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by Zden&k P. BaZzant and Byung H. Oh

A consistent theory for the analysis of curvature and deflections of
reinforced concrete beams in the cracking stage is presented. The
theory assumes concrete to have a nonzero tensile carrying capacity,
characterized by a uniaxial stress-strain diagram which characterizes
progressive microcracking due to strain softening. The tensile stress-
strain properties are the same as those which are obtained in direct
tensile tests and those which have recently been used with success in
modeling fracture test results for concrete. The theory agrees well
with the simpler formula of Branson within the range for which his
formula is intended. The value of the proposed theory is its much
broader applicability. Aside from demonstrating a good agreement
with available test data for short-time deformations up to the ulti-
mate load, it is shown that the theory also correctly predicts the
longtime creep deformations of cracked beams. To this end, the av-
erage creep coefficient for tensile response including peak stress and
strain softening needs to be taken about three times larger than that
for compression states. The theory also predicts the reduction of
creep deflections achieved by the use of compression reinforcement,
and a comparison of modeling this effect is made with an ACI for-
mula. As a simplified version of the model, it is proposed to replace
the tensile strain-softening behavior by the use of an equivalent ten-
sile area of concrete at the level of tensile steel, behaving linearly.
Assuming this area to be a constant, realistic predictions for short-
time as well as longtime deformations in the service stress range can
still be obtained.

Keywords: beams (supports); bending; cracking (fracturing); creep properties;
deflection; deformation; reinforced concrete; structural analysis; tensile prop-
erties.

The bending stiffness of unprestressed or partially
prestressed reinforced concrete beams under service
loads is considerably smaller than the stiffness calcu-
lated on the basis of uncracked cross sections. This is
because the beam contains numerous tensile cracks.
Yet, at the same time, the stiffness is significantly
higher than that calculated when the tensile resistance
of concrete is neglected. This phenomenon, often
termed tension stiffening, is attributed to the fact that
concrete does not crack suddenly and completely but
undergoes progressive microcracking (strain softening).

Based on numerous tests,"”” Branson'**? derived an
empirical formula which adequately describes the test
results and has been endorsed by an ACI committee.’
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Whereas this formula well serves practical purposes, it
is not derived from the intrinsic material properties of
concrete, particularly the strain-softening properties.
This paper will develop a realistic model which is de-
rived from such properties. Although a great improve-

‘ment over Branson’s formula predictions for the cur-

vature and deflection of reinforced concrete beams un-
der short-time loading can hardly be expected, our ef-
fort leads to other important advantages. If the model
is derived from the basic material properties, which are
the same as those that work in other situations where
progressive microcracking plays a role, such as fracture
mechanics of concrete, the applicability of the model
should be broader than that of Branson’s formula. The

- model should predict curvatures and deflections be-

yond the service stress range all the way to the ultimate
load and beyond and should also be applicable to long-
time loading when creep is taken into account, or flex-
ure at axial compression, bending of slabs and thin
shells, deformations of deep beams and thick shells,
deformation due to diagonal shear or torsion, etc.
Among these possible generalizations which can be
contemplated when a theory based on material proper-
ties is used, we will demonstrate here the first two and
will try to substantiate these generalizations by com-
parisons with available test data. In short, it is not our
intention to supersede Branson’s formula but to de-
velop a model of a more general validity. This will, of
course, be at some cost to simplicity.

CALCULATION OF CURVATURE AND
DEFLECTION USING TENSILE STRAIN-
SOFTENING DIAGRAM

Tests in extremely stiff testing machines have clearly
demonstrated®'? that concrete exhibits tensile strain-
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softening, i.e., a gradual decline of tensile stress with
increasing strain [Fig. 1(b)]. This behavior may be ap-
proximated, for the present purposes, by a bilinear
stress-strain diagram characterized as follows [Fig. 1(a)]

For e, < €, o. = Ee, )

For erp < Ec < th; Gc = ft, - (6:‘ - 6tp) (_ Et) (2)

Fore, > ¢4 0. =0 3)
in which o,, ¢, = uniaxial stress and strain of concrete,
E. = Young’s elastic modulus of concrete, f; = direct
tensile strength, E, = tangent strain-softening modulus
[negative, Fig. 1(a)], ¢, = strain at peak tensile stress,
and ¢, = final strain when the tensile stress is reduced
to zero [full fracture, Fig. 1(a)]. A stepwise stress-
strain diagram which is approximately equivalent to
Eq. (1) through (3) has been used by Scanlon'* and by
Scordelis and co-workers.!* Recently it was discovered
that Eq. (1) through (3), combined with a fracture me-

chanics energy concept, are capable of consistently de-
scribing all essential fracture test data for concrete.?
This study, in turn, greatly increased the data base rel-
evant, albeit indirectly, to tensile strain-softening,
which further allowed setting up a realistic prediction
formula? for E,

-0 E,
E = - @
57 + f!

in which E,, f;, and E, are in psi (psi = 6895 Pa).

