Ref. 3, is to show that, although the effects of differences in creep and shrinkage do not represent a primary consideration in design, they are not smaller than the effects of differences in thermal expansion due to sustained operating temperature gradient, which, though being of similar character, are being considered in design (15,18). It follows that in a fully consistent approach to design, the differences in creep and shrinkage and the differences in thermal expansion due to sustained operating temperature should either be both considered in design or both disregarded. This conclusion, of course, only points out a way of theoretical improvement of the design process and certainly does not imply that the present method

Note.—Discussion open until March 1, 1976. To extend the closing date one month, a written request must be filed with the Editor of Technical Publications, ASCE. This paper is part of the copyrighted Journal of the Structural Division, Proceedings of the American Society of Civil Engineers, Vol. 101, No. ST10, October, 1975. Manuscript was submitted for review for possible publication on January 25, 1975.

¹ Staff Consultant, Sargent & Lundy, Chicago, Ill. and Prof. of Civ. Engrg., Northwestern Univ., Evanston, Ill.
of analysis is inadequate, because the effects of sustained operating temperature are rather small themselves.

In addition, this study has the purpose of demonstrating how the age-adjusted effect modulus method (2,6) [a recently-introduced method that is superior in accuracy as well as simplicity to other known approximate linear methods for the prediction of creep effects (6,9)] can be applied to reactor containment shells. Also, a new simple approximate method of determining the effect of the drying rate of an element within the concrete mass upon its unrestrained creep and shrinkage will be proposed.

A typical reactor containment shell (Fig. 1) will be considered in numerical calculations and, for the sake of simplicity, it will be assumed that the prestress is sufficient to prevent cracking. Actually, according to the stress values found, cracking will occur and will substantially relieve the values found herein. Therefore, the numerical values presented must be regarded strictly as comparative values, i.e., values that may be compared with the effect of operating temperature which is normally also evaluated under the assumption of no cracking. The actual values with cracking will undoubtedly be much smaller but their calculation is beyond the scope of this paper and necessitates a complex finite element program whose development has not yet been completed.

Simple Method of Predicting Drying-Induced Differences in Creep and Shrinkage Across Wall

On the inside face of the containment wall, evaporation of water is prevented by a steel liner, while the outside face is exposed to the climate whose annual average relative humidity will be considered as $h_i = 50\%$. This gives a somewhat more severe drying than the usual climate in the northern and northeastern United States. Comparing the limited shrinkage data for the concrete of the containment considered with the much more extensive data of Hansen and Mattock (12), it was concluded that the drying diffusivity of both concretes was about the same. Thus, according to the data fits in Ref. 7, the diffusivity of a nearly saturated concrete is considered to be $C_s = 0.25 \text{ cm}^2/\text{day}$ at the age of 7 days and $C_{ty} = 0.10 \text{ cm}^2/\text{day}$ as the long-time average (in a massive wall). These values decrease about 20 times (5) as the pore humidity of concrete drops from 90%–65%. Taking these facts into account, the distribution of pore humidity across the wall of thickness $d = 42 \text{ in.} (1,067 \text{ mm})$ at various times from the start of drying (assumed to occur at age $f_0 = 10 \text{ days}$) can be predicted from the charts given in Ref. 5 Fig. 2(a), in which $x = 0$ is the drying face, shows the distribution. These predictions are approximately based on the average of the operating temperatures across the wall, and this average is very near the room temperature.

