ALGORITHM FOR AGING VISCOELASTIC
STRUCTURES UNDER PERIODIC LOAD

By Zdené&k P. BaZant,' F. ASCE and Tong-Sheng Wang®

ABSTRACT: A numerical step-by-step algorithm for the analysis of concrete
structures exposed to a periodic history of environmental humidity or temper-
ature is presented. The creep law of concrete is assumed to be linear, and the
relationship between humidity and shrinkage is also linear. Cracking is as-
sumed to be absent. The effect of concrete age on creep properties is taken into
account. The creep law is considered in a rate-type form corresponding to the
Maxwell chain model. The well-known exponential algorithm is generalized to
complex variables to describe the periodic part of the response. Since this part
cannot be separated in advance from the drifting mean response, the standard
exponential algorithm in real variables and the new one in complex variables
are used simultaneously in each time step to provide the total response. The
algorithm allows an arbitrary increase of the time step, and time steps that are
orders of magnitude larger than the fluctuation period, as well as the relaxation
times, are possible without causing inaccuracies and numerical instability. The
algorithm leads to a series of incremental elastic problems in which the stresses,
strains, elastic moduli, stiffness matrices, etc., are all complex variables. These
spatial problems are solved by finite elements. The proposed algorithm is use-
ful for spectral analysis of the response of concrete structures exposed to ran-
dom environmental humidity or temperature, and tremendously reduces the

computation time when high frequencies are present in the spectral density of
environment.

INTRODUCTION

In certain structural analysis problems, the analyst needs to solve the
history of stresses, strains, and deformations in an aging viscoelastic
structure subjected to a periodic loading. This is the case, for example,
in predictions of long-term response of concrete structures to a randomly
fluctuating environmental humidity or temperature of a given spectral
density distribution. The response can, in principle, be obtained by the
impulse response function method, however, this approach is effective
only for those few problems that can be solved analytically (21). Nor-
mally, the spatial solution has to be obtained by finite elements, and as
long as the problem can be treated as linear, the spectral approach is
then computationally much more efficient than the impulse response
function approach. There are two reasons for this: (1) The spectral den-
sities of input and response are related algebraically while the autocor-
relation functions of input and response are related by integrals; and (2)
the environment can be adequately described by only a few sinusoidal
components.

The spectral method is normally formulated for nonaging linear sys-
tems (13-15,18,19). Due to the very strong effect of the age of concrete
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i ep, the spectral method needs to be generalized for aging sys-
?c?n:;? Sﬁl& was rI::cently done in Refs. 6-7. The variance, and all other
statistical characteristics of the random process of stress or .deformatlon
at any point of the structures, can then easily be o})tamed if one solves
the frequency response function, H(w, %, t, to), .‘NthI.’l describes the re-
sponse at age ¢ and location x to a periodic (sinusoidal) lqadlng (e.g.,
surface humidity variation) of any single frequency, (£, is the age at
which the structure is exposed to this loading). For some problems, such
as the shrinkage stresses in an aging viscoelastic ha}f-space, thg fre-
quency response function can be obtained by nun_xencal evaluation of
certain integrals (9). For arbitrary structures, a solution of the frequency
response function by the finite element method, in yvhlch the stresses,
strains, and displacements are treated as complex variables, was regentl.y
developed (10). In this formulation, the frequency response function is
obtained by step-by-step numerical integration in time. However, the
time step must be kept smaller than about 1/16 of the period 2w /w, which
leads to a prohibitively large number of time steps and a large cost of
computation if the prescribed loading spectrum involves components
whose time period is short (less than 1 yr). .

For aging creep of concrete structures under steady loadings, a tre-
mendous reduction of computation time is achieved by the well-known
exponential algorithm (3-5,11) for a rate-type form qf the aging creep
law, which represents an extension of a previous algorithm fpr nonaging
creep (20,24). The purpose of this paper is to gel}erallze this a.lgontl?m
to periodic loads superimposed on a slowly drifting mean YVthh drifts
at a decaying rate. As will be shown, this generalization will allow the
time step to be increased in a geometric progression and reagh val}1es
that are orders of magnitude larger than the period of the loading with-
out any significant loss of accuracy.