For concrete in uniaxial compression, a well-known
expression for the stress-strain relation covering the
compression strain-softening is used' [Fig. 1(b)]

_ Ee, )

a, - X

B )

Ocp € €p

in which ¢, = peak stress (compression strength f!),
and e, = strain at peak stress, both in compression.
The steel is assumed as elastic-perfectly plastic, charac-
terized by Young’s elastic modulus E, and uniaxial yield
stress f,. Work hardening at large plastic strain is not
needed for the calculations which follow,

The usual Bernoulli-Navier’s hypothesis that plane
cross sections of the beam remain plane and orthogo-
nal is adopted. Further, it is assumed that the average
strain in steel equals the average strain in concrete at
the same level, i.e., the overall bond slip is zero (alter-
nating local bond slips between cracks are not inconsis-
tent with this assumption). The analysis of the rectan-
gular cross section shown in Fig. 1(d) is now routine.
The cross section areas of compression and tension re-
inforcement are A4,, and A,,, respectively, their strains
are €; (j = 1, 2), their stresses are o, and their force
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Fig. 1 — Assumed uniaxial stress-strain relations for concrete in tension and
compression (a, b) and for steel (c); and stress and strain distributions in the cross

section of beams (d)
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resultants are S; = g;A,. For a given strain of concrete
at the compression face ¢, and a given depth kd to
neutral axis [where d = depth to tensile reinforcement,
Fig. 1(d)], the linearity of strain distribution requires
that

kd — d,
esj = €m k d

(j =12 ©

where the steel stresses o,; follow from the stress-strain
diagram of steel.

The resultant of compressive stresses in concrete may
be expressed as

C, = k,f!bkd @)

where parameter k, defines the average compressive
stress, and b = cross section width. This resultant acts
at a distance k,kd below the compression face® [Fig.
1(d)]. Based on the given stress-strain diagram, one
may write

K, = Iy ode. k=1 - ly” ot (8a,b)
ftl €cm EcmS;cm O'(dec

Similarly, the resultant of tensile stresses in concrete
(due to strain softening) and its distance from the ten-
sion face may be expressed as

C. = kyf/b(h — kd), z, = k,(h — kd) (9)
in which
e""acdc':c o €.0.de,
k, = _S_O__I_, k., =1 - SO_:__
fr €im e,,,,go""o(dec

(10a,b)

Here ¢,, = €..(h — kd)/kd = concrete strain at tension
face, and 7 = beam depth.
By substituting Eq. (5) into Eq. (8a, b) one obtains
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in which

A = i<E—uec - 2>, B =
P

€p\ O &

4B — A*> 0 (13)

q

Substituting Eq. (1) through (3) into Eq. (10a,b), one
further obtains for ¢, < ¢,

E,

k = Bty g o L a4)
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Now the force and moment equilibrium conditions
may be written as

2
N = k, f1bkd + Yo0,A4, — k fib(h = kd) (19)
=1

h g h
M =k f] bkd(‘z‘ - kzkd> +_Eas,»A,,~<”2— - d,>

+ ky f/b(h — kd) [g - k(b — kd)} (20)
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Fig. 2 — Diagrams for evaluating deflections
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Fig. 3 — Comparisons of present theory with Bran-
son’s formula for moment-curvature diagram and with
no-tension theory

in which N and M = normal force and bending mo-
ment in the cross section. Finally, the beam curvature
is

€,
“T kd @h

To calculate the moment-curvature relation for a
given normal force N (in our case N = 0), we may
consider a succession of e, values increasing in small
increments. For each of them, we obtain depth kd to
the neutral axis from Eq. (19). The bending moment
and curvature then follow from Eq. (20) and (21).