For calculations, the wall will now be divided into five layers [Fig. 2(a)]. (With regard to the steep variation of pore humidity and shrinkage stress shown in Figs. 2 and 3, a subdivision in only five layers cannot yield high accuracy. However, in view of the well-known inaccuracies of shrinkage, creep, and drying laws, as well as the large statistical scatter of these phenomena, especially in field conditions, the subdivision error is unimportant.) Determining the average values of the pore humidity, h, within each layer at various times, one can construct the drying curves of the individual layers [Fig. 2(b)]. It is necessary to predict from these curves the unrestrained drying creep and shrinkage of the individual layers. Curiously, no attention seems to have been paid to this practical problem so far; therefore, the following approximate method is proposed.
of 6-in. (152-mm) cylinders at various h_r levels will be approximately assumed to be proportional to the curve at $h_r = 50\%$, which has been predicted for the concrete at hand from the graphs in Ref. 5, and is shown with a dashed curve in Fig. 2(b). In comparing various drying curves, it is important to realize that the acceleration of creep due to simultaneous drying is not caused by a lower water content but by the mobility of water during drying. After drying ends, the creep is, in fact, less than that in a saturated concrete. Thus, it is necessary to assess the drying rates from Fig. 2(b). To this end, note that in a log-scale a change in the drying rate corresponds to a horizontal shift of the whole curve [because log $(a t) = \log t + \log a$]. Therefore, it seems reasonable to assume that any drying curve that encloses roughly equal areas (in log-scale) on the left and right of the given curve yields about the same acceleration of creep. Accordingly, the drying curve of a 6-in. (152-mm) cylinder at $h_r = 50\%$ may be scaled vertically in a constant ratio so as to satisfy this condition as indicated by the dashed curves in Fig. 2(b).

As a result, it can be expected that layers 1-5 will creep similarly as 6-in. (152-mm) cylinders that dry at environmental humidities [Fig. 2(b)]:

$$h_r = 0.69, 0.88, 0.93, 0.95, 0.97$$

Only the effects of creep and shrinkage at $t = 40$ yr of age on a wall loaded from age $t_o = 90$ days will be considered herein. For these values of t and t_o, the creep coefficient, $\phi(t, t_o)$ of a 6-in. (152-mm) cylinder drying at 50% humidity has been determined by extrapolation of the short-time creep data to be 2.15 (Fig. 3). According to the test data of L’Hermite, et al. (13) and others, the creep of test specimens at 100% humidity is about 0.5 of that at 50% humidity and a linear interpolation approximately holds for the intermediate humidities. Thus, the creep coefficient for humidities $h_r = 0.5$ is approximately $\phi(t, t_o) = \phi_{0.5}(t, t_o)(1.5 - h_r)$, in which the subscript, 0.5, refers to 50% humidity. Substituting the previous values of h_r yields creep coefficients of layers $i = 1, \ldots$, 5:

$$\phi_i = 1.74, 1.33, 1.23, 1.18, 1.14, \text{ for } t = 40 \text{ yr and } t_o = 90 \text{ days}$$

Furthermore, these values should be corrected for the effect of temperature and, in an accurate analysis, both the temperature gradient when the reactor operates and the gradient before the operation starts should be taken into account. However, for the sake of simplicity, the effect of the temperature gradient upon creep will not be considered in the present analysis. This simplification is certainly not too serious as far as the average of the temperatures across the wall is concerned, because this average is only slightly below it before the operation.

For predicting creep effects by the age-adjusted effective modulus method, one must determine the aging coefficients, χ, from Table 1 in Ref. 2 (from which the lower left quarter applies herein). For layers 1-5, this gives

$$\chi_i = 0.89, 0.88, 0.87, 0.87, 0.87$$

Finally, one needs the age-adjusted effective modulus (2), which is computed as

$$E''(t, t_o) = \frac{E(t_o)}{1 + \chi(t, t_o) \phi(t, t_o)}$$

in which $E(t_o) = Young’s \text{ modulus at } t_o = 90 \text{ days}$, which has been determined by tests as 5.24×10^6 psi. Thus, for layers 1-5 (1 psi = 6.89 kN/m2):

$$E_i'' = 2.06 \times 10^6 \text{ psi}, 2.41 \times 10^6 \text{ psi}, 2.54 \times 10^6 \text{ psi}, 2.59 \times 10^6 \text{ psi}, 2.63 \times 10^6 \text{ psi} \text{ for } t = 40 \text{ yr and } t_o = 90 \text{ days}$$

For the differences in shrinkage, one may consider the fact that, in contrast with the acceleration of creep by drying, the shrinkage strain is determined essentially by the pore humidity level (or magnitude of water loss), rather than by the drying rate. Thus, for $t = 40$ yr, shrinkage would best be determined on the basis of the final h-values of the five curves, which are slightly less than the values in Eq. 1. Then, however, h_r would have to be considered to be different in each layer. Also, maximum shrinkage stresses usually occur before the end of service life (2), and then the differences between h_r and the actual end values of h for the layers in Fig. 2(b) are less than those for $t = 40$ yr.