ConsTITuTIVE RELATION

For many practical purposes, the creep law of concrete may be as-
sumed to be linear and obey the principle of superposition '(for condi-
tions of validity see Refs. 5, 16, 17). Taking into account the isotropy of
the material, we may then write the creep law in the form

e(t) = J ]Vt da(t') + e°(t), el (t) = f JP@tYdaR (') 1)

in which €°(t) = the given shrinkage or thermal strain at age £; €, € =
volumetric and deviatoric parts of strain tensor e; in cartesian coodel—-
nates x; (i = 1, 2, 3), i.e., ;5 = ef;-’ + 8¢ 0 = Kronecker delta; 0‘; L F =
volumetric and deviatoric parts of the total stress tensor o ; and ] (t,t. )
JP(t,¢') = volumetric and deviatoric compliance functions representing
the volumetric and deviatoric strains at age ¢ caused by a unit volumetric
or deviatoric stress acting since age ¢'. These functions, wl'.uch. fully char;
acterize creep and elastic behavior, may be expressed easily in terms (i
the uniaxial compliance function ] (t,t’),‘ (5). Thg aging of the matenz}a1 ,
a very important trait of concrete creep, is descnbec’:l by the fact that the
compliance functions depend separately on ¢ and ¢’ rather than only on
the time lag t — t'.

973



For realistic forms of the compliance function, structural analysis has
to be carried out numerically in time steps. As one possibility, this may
be based on approximating the integrals in Eq. 1 by finite sums. How-
ever, the resulting algorithm is prohibitively inefficient for systems with
more than a few unknowns (5,12). A vastly more efficient numerical
algorithm may be obtained if the integral-type creep law in Eq. 1 is ap-
proximated by a rate-type creep law which can be done with any desired
accuracy. The best form of the rate-type creep law is the one based on
the Maxwell chain model which reads as

m m
= D_ D
G—Zau, T —20',-]-M ....................................... (2)
=1 =1
B B . D ij j
— € — 3)

= ’ €X =

3Ku(t) 3mu(t)” 7 2Gu() 2mP()
in which g, = the partial stresses (internal variables) corresponding to
the individual units of the Maxwell chain model (n = 1, 2, ... m); K, (t)
and G, (t) = the elastic bulk and shear moduli associated with the wth
unit; and m, (t), mZ(t) = the corresponding bulk and shear viscosities at
age t. Superimposed dots denote time rates. Due to isotropy, K, (f) =
E.(t)/(3 = 6v), G.(t) = E,(t)/(2 + 2v), in which E ,(¢) is the elastic mod-
ulus for the pth unit at age t, and v is the Poisson ratio which may be
considered for concrete as time-independent and equal to its elastic value.
The viscosities m,(¢) and 1] (t) depend on temperature T (5). For ref-
erence temperature T = T (= 25° C), one writes 1, (t) = 7,K,(t), n2(t)
= 7,G,(t) in which 7, are the relaxation times of the Maxwell chain
model. The 7 ,-values cannot be determined from the given creep data
but must be chosen in advance in an appropriate manner. They must
be spaced uniformly in the logarithmic time scale and must cover the
entire time range of interest. Spacing by decades, i.e., 1, = 10* 7; (i
=1, 2, ... m — 1) is sufficient. The last value may be set very large,
e.g., T» = 10%, which makes the last unit of the chain equivalent to a
spring.