According to the principle of virtual work, deflec-
tion 6 of the beam may be calculated as

L

6 = goxﬁdx 2)

in which M = bending moment distribution corre-
sponding to a unit load in the sense of deflection 5. In
numerical calculations the last integral has been evalu-
ated numerically by Simpson’s rule with four divisions
for a half span of a simply supported beam of span L,
with a concentrated load at midspan (for which M =
x/2)

L/Zx Lz L L
s =2, g e = G [o(5)+ ()

)| e

Here the arguments of « represent the distances from
beam support, and § is the deflection at midspan (Fig.
2). The curvature values are here calculated from the
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Fig. 4 — Comparison of present theory with Branson’s
Sormula for moment-deflection curve and with no-ten-
sion theory

moment-curvature relation obtained as already de-
scribed. In this manner, individual points of the load-
deflection diagram can be calculated.

Numerical examples and comparisons with test
data

For the sake of illustration, we present two numeri-
cal examples pertaining to both singly and doubly rein-
forced simply supported beams subjected to a concen-
trated load at midspan (Fig. 2), for which we calculate
the moment-curvature diagram (Fig. 3) and the mo-
ment-deflection diagram (Fig. 4). The design parame-
ters for the singly reinforced beam [Fig. 3(a) and Fig.
4(@)] are b = 12in., h = 24in, A, = 5in2, d = 20
in., f! = 3600 psi, f; = 450 psi, E. = 3.42 x 10° psi,
S, = 40,000 psi, E, = 29 X 10° psi, and L = 180 in.
(where | in. = 25.4 mm, 1 psi = 6895 Pa). The design
parameters for the doubly reinforced beam [Fig. 3(b)
and Fig. 4(b)]l are b = 111in., A = 22.5in., A, = 8.57
in?, A/ = 448in2,d’' = 2.5in.,d = 20in., f/ =
3000 psi, f/ = 411 psi, E. = 3.12 x 10° psi, f, =
40,000 psi, and E; = 29 X 10° psi.

In Fig. 3 and 4, the solid lines represent the results
from the present theory which takes into account the
tensile stresses in concrete. For comparison, we also
show the results of a calculation in which all assump-
tions are the same except that the tensile stresses in
concrete are neglected; see the dash-dot lines. Further-
more, we also show for comparison the results ob-
tained from Branson’s formula based on his effective
moment of inertia 7,;*% see the dashed lines. As seen
from these comparisons, the neglect of tensile capacity
of concrete leads to a serious underestimation of stiff-
ness in case of singly reinforced beams but a relatively
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small underestimation in case of doubly reinforced
beams. Further, we see that our theory agrees very well
with Branson’s formula previously verified by experi-
ments. In addition, our theory also describes the range
of steel yielding and compression nonlinearity of con-
crete for which Branson’s formula was not intended.
With regard to these comparisons one should stress
again that the tensile stress-strain relation for concrete
was the same as that determined by direct tension tests
and subsequently also validated by comparison with
fracture test data.

Our model can be compared with the test data in the
literature from References 17 through 20. Comparisons
of the predictions of our model with these data are
shown in Fig. 5 through 7, and the material parameters
corresponding to the curves shown are summarized in
Table 1. The values of the three parameters needed in
the model, f/, E. and f,, were taken as reported by the
experimentalists; however, in the cases where no value
of E, or f] was reported, an estimate was made from
f! using the ACI formulas. Generally, the compari-
sons in Fig. 5 through 7 reveal a satisfactory agreement
which validates the present model.

Longtime beam deformations based on tensile

strain-softening

Having validated a theory that is fully based on basic
material properties (which are the same as those which
suffice to predict fracture test results as well), we may
consider whether the same theory also applies to creep
deflections. Although for comparisons with existing test
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Fig. 5 — Comparison of present theory with the tests
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Tulin, Gerstle (1965)
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Fig. 6 — Comparison of present theory with deflection
tests by Burns and Siess (1966)
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Deflection at Midspan (in)

data the choice of the creep formulation is unimpor-
tant (since no deflection data of very long duration,
very different ages at loading, different drying condi-
tions, etc., seem to exist), we will choose the recently
developed BP2 Model* which has been shown to agree
reasonably well with numerous test data from the liter-
ature over a broad range of conditions. Adopting, as
usual, the linear principle of superposition, the creep
properties are fully characterized by the compliance
function J(z, ¢’ )also called the creep function), which
represents the strain at age ¢ caused by a uniaxial unit
stress acting since age ¢’. According to the BP2 Model