Consequently, it will be assumed again, for the sake of simplicity, that each of the five layers, if unrestrained, would shrink the same as the 6-in. (152-mm) cylinder at humidity h_r, obtained previously (Eq. 1). This corresponds to the assumption that the differences in unrestrained shrinkage are determined by the time-averages of the pore humidities in layers 1-5.

If the shrinkage tests (of 1 yr duration) that have been carried out for the containment shell under consideration are extrapolated with the aid of Hansen and Mattock’s data (12), the shrinkage of a 6-in. (152-mm) cylinder at humidity $h_r = 0.5$ at the age of 40 yr is found to be 600×10^{-6} (Fig. 4). To determine shrinkage strain ϵ_{sh} at other humidities h_r, one may consider that ϵ_{sh} is approximately proportional to $1 - 0.95 h_r^2$, as can be confirmed, e.g., by comparison with the data of L’Hermite, et al. (13). Using this function and the values of h_r in Eq. 1, the unrestrained 40-yr shrinkage strain of layers $i = 1, \ldots$, 5 is estimated as (1 psi = 6.89 kN/m2):

$$\epsilon_{sh} = 487 \times 10^{-6}, 312 \times 10^{-6}, 198 \times 10^{-6}, 144 \times 10^{-6}, 126 \times 10^{-6}$$

for $t = 40$ yr and $t_o = 10$ days

To determine creep coefficients, the creep data of limited duration (1 yr) must be first extrapolated to a 40-yr duration of creep. The question of the proper extrapolation method is particularly important when such a long duration as this is considered. In the past, the use of a hyperbolic expression has been widespread, but from recent long-time creep tests it became apparent that this expression seriously underestimates creep when extrapolation to more than 2 yr is attempted. Properly, the creep data must be extrapolated by straight or upward curving lines in log-time scale. Using this method, the creep coefficient, ϕ, of a 6-in. (152-mm) cylinder drying at 50% humidity has been determined to be 2.52 for $t = 40$ yr and $t_o = 10$ days, the assumed start of drying. Scaling this value down in the same ratios as before, one obtains for layers $i = 1, \ldots$, 5:

$$\phi_i = 2.11, 1.61, 1.48, 1.43, 1.38 \text{ for } t = 40 \text{ years and } t_o = 10 \text{ days}$$

From Table 1 in Ref. 2, one may determine $\chi(t, t_o)$ similarly as before:

$$\chi_i = 0.68, 0.65, 0.63, 0.61, 0.60$$
Elastic modulus E at $t_o = 10$ days was found to be 4.08×10^6 psi $(28.1 \times 10^6$ kN/m2). Thus (1 psi = 6.89 kN/m2):

$$E_t' = 2.44 \times 10^6 \text{ psi, } 2.05 \times 10^6 \text{ psi, } 1.93 \times 10^6 \text{ psi, } 1.87 \times 10^6 \text{ psi, } 1.83 \times 10^6 \text{ psi} \quad \text{for } t = 40 \text{ yr and } t_o = 10 \text{ days} \quad \cdots \quad (9)$$