For structures that are exposed, beginning with a certain age t,, to a
periodic environment, the histories of stress and strain may be expected
to consist of fluctuations about a drifting mean, and, thus, may be de-
scribed by the complex-valued stresses and strains

oi(t) = G5(t) + Gy (t)e™, e;(t) =&;(t) +&;()e™ ...l 4)

The actual stresses and strains are the real parts of these variables; G (t)
and &; () represent the mean stresses and strains (real variables); & ()
and &;(t) represent the complex-valued amplitudes of stresses and strains;
i = imaginary unit; and @ = circular frequency of the periodic environ-
ment. The shrinkage (or thermal) strains may be considered in a similar
form:

€2(1) = €0(E) + ()™ L ()

REVIEW OF ALGORITHM FOR STEADY LOADING
The mean components, denoted by superimposed hats, vary at a rate
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decaying roughly as 1/t, same as for the case of steady loads. For this
case, the most efficient solution is given by the so-called exponential
algorithm known since 1971 (3). In contrast to the usual _step-by-_step
methods for first-order ordinary differential equations, this algonthm
permits a gradual increase of the time step without causing numerical
instability or impairing accuracy. This is so even if the time step becomes
orders of magnitude larger than the first relaxation time, 7, . The algo-
rithm (3-5) leads to the following quasi-elastic incremental stress-strain

relation:

A, =3K"A&, — Ac”, AGR =2G"A&] —Acf ... ...t (6)
inwhich K"= > A Kyultreiz) G"= D MiGultrara) covvvvnennn @)
p=1 n=1

A" = g, (1 - e™*) + 3K"AE’,

p=1
AP =D aP (1= e™5) Lot ®
p=1
At At 1—e™™
= —— 4 =—, A\ = —_—,
Az, w Az, . " Az,
-Az — =D
S T 1P PP ©)
YAz - Gy

Here, A denotes the time increments during the time step At = t,4, -
t,;and r =1, 2, 3 ... are the discrete times, best.chosen so that their
spacing in the scale of log (t — t') would be uniform. Four, ar}'d for
cruder results even two, steps per decade usually su_fﬁce. Ac” and
Ac?’ are the inelastic stress increments which are taken into account in
finite element analysis by inelastic nodal force increments obtained, ac-
cording to the principle of virtual work, by integration over the element
volume. Since the stress-strain relation in Eq. 6 is isotropic, the changes
of displacements, strains, and stresses during At may be solved by star_1-
dard finite element analysis in which K" and G" are used as the elastic
moduli (they are different in each time step). The values labeled by sui
perimposed bars represent the values for the middle of the time mtersll/a;.
in the log-time scale, i.e., for the time t,,1, = t1 + [(¢, = t:1)(t+1 — £)]75
and

K, =K, (tr172)s G, = G.(t+12)

‘T.]u = 'f]u(tﬁ.l/z), 'ﬁD = T\E(tﬁl/Z) ................................

After solving by finite elements the incremental elastic problem, the
values of partial stresses for the next discrete time may be obtained from

the equations
&,, e + 3K\, (A& - AE),
e F2G NLAED L (11)

QP

w,r+1 T
D AD
i i

Q
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DeRIVATION OF RECURRENT FORMULAS FOR FLUCTUATING COMPONENTS
We now consider the fluctuating components alone, i.e.
o, (t) =d,.(1)e™, e(t)=&t)e™, €°(t)=¢e%@t)e™,
of(t)=6(t)e™, eP(t)=€le™ ... (12)

Substituting these expressions and the corresponding time rates, e.g.,
iwt s

G, =(6, +iwd,)e into Eq. 3 for the volumetric components, we obtain

(;Tu +6 <;+ iw )_3K ¢ ;_;0+_ . -0
3K, () " \3m,(¢t) 3K,.(¢t)) wle— € +iv@E-E%)...... (13)
or g, + l6rM S G e (14)

n

in which we introduce the notations

o s _ Az0
¢, = —% [Aé ~ A& + iwAt (é, &+ 5‘—2Ai>] ............... (15)

Here again A denotes the increments from ¢, to ¢,,; .