1
J(t’t,) = E + Co(tst’) + Cd(t)tl’to) (24)

0

with
Gty =2+ aye-ry
0\ EO
! @ 1 gt —m/2 ¢
Cd(t’t’ to) = E khl " Sd(t:t) (25)
0

in which E, = asymptotic modulus; Cy(#,¢t') = basic
creep compliance; C,(¢, ¢/ 1) = drying creep compli-
ance; m, n, o, ¢,, ¢, kK, = material parameters; ¢, =
age of concrete at the start of drying; and S,(¢, ' ) =
a shrinkage function involving the drying half-time
which is proportional to the square of the size of cross
section. In all present calculations, the parameter val-
ues predicted by the formulas in Reference 21 have
been used (see Reference 21 for details). The value of
the short-time elastic modulus E(¢’') may be obtained
from Eq. 24) and (25) as E(¢') = 1/J(t' + A, t')in
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Fig. 7 — Comparison of present theory with further
deflection tests by Burns and Siess (1966)

Table 1 — Parameters for test data

fo E, S

Test series psi ksi psi
Sinha, Gerstle, Tulin 3750 3490* 306*
Agrawal, Tulin, Gerstle 4400 2100 332*

Burns, Siess

Number 1 4110 3654* 320*
Number 2 3900 3560* 312%*
Number 3 2640 2929* 257*
Number 4 2690 2956* 259*
Hollington 5100 3000 495

1 psi = 6895 Pa, 1 ksi = 1000 psi.
*Asterisks indicate numbers estimated by calculations; without as-
terisk - as reported.
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Fig. 8 — Comparison of time-dependent creep deflection from present theory with Hollington’s tests (1970)

which A = 0.1 day.” Determining E(¢’) from J(z,¢') is
important since other formulas for £ do not yield val-
ues which would be consistent with the creep coeffi-
cient ¢(7,¢'). The latter’s value may be calculated as
d(t') = E¢t')J@t') — 1 (26)
Although structural analysis can be carried out quite
simply and more accurately by the age-adjusted effec-
tive modulus method?** for the deformations of
cracked reinforced concrete beams, almost equally good
results can be obtained using the effective modulus
method’**? (which is still simpler) provided the load-
ing is constant in time. This method consists in carry-
ing out, for the full applied loads, an elastic analysis
based on the effective modulus

R (1 N
T+ ety It

27

If E. is replaced by E,;, the foregoing analysis [Eq. (5)
through (23)] becomes applicable also to longtime de-
formations.

The longtime deformation data with which the pres-
ent model can be compared are those of Hollington®
(Fig. 8). In comparisons with these data it has been
found, not surprisingly, that for tensile stresses the
creep coefficient must be considered larger than that
for compression stresses as given by Eq. (24) through
(26), approximately three times larger

[¢(t, t ! )] average, tension = 3 [d)(t’ t ! )]compression. Eq. (24) through (26) (28)

Although there are no direct measurements to this ef-
fect, the conclusion is not surprising since in the strain-
softening range concrete is known to creep much faster
than in the initial linear strain range. The creep coeffi-
cient for tensile stresses less than about one-half of f,
is about the same as for compression. However, in the
present model, the stresses near the peak stress f/ and
the post-peak behavior matter; in that range, an in-
creased creep is reasonable due to the progressive de-
velopment of microcracks in time. Eq. (28) describes
this phenomenon in the average sense for the entire
tensile range.
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Aside from Eq. (28), no other parameters have been
adjusted to obtain optimum fits, and the solid lines in
Fig. 8 represent the predictions exactly as obtained
from the present theory using the creep prediction for-
mulas from Reference 21. As seen from Fig. 8, the
agreement with tests is again satisfactory. (This not
only further validates our theory but also lends addi-
tional indirect support for the BP2 Model.) The reason
why Fig. 8 is plotted in actual time rather than log-time
is that the time range of the available data is limited.

With regard to creep deflections, another effect
which is of considerable practical importance and has
been studied experimentally is compression reinforce-
ment. The use of such reinforcement is known to re-
duce the longtime deflections substantially.?3 In 1972,
ACI Committee 435' recommended for the creep de-
flection of beams 6., the following formulas

6c‘p = kr¢(1’t,) 5:’

k., = 0.85 — 0.454//A, > 0.40 (29a)
and in 1978 this committee®3" revised k, as
k. =1/(1 + 50p") (29b)

where p’ = A//bd and §; = initial short-time deflec-
tion. For the creep coefficient, Subcommittee 2 of ACI
209*62* recommends the formulas developed by Bran-
son et al.