STRESS REDISTRIBUTION WITHIN CROSS SECTION OF WALL

Among all methods presently known, the age-adjusted effective modulus method (2,6) has been shown (6) to be superior in accuracy to other known methods (with regard to the exact solution according to the principle of superposition); this has been recently confirmed by numerous practical examples and systematic numerical comparisons by Bruegger (9). This method has the advantage of not requiring solution of any differential equation, since the problem is reduced to the analysis of an elastic structure according to the quasi-elastic stress-strain law whose uniaxial form is

$$\Delta \varepsilon(t) = \frac{\Delta \sigma(t)}{E(t)} \phi(t, t_o) + \Delta \varepsilon_{sh} \quad \cdots \quad (10)$$

in which $\varepsilon, \sigma =$ strain and stress; and Δ refers to changes from time t_o (the start of straining of the structure). This relation is exact when $\Delta \epsilon(t)$ is proportional to $\phi(t, t_o)$ at any time t, which appears to be a good assumption in most cases (6). The age-adjusted effective modulus (2), $E(t, t_o)$, introduces the effect of creep due to the gradual stress changes, $d\sigma$, which are induced in the structure. It also takes into account the fact that both the creep coefficient and the elastic modulus for the stress changes after time t_o are less, the higher the age (aging effect).

Shrinkage Effect.—In analogy with Eq. 10 for $\sigma(t_o) = 0$, the biaxial strain change, $\Delta \varepsilon$, and the biaxial stress changes, $\Delta \sigma_i$, in layers $i = 1, ..., 5$ from time t_o to time t satisfy the equations:

$$\Delta \varepsilon = \frac{1 - \nu}{E_i} \Delta \sigma_i + \Delta \varepsilon_{sh} \quad (i = 1, ..., 5) \quad \cdots \quad (11)$$

in which the conditions of equal strain across the wall, and of equal biaxial stresses $\sigma_i = \sigma_{sh}$ in the plane of the wall, are implied. Also implied is the assumption that there is no change in the curvature of wall. The conditions of equilibrium are

$$\sum_{i=1}^{5} A_i \Delta \sigma_i + \left(E_i A_i + E_p A_p + E_s A_s \right) \Delta \varepsilon = 0 \quad \cdots \quad (12)$$

in which E_i, E_p, and $E_s =$ Young’s moduli of steel liner, prestressing tendons, and nonprestressed reinforcement; $\nu_i =$ Poisson’s ratio of liner ≈ 0.33; and $\nu =$ Poisson's ratio of concrete ≈ 0.18. (Poisson’s ratio for creep of concrete under severe drying conditions is much less than 0.18, but such conditions exist only in a shallow surface layer.) Furthermore, $A_i, A_l, A_p, A_s =$ cross-sectional areas of the layer of wall, of the liner, of the prestressing tendons, and of the nonprestressed reinforcement (per unit length of wall).

The values, $A_i = d/5, A_l = 0.25$ sq in./in. $(0.635$ cm2/cm), $A_p = 0.210$ sq in./in. $(0.533$ cm2/cm) and $A_s = 0.126$ sq in./in. $(0.320$ cm2/cm) were considered. The radius of the cylindrical curvature of the wall is assumed to be much larger than its thickness $d = 42$ in. $(1.067$ mm). Eq. 12 implies equal strain in concrete and in prestressing tendons. In reality, this is not assured because the tendons are unbonded. However, because cross sections along the shell are in a similar stress state, the effect of equalization of tendon strain along the height will be small, and so Eq. 12 is acceptable.

Using the values from Eqs. 9 and 6, the solution of Eqs. 11 and 12 gives the following changes due to shrinkage from $t_o = 10$ days to $t = 40$ yr in the middle of layers 1-5 $(1$ psi = 6.89 kN/m3):

$$\Delta \sigma_i = 582 \text{ psi, } 265 \text{ psi, } -12 \text{ psi, } -153 \text{ psi, } -207 \text{ psi; } \Delta \varepsilon = -202 \times 10^{-6} \quad (13)$$

Similar computations have been carried out for $t = 1$ month, 3 months, 1 yr, 3 yr, and 10 yr. The results are plotted in Fig. 5. (The surface values shown were obtained by graphical extrapolation, plotting smooth curves through the values at midpoints of layers.)