The basic idea in deriving the exponential algorithm for steady loads
is to assume that the rates of strain and shrinkage strain, as well as the
values of elastic moduli and viscosities of each Maxwell unit, are con-
stant within each time interval, At, while they may change by jumps
between the intervals, i.e., at times ¢, (r = 1, 2, ...). This suggests the
use of the same basic idea for the case of fluctuating components. We
solve Eq. 14 under the assumption that ¢, and B, are constant from ¢,
to any time t < ¢,,,. Under this assumption, the integral of Eq. 14 for
t, <tst,is

Gult) =6,,Bucue B B, (16)

in which B, may be interpreted as the effective volumetric relaxation
time for the pth Maxwell unit. Note that B, and c, are complex. Sub-
stituting in Eq. 16 ¢ = ¢t,,; = t, + At, we obtain the values of the complex-
valued volumetric partial stresses at the next discrete time as

Gl = Gur ™ + KO A o (17)

' At 1— e

inwhich Ay, ==, K= et (18)
B Ay,

Substituting Eq. 17 into the relation A¢ = 2.(6,,41 — G,,), We obtain
AG = 3K A& = A" .\t (19)
in which K’ = (1 + %"At) D Ry e (20)

=1
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m iwAt
8c" =3 (1- )6, +3K" | Ac - ——“—’l—m— CHErLY B 1)
= L+ At

Obviously, Eq. 19 may be regarded as an incremental volumetric elastic
stress-strain relation with a complex-valued incremental bulk modulus,
K", the value of which is different in each time step; Ac" represents the
complex-valued inelastic volumetric stress increments, which lead, in fi-
nite element analysis, to equivalent inelastic nodal force increments
(complex-valued) obtained (according to the principle of virtual work)
by integration over the element volume.

It should be noted that if At/B, is very large, then Ay, is also very
large and e™*¥* — 0 and A, — 0. This causes, in similarity to the algo-
rithm for nonfluctuating components, those units whose relaxation times
are much shorter than At to behave as if uncoupled, i.e., they present
no resistance to deformation, which is why long time steps are possible
with this algorithm. On the other hand, if At/B, is very small, then Ay,
is also very small, and exp (—Ay,) — 1 and k, — 1. This means that
those Maxwell units for which the relaxation time is much longer than
the time step behave essentially as elastic springs as may be intuitively
expected. Note that, in order to avoid an overflow, the value of exp
(-Ay,) must be programmed as 1 — Ay, + (1/2)Ay2 and k, as 1 — (1/
2)Ay, + (1/6) Ay% when Ay, is too small, and as 0 when Ay, is too
large.

An entirely analogous derivation for the deviatoric components yields,
instead of Eq. 17, the following equation:

GF =GP e KLCIA . (22)
in which Ay’ At . 1—emve )
in whic Yo ==, K = o e
foeL Y Ay
1 Gu . = -D . -D 1 =D
—=—F+ie, c,At=2G,|A& +inAt{E; +-AE7)| ... (24)
Bu M 2
This then leads to the deviatoric incremental stress-strain relation
AGD =2G" A&7 — Aol ... (25)
i - .
inwhich G” = (1 + ?wAt) S KL e (26)
r=1
R , iwAt
AoF =3 (-5 —2G"—==—&P .., 7)
w=1 1+ —2- At

G” = the complex-valued incremental shear modulus, different for each
time step; and Eq. 27 gives the deviatoric inelastic stress relaxations
(complex-valued) which have to be integrated over the element volume
to yield the complex valued increments of the inelastic nodal forces in
finite element analysis.

The well-known exponential algorithm for steady, non-periodic, loads
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must be obtained as a special case of Egs. 19-27 for @ — 0. One may
easily check that these equations indeed reduce to Egs. 6-11.

CoMPLEX EXPONENTIAL ALGORITHM

For periodically varying stresses and strains (Eq. 12), an algorithm based
on Egs. 19~27 would allow arbitrary increase of the time step. There is
a problem, however. Due to aging as well as the initial conditions, the
solution of the periodic components cannot be separated from the so-
lution of the drifting mean. How can this be overcome?