Co=o0)f@—-1) f@-1)

(D
= = @, ) = y 7) 1.25¢ -o-1u8 0
0 s B = 8 (30)

in which all times are given in days. Other, more com-
plicated, formulas®-** give more realistic values over a
broader range of times and various influencing factors,
but for the present purposes the differences are unim-
portant.

The formulas in Eq. (29a, b), in conjunction with
those in Eq. (30), have been validated experimentally.>
Fig. 9 shows the comparison of the present theory with
the results obtained from Eq. (29a,b) through (30) for
several typical designs of simply supported beams.
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Fig. 9 — Effect of compression reinforcement A' on
creep deflection of beams with various tensile rein-
Sorcement percentages

Their parameters are b = 6in., h = 9in.,d = 7.5in.,
d = 15in., f! = 3000 psi, f/ = 274 psi, E. = 3 X
10¢ psi, f, = 47,000 psi, E, = 29 X 10° psi, and L =
240 in. (1 in. = 25.4 mm and 1 psi = 6895 Pa). Fig. 9
exhibits comparisons with the present theory for light,
medium, and heavy tensile reinforcements as well as
compression reinforcements. Compared to the predic-
tions of the present theory, Eq. (29b), and even more
Eq. (29a), generally predict a stronger effect of the
compression reinforcements; however, not too much
difference is seen in the case of heavy tensile reinforce-
ment. For light tensile reinforcement and equal
compression reinforcement the differences are substan-
tial, especially for Eq. (29a). Other investigators*? have
commented that Eq. (29a) or (29b) in these cases over-
estimates the reduction of deflections achieved by
compression reinforcement, which is not on the safe
side. Thus, our predictions agree with these earlier crit-
ical observations.
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Simplified model: Equivalent transformed cross
section

Although with a computer (or even a programmable
pocket calculator) it is no trouble to carry out the fore-
going analysis, hand calculations, albeit feasible, are
obviously much more involved than the use of Bran-
son’s formula. For hand calculations, it is therefore
useful to simplify the model without causing great de-
viations of results. To make this possible, we restrict
the range of applicability to the elastic range of con-
crete in compression, i.e., the service load range. The
only nonlineatity is then caused by the tensile strain-
softening.

For this purpose, we neglect the tensile resistance of
concrete distributed over the tension side of the neutral
axis and seek to determine an equivalent tensile area
A, and an equivalent tensile stress of concrete in this
area f,,, which would yield about the same beam cur-
vature «,. The centroid of this equivalent area we con-
sider to coincide with that of tensile reinforcement [Fig.
10(a)].

Considering the force equilibrium in the axial direc-
tion (at N = 0), we have

1
? albkd + .fslAsl - stASZ - .fqueq =0 (31)

in which g, = stress at the compression face (Fig. 10).
Since, in the elastic range

Eo, kd — d
f;l = Esesl = f le’ f;Z = ESEJZ
_Eedi-kd , _d-kd
E. kd kd

Eq. (31) yields

A, [% b(kd)* + nA/ (kd—d’)]
X (d—kd)' — nA, (33)

in which 4, = A/, A, = A,,d, = d’, d, = d, and
n=E/E,.

The value of kd needed in Eq. (33) has to be caicu-
lated from the condition of the same curvature « [Fig.
10(d) and (e)]. We need to distinguish two cases de-
pending on whether the tensile stress in concrete at the
tensile face is zero or finite (Fig. 10).

First assume that the tensile stress f; at the tensile
face is finite [Fig. 10(d)]. Considering the equilibrium
condition on zero axial resultant (N = 0), we obtain

kd = [(”* - 4g5)* — r] 2q)""
forc, + ¢, > h — kd 34)

in which

. :
q = A+ mblo + 2/ + [,
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r = no(dA; + A) — bh (f! + mo, + mf))

1
—no(A/d + Ad) + ?bhzolm

Lo =My oG 35)
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Second, if the tensile stress is zero at the tension face
[Fig. 10(e)], we have

kd = [(r* — 4g5)" — r] 2q)"!
fore, + e, < h — kd (36)

in which

1
g =" blo, = (1 + m™) fPol'], r = no(A/ + A),
s = —no(Ad’ + Ad) (37

Once kd and A,, are determined, the inertia moment
of the transformed composite cross section can be eas-
ily evaluated. Note that A,, and kd depend on the spec-
ified value of o, and so, strictly speaking, A, and kd
cannot be evaluated for a given bending moment ex-
cept in an iterative manner. However, for the service
stress range one can approximately evaluate A,, and kd
assuming ¢, = 0.3f,. As an approximation, these val-
ues of A,, and kd may be considered constant for anal-
ysis in the service stress range.