Creep Due to Prestress.—In analogy with Hooke’s law, the stress-strain relations of the age-adjusted effective modulus method (2) read

$$\Delta \sigma_{i,t} = \left(\Delta \varepsilon_i + \nu \Delta \varepsilon_y - \Delta \varepsilon_y - \nu \Delta \varepsilon_{sh} \right) \frac{E_i}{1 - \nu^2} \quad \cdots \quad (14a)$$

$$\Delta \sigma_{y,t} = \left(\nu \Delta \varepsilon_i + \Delta \varepsilon_y - \nu \Delta \varepsilon_y - \Delta \varepsilon_{sh} \right) \frac{E_y}{1 - \nu^2} \quad \cdots \quad (14b)$$
in which the conditions of equal strain across the wall is already implied and
\[\Delta e^*_z = \left(\sigma_{zz} - \nu \sigma_{zz} \right) \frac{E}{E(\epsilon_0)}; \quad \Delta e^*_y = \left(\sigma_{yy} - \nu \sigma_{yy} \right) \frac{E}{E(\epsilon_0)} \quad (i = 1, \ldots, 5) \quad \ldots \quad (15) \]
are the inelastic (creep) strains produced by prestresses \(\sigma_{zz} \) and \(\sigma_{yy} \) caused in concrete by the tendons before long-time losses (2.6). The conditions of equilibrium require
\[\sum \Delta \sigma_{zz} + A_1 E_t \frac{\Delta e_z + v \Delta e_y}{1 - v^2} + A_{p_2} E_p \Delta e_z + A_y E_s \Delta e_y = 0 \quad \ldots \quad (16a) \]
\[\sum \Delta \sigma_{yy} + A_1 E_t \frac{\Delta e_y + v \Delta e_z}{1 - v^2} + A_{p_2} E_p \Delta e_z + A_y E_s \Delta e_y = 0 \quad \ldots \quad (16b) \]
in which the subscripts, \(z \) and \(y \), refer to vertical and horizontal directions along the wall. The following values were assumed: \(A_{p_2} = 0.210 \) sq in./in. (0.533 cm\(^2\)/cm); \(A_y = 0.394 \) sq in./in. (1.00 cm\(^2\)/cm); \(\sigma_{zz} = 860 \) psi (5.93 N/mm\(^2\)); and \(\sigma_{yy} = 1,500 \) psi (10.3 N/mm\(^2\)). The remaining parameters were the same as in the preceding case of shrinkage effect.

Using the values from Eqs. 2 and 5, the solution of Eqs. 14-16 yields the following changes due to creep under prestress from \(t_o = 90 \) days at \(t = 40 \) yr (1 psi = 6.89 kN/m\(^2\)):
\[\Delta \sigma_{zz} = 195 \text{ psi, 83 psi, 48 psi, 31 psi, 16 psi}; \quad \Delta e_z = -110 \times 10^{-6} \quad \ldots \quad (17a) \]
\[\Delta \sigma_{yy} = 378 \text{ psi, 169 psi, 103 psi, 77 psi, 46 psi}; \quad \Delta e_y = -261 \times 10^{-6} \quad \ldots \quad (17b) \]

In the same manner, the stress changes reached at other times were also analyzed. The results are plotted in Fig. 5.

A similar analysis can be carried out to determine the effect of creep under dead load. The changes obtained in this case are roughly six-times less than those in Eq. 17.

As a by-product of the analysis in both previous cases, one also obtains the prestress losses, \(\Delta \sigma_{p_2} = E_p \Delta e_z \) and \(\Delta \sigma_{p_2} = E_p \Delta e_y \). However, these values as well as the strains in the liner do not differ greatly from the results of the conventional analysis. Thus, the new contribution of the present method of analysis should be seen solely in determining the nonuniformity of stress changes in concrete. The difference with respect to the conventional analysis is essentially given by the difference of the stresses in Fig. 5 from their average value across the wall. According to Fig. 5, the maximum of these differences, in the case of creep effect, is about 150 psi in hoop tension and 100 psi in vertical tension on the exterior face, and 70 psi and 40 psi below the liner.