The results of such a simplified analysis are plotted
in Fig. 8 as the dashed lines. As seen, the results are es-
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sentially as good as those obtained from the original,
unsimplified theory. This validates the simplified
equivalent area approach for the service stress range.

When the equivalent area approach is used for long-
time deflections, the use of an increased creep coeffi-
cient in the tensile zone can be conveniently replaced by
the use of a transformed equivalent area Al

1+e

e = A s

8. = 3) (38)

In case of a T-beam, we need to distinguish various
further cases depending on the position of the neutral
axis, as well as the lines of tensile stress peaks and of
the points where the tensile stress is reduced to zero,
relative to the bottom of the flange. Consideration 6f
all the possible combinations is rather involved; how-
ever, it seems that of main importance is the location of
the neutral axis relative to the flange [Fig. 10(f), (h),
(k), (O]. If the neutral axis, as well as the line where the
tensile stress is reduced to zero, lies in the flange [Fig.
10(k)], the expression for A4,, is the same as that in Eq.
(33). If the neutral axis is in the web [Fig. 10(f)], i.e.,
kd > h,, the equilibrium condition yields

1
Ay =~ (@kd = h)bhy + b,(kd — b)Y

+ 2nA/(kd —d")] (d — kd)"' — nA,
(for kd > h,) (39)

in which A, = thickness of the flange, and b, = thick-
ness of the web (Fig. 10). Formulas have also been set
up for various locations relative to the flange of the
lines of stress peaks and of the points where the tensile
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ment ratios on the equivalent tensile area of concrete
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Fig. 12 — Effect of tensile strength on the equivalent
tensile area of concrete (rectangular beam)

stress is reduced to zero [Fig. 10(i), (j), (m) through
(q)]. For the sake of brevity we omit these formulas;
however, they can be easily set up from the equivalent
condition for the stress diagrams in Fig. 10(i) through
@.

To get a picture of the variation of the exact value of
A,, with the bending moment and the percentages of
tensile and compression reinforcement, calculations
have been made for a typical rectangular cross section,
defined by b = 12in., h = 24in.,d = 21.5in.,d’' =
2.5in., f! = 3600 psi, f; = 300 psi, E, = 3420 ksi, f,
= 40 ksi, and E, = 29 x 10°psi (1 in. = 25.4 mm and
1 psi = 6895 Pa). Fig. 11 shows the results, with the
notation A, , = nA, = pbdE/E, and M, = cracking
moment = f/1,/y, in which I, = moment of inertia of
the gross cross section and y, = distance from the neu-
tral axis to the tensile face. These plots show that A4, is
almost independent of the ratio of the cross section
areas of compression and tensile reinforcement p’/p
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Fig. 13 — Effect of tensile and compression reinforce-

ment ratios on the equivalent tensile area of concrete in

T-beam

but depends significantly on the percentage of tensile
reinforcement and on the bending moment value rela-
tive to the cracking moment.

Calculations have further been carried out for var-
ious values of the tensile strength f/; see Fig. 12. This
effect seems to be quite significant, not surprisingly,
since A,, must vanish for f/ — 0.

Similar calculations have been carried out for a typi-
cal T-beam, defined by the parameters b = 60 in., b,
= 12in.,, A = 25in., h, = 5in.,d = 22.5in.,d" =
2.5in., f! = 4000 psi, f; = 316 psi, E, = 3.6 x 10°
psi, E, = 29 x 10° psi, and f, = 40,000 psi (1 in. =
25.4 mm and 1 psi = 6895 Pa). The results (Fig. 13)
indicate similar trends as before.