OVERALL STRESS REDISTRIBUTION WITHIN STRUCTURE

As a result of shrinkage, the diameter of the cylindrical shell gradually decreases. However, this is incompatible with the deformation of the foundation slab. This slab is usually un prestressed and because it is sealed on top and buried in the ground it cannot dry and thus exhibits only a small (autogeneous) shrinkage, further diminished by heavy reinforcement and subsoil friction. Consequently, the time-dependent deformations of the foundation slab may be considered zero, and so additional internal forces will gradually develop near the base of the cylinder. (An effect of this type is well known from the analysis of cylindrical tanks; see p. 38 in Ref. 1, and Refs. 10, 14, and 16.) Furthermore, the foundation slab is relatively very stiff; thus, for the sake of simplicity, the cylindrical shell may be assumed to be rigidly fixed at the base.

Using the age-adjusted modulus method, the well-known solutions for the semi-infinite elastic cylindrical shell (Ref. 8, p. 91) may be applied if elastic modulus \(E \) is replaced with \(E^* \). Thus
\[\Delta M_z = 2\Delta u D^* \beta^3 e^{-\beta z} \sin (\beta z - \cos \beta z) \quad \ldots \quad (18a) \]
\[\Delta Q_z = 4\Delta u D^* \beta^3 e^{-\beta z} \cos \beta z \quad \ldots \quad (18b) \]
in which
\[\beta = \frac{3(1 - v^2)}{12(1 - \nu^2)} \quad \ldots \quad (19) \]

Here, \(z = \) distance from the base; \(d = \) shell thickness [42 in. (1.067 mm)]; \(R = \) radius of cylinder [70 ft. (21.3 m)]; \(v = 0.18; \Delta M_z, \Delta Q_z = \) changes of vertical bending moment and radial shear force; and \(\Delta u = \) radial displacement which would occur at the base from time \(t_o \) to time \(t \) if the shell were not restrained by the foundation slab.

Shrinkage from \(t_o = 10 \) days to \(t = 40 \) yr was estimated to give \(\Delta u = 0.17 \) in. (4.32 mm). The average \(E^*_t \) from Eq. 9 is \(2.07 \times 10^6 \) lb/in. (14,270 N/mm\(^2\)), which yields \(D^* = 13.5 \times 10^9 \) lb-in. (1,525 MN·m). Eq. 18 gives \(\Delta M_z = -221 \) kips·in./in. (0.983 MN·m/m) at the base of wall (\(z = 0 \)) at \(t = 40 \) yr.

The bending moment \(\Delta M_z \) due to shrinkage causes a normal stress change, \(\Delta \sigma_z = 750 \) psi (5.171 N/mm\(^2\)) (tension on the exterior face of the base of the cylinder) and compressive strain \(\Delta e_y = -368 \times 10^{-6} \) in the liner. The decay of these values along the height is rapid and is plotted in Fig. 1a.

Evaluating \(\Delta Q_z \) from Eqs. 16, the nominal radial stress shear increment, \(\Delta \sigma_z = Q_z / b \), in which \(b = \) depth to reinforcement \(\approx 39 \) in. (991 mm) is obtained as 75 psi. Note that all of these effects decay rapidly with distance from the base.