Finally, it has been studied whether the dependence
of A,, on M and p (with the dependence on p'/p being
neglected) can be reasonably approximated by some
simple formulas. The following formula, plotted as the
dashed lines in Fig. 11, has been found

0.043

-0 with X = L<—A£ - 1)2 (40)
p\M,

The only advantage of the simplified model just out-
lined over Branson’s formula is a broader range of ap-
plicability. Certainly, the foregoing definition of A4,
can be applied to various cases not covered by this for-
mula.

CONCLUSIONS
1. The progressive microcracking under increasing
loads in reinforced concrete beams subjected to bend-
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ing can be taken into account by considering concrete
to have a nonzero tensile carrying capacity, described
by a tensile stress-strain diagram which includes strain
softening. A bilinear tensile stress-strain diagram is
sufficient for practical purposes.

2. The tensile stress-strain diagram used here is not
determined by fitting curvature and deflection data for
beams but is taken to be the same as that obtained in
direct tension tests, and also the same as that which
provided good representation of various fracture test
data for concrete. Correct predictions, which compare
well with curvature and deflection test data for rein-
forced concrete beams, are then obtained by a consis-
tent theoretical analysis for short-time deformations of
beams all the way up to the steel yielding range.

3. The theoretical predictions agree well with the
well-known formula of Branson within the range for
which that formula was developed. Within that range,
calculations based on Branson’s formula are simpler
than those based on present theory.

4. The value of the present theory is that it appears
to have a much broader applicability. Aside from ap-
plications up to the ultimate load, this is also demon-
strated by applying the same theory to longtime creep
deformations of concrete beams in flexure. Good
agreement with available tests is also obtained. It may
be expected that this type of theory based on a tensile
stress-softening material behavior could be applied to
atypical cross sections, continuous beams and frames,
slabs and shells, deep beams and panels, for both short-
time and longtime responses.

5. To obtain good agreement with the test data for
longtime creep deformations of beams, the creep coef-
ficient for the tensile response including the tensile peak
stress region and the strain softening should be consid-
ered, on the average, about three times larger than that
for creep in compression or small tensile stresses.

6. The theory appears to correctly predict the reduc-
tion in creep deflections due to the use of compression
reinforcement. The theory predicts a somewhat smaller
reduction than an ACI formula for higher steel ratios
and a substantially smaller reduction for small steel ra-
tios.

7. The use of the bilinear tensile stress-strain dia-
gram for concrete can be replaced by the use of an
equivalent area of tensile concrete centered at the level
of reinforcement and behaving linearly. The equiva-
lent area may be determined from the conditions of the
same curvature and location of the neutral axis.

8. A considerably simplified model can be obtained
by assuming the equivalent tensile area of concrete to
be independent of the bending moment and steel ra-
tios. Determining the equivalent area for the mean
stress level in the service stress range (about 0.3f),
reasonable deformation predictions are obtained sim-
ply by using the transformed cross section method, ap-
plied to a cracked cross section which is augmented by
the equivalent tensile area that can be evaluated from a
formula [Eq. (40)].
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APPENDIX — CONCRETE TENSIONS CAUSED
BY BOND AND OTHER QUESTIONS

In explanation of the tension-stiffening effect (surveyed, e.g., in
Reference 34), consideration is given to the tensile stresses in con-
crete near the bar, which are transferred into concrete between the
cracks by bond stresses. In the planes of continuous cracks, the re-
sultant of such stresses is zero but it is nonzero in the planes between
the cracks. The effect of these stresses, i.e., of the stiffness of con-
crete that adheres to the bar, is to reduce the extension of the bar.

Although this phenomenon surely exists, its importance is hard to
assess. Since the local tensile stresses are hardly measurable, indirect
logical inferences need to be used. In the present model, this effect is
neglected, and the comparisons with experimental evidence or the ex-
perimentally verified Branson’s formula are satisfactory. However, if
the additional stiffening of response due to this effect is very small
(say < § percent), it would not destroy the agreement with test data
that has been demonstrated here since the predicted response is
slightly softer than the measured one in Fig. 5(a), and partly 5(b),
7(a), and 7(b). We may infer from the experimental comparisons
presented here that this effect is probably small. For example, if the
equivalent tensile area of concrete around the steel bar, characteriz-
ing this effect as an average along the bar length,* were about equal
to the area of steel A, the effect would not be very significant com-
pared to that obtained from the preceding analysis which yields
equivalent areas of concrete to be 5 to 20 times A, (Fig. 11). Further
investigations of this effect are, however, required.
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