The preceding values are based on the assumption that the entire height of the cylindrical wall is exposed. In reality, the bottom part of the wall is buried underground for a certain depth, \(a \); typically \(a = 25 \) ft (7.6 m). Assuming that the wall is buried to depth \(a \) since the time of casting, the free unrestrained shrinkage equals 0 for \(z < a \) and \(\Delta u \) is the same as before for \(z > a \), with a jump equal to \(\Delta u \) at \(z = a \). Approximately, depth \(a \) may be considered to sufficiently large for the effect of restraint due to base slab to be negligible near the ground level. Then, using the well-known general solution (Ref. 8, p. 91) to find the solution for boundary conditions \(\Delta M_z = 0 \) and \(u = \Delta u / 2 \) at \(z = a \), one obtains
\[\Delta M_z = \Delta u D^* \beta^3 e^{-\beta(z-a)} \sin (\beta(z-a)) \quad \ldots \quad (20a) \]
\[\Delta Q_z = \Delta u D^* \beta^3 e^{-\beta(z-a)} \cos (\beta(z-a) - \sin \beta(z-a)) \quad \ldots \quad (20b) \]
Max \(\Delta M_z \), which occurs at \(z = a \pm \pi / 4 \beta \), and Max \(\Delta Q_z \), which occurs at \(z = a \), equal in this case 0.3224\(\Delta u D^* \beta^3 \), and 0.5\(\Delta u D^* \beta^3 \), respectively, while in
of the cylindrical wall, which produces a shear stress, \(\Delta \tau \), in the vertical radial section between the buttress and the wall. By similar consideration as before, it has been estimated that \(\Delta \tau \approx 50 \text{ psi} (0.345 \text{ N/mm}^2) \) due to differences in creep, and 120 psi (0.828 N/mm\(^2\)) due to differences in shrinkage, at \(t = 40 \text{ yr} \). (It is, of course, beneficial to design the shell without hoop tendons and leave out the buttresses.)

More accurate results than those presented herein can be reached with a finite element program. The same program as for the elastic analysis with thermal strains can be used if the age-adjusted effective modulus method is adopted.

ANALYSIS OF RESULTS, STRESS RELIEF BY CRACKING, AND MORE ACCURATE METHODS

The preceding calculations indicated the approximate maximum changes of stresses and strains, shown in Table 1. It is obvious that the tensile stresses are so large that the prestress of the structure cannot prevent cracking. Neverthe-

TABLE 1.—Approximate Concrete Stresses and Liner Strains Caused by Shrinkage and Creep (No Cracking Assumed)

<table>
<thead>
<tr>
<th>Item</th>
<th>Stress on Exterior Face</th>
<th>Stress below Liner</th>
<th>Strain of Liner</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hoop, in pounds per square inch</td>
<td>Vertical, in pounds per square inch</td>
<td>Hoop, in pounds per square inch</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>(a) General Cross Section</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrinkage</td>
<td>900</td>
<td>900</td>
<td>-200</td>
</tr>
<tr>
<td>Creep</td>
<td>500</td>
<td>270</td>
<td>-50</td>
</tr>
<tr>
<td>Total</td>
<td>1,400</td>
<td>1,170</td>
<td>-250</td>
</tr>
<tr>
<td>(b) Additional at Base</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrinkage</td>
<td>-135(^a)</td>
<td>750(^a)</td>
<td>135</td>
</tr>
<tr>
<td>Creep</td>
<td>-22(^b)</td>
<td>120(^b)</td>
<td>-120(^b)</td>
</tr>
<tr>
<td>Total</td>
<td>1,400</td>
<td>1,290(^b)</td>
<td>-250</td>
</tr>
<tr>
<td>(c) Superimposed Maxima</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrinkage</td>
<td>900</td>
<td>1,650(^a)</td>
<td>-200</td>
</tr>
<tr>
<td>Creep</td>
<td>500</td>
<td>1,020(^b)</td>
<td>-320(^b)</td>
</tr>
<tr>
<td>Total</td>
<td>1,400</td>
<td>1,920(^b)</td>
<td>-250</td>
</tr>
</tbody>
</table>

\(^a\)Upper bound.

\(^b\)Lower bound.

Note: These stress values are strictly comparative, i.e., to be compared with stresses due to sustained operating temperature. Actual values, as relieved by cracking, are much less (1 psi = 6.89 kN/m\(^2\)).
less, knowledge of these stress values is useful as a means of comparison with stresses produced by other loads in service conditions. In particular, the stress values found are higher than those due to sustained operating temperature, which are of the same nature because they also represent self-equilibrating stress fields and are also relieved by cracking of concrete.

However, it should not be inferred from the foregoing comments that creep and shrinkage are very important effects, because sustained operating temperature itself represents a loading of small significance as compared with other loads, and the overriding criterion for the structure is the limit state of internal pressure. If the stresses due to shrinkage and creep should actually be taken into account in design, it would be necessary to calculate stress relief due to cracking, which is likely to be quite substantial (and is admissible in the containment shells). The local liner strain near the base will also be reduced by liner slip. The well-known finite element methods of analysis for cracking concrete structures can be combined with the age-adjusted effective modulus method used herein to provide realistic estimates. With regard to the criteria to be imposed on cracking of this type, two types of effects should be distinguished.

One type is the overall straining of the structure by differential creep and shrinkage (e.g., the effects near the base). These can be treated similarly to the effects of operating temperature and can be adequately characterized in terms of a bending moment, an axial force, and a shear force. As one possible approach in design, interaction diagrams for the ultimate values or the permissible values of these forces can be used (11).

The second type is the local straining within a general cross section of wall, in which no curvature change occurs. This effect is of a somewhat different nature, because the stress distributions are not of the type that can be produced by a bending moment. The cracks penetrate to a relatively shallow depth of cross section and, therefore, the cracked concrete is more strongly restrained by the underlying uncracked concrete, causing the cracks to be narrower and more densely distributed. Under such conditions, concrete exhibits considerable ductility in tension, developing a system of microcracks, rather than failing by one large crack. Therefore, this type of cracking due to creep and shrinkage is certainly less damaging (and less important) than the overall straining considered before. It occurs in all types of structures, but it has not yet been analyzed in detail. Routine counter-measures are being taken by placing the so-called shrinkage and temperature reinforcement near the face, which has the purpose of reducing crack width and depth and of preserving the integrity of the concrete. Nevertheless, in a consistent and rational approach, which seems to be worthwhile in the case of reactor containments, one should not ignore these stresses and cracks, especially if other effects of lesser magnitude are being accounted for in design. The finite element solutions that include cracking may be used to determine the average tensile strain of concrete in the cracked zone. On its basis one can determine the size and the spacing of reinforcement that is needed to limit the width of cracks to a certain value and to reduce their depth.

Conclusion

Creep and shrinkage effects in reactor containments are not negligible. They are more important than those of the operating temperature gradient.

Acknowledgments

Grateful appreciation is due to A. K. Gupta for his assistance in formulating the problem. S. L. Chu is to be thanked for supervising the investigation, and B. Erler and A. K. Gupta for their valuable suggestions and review of the manuscript. A small portion of the work of the first author during preliminary considerations as well as some of the final calculations was supported through the National Science Foundation Grant GK-26030 to Northwestern University.

References

17. Tan, C. P., "Concrete Containments for Reactors—State-of-the-Art," *Journal of the*
APPENDIX II.—NOTATION

The following symbols are used in this paper:

\[A = \text{area of cross section}; \]
\[D = \text{cylindrical bending stiffness of wall (Eq. 19)}; \]
\[E = \text{Young’s modulus}; \]
\[E'' = \text{age-adjusted effective modulus (Eq. 4)}; \]
\[h, h_e = \text{pore humidity and environmental humidity}; \]
\[M = \text{bending moment}; \]
\[Q = \text{shearing force}; \]
\[t = \text{time = age of concrete in days}; \]
\[t_o = \text{start of drying exposure or start of creep effect}; \]
\[\beta = \text{parameter (Eq. 19)}; \]
\[\epsilon_{sh} = \text{unrestrained linear shrinkage}; \]
\[\epsilon, \sigma = \text{normal strain and stress}; \]
\[\nu = \text{Poisson’s ratio}; \]
\[\phi = \text{creep coefficient = (creep strain)/(initial elastic strain)}; \]
\[x = \text{aging coefficient (Eq. 4)}; \]

Subscripts
\[i = \text{ith layer}; \]
\[l = \text{steel liner}; \]
\[p = \text{prestressing steel}; \]
\[n = \text{nonprestressed steel}; \]
\[x, y, z = \text{Cartesian axes (x being normal to the wall, y vertical)}; \]