One must exploit the fact that the usual exponential algorithm for non-
periodic loads (Egs. 6-11) yields a nonperiodic response, representing
the mean response, when the time-steps At become much larger than
the fluctuation periods. Thus, the equations of this algorithm may be
used to isolate the drifting mean component. The remainder, then, is
the periodic component of response to which Eqs. 19-27 are applicable.
Therefore, in a step-by-step algorithm, it is possible to apply in each
time step first Eqs. 6-11 to determine the increments of the drifting mean
response, and subsequently apply Eqs. 19-27 to determine the changes

in the (complex-valued) amplitudes of the remaining periodic compo-
nents of the response. In each time step, the following algorithm, in
which the distinction between the drifting mean variables and the su-
perimposed periodic variables is provided by the fact that the first ones
are real and the second ones are complex, may be used.

First solve the increments of real variables:

1. Evaluate Egs. 10, 9, 7, 8. .

2. Consider the change, h(t,.;) — h(t,), of the mean environmental hu-
midity (or temperature) fromt, to t,.; as the prescribed changes in
boundary conditions (input, loading), then calculate the increments in
the mean (real-valued) shrinkage Aé° from ¢, to ¢,,;, and then evaluate
the real-valued inelastic stress changes from Eq. 8.

3. For these increments of loads and shrinkage (or thermal strain),
solve the real-valued stress and strain changes, A6 and A¢g, by elastic
finite element analysis based on Egq. 6.

4. Solve the new values of the real-valued hidden stresses from Eq.
10 (for all finite elements and all integration points in them).

Second, solve the complex-valued stress and strain changes for the
same time step:

5. Evaluate Egs. 18, 23, 20, and 26.

6. Consider the complex-valued changes in the amplitude of the pe-
riodic component of environmental humidity (or temperature), A%, from
t, to t,.;, and calculate the corresponding complex-valued increments
of the amplitude of the periodic shrinkage component, A&°, from ¢, to
tr+1 .

7. For these complex-valued changes of shrinkage (input, loading) from
t, to t,,1, solve by finite elements the incremental elastic problem based
on the stress-strain relations in Eqs. 19 and 25. This yields the incre-
ments in the complex-valued stresses and strains.
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8. Solve the new values of the complex-valued partial stresses from
Egs. 22 and 27 (for all finite elements).

q9. Adding the increments of the real-valued and complex-valued
stresses and strains, obtain the values for the en.d of the step, t.+1, e.md
advance to the next time step by returning to item 1, unless the final
time has been reached. '

o start the calculation, the first time step, At, must be choseq to'be
mtl;ch smaller than the fluctuation period, T = 2w/w. At the beginning
of the calculation, when the time-step, At is sFill small and much shorter
than the fluctuation period of the input (environment), the real part of
the solution can, itself, accurately follow the fluctuations, and the com-
plex-valued response is then obtained as 0. The complex-valuec} 1:-
sponse becomes nonzero as the time step approaches the value o the
fluctuating period. The real part of the response does not represent the
drifting mean of the response until the time step At becomes much longer
than the oscillation period. Thus, the interpretation of the response parts
as the fluctuating and drifting mean parts, as introduced in Egs. 4-5,
applies only during the later stage of calc_u%a'tlon when the txmelst.ep is
much larger than the periods. During the initial stage of the calcu' ations,
Eqs. 4-5 cannot be literally interpreted as a separation of fluctuating ar\d1
drifting mean components, but that causes no problem since the tota

i (t) and €;(t) is correct. '
re?\}I)c?tr:esteh::t!J ﬁh)e time qsge)p At does not have to be an integer mulhplg of
the fluctuation period, T. The discrete times may fall onto the fluctuating
response curve at any point, as exemplified in Fig. 1. Thus, one dlscre;e
time may fall onto the peak of response, the next one onto the trough,

onto the mean, etc.
th’(;‘}?ee z:zxréeas for the standard exponential algorithm for steady loads,
the time steps, At, may be chosen to be constant in the scale of log
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(_t — t). The time steps then form a geometric progression. As men-
tioned, the first At must be much less than the shortest fluctuation pe-
riod, T = 2n/w.

EXAMPLES

Example 1.—We choose the same example as in Ref. 10 and solve a
hollow concrete cylinder of infinite length, whose inner and outer radii
are 20 m and 21 m, respectively. The drying diffusivity of concrete is
constant, C, = 0.3 cmz/day. The Poisson ratio is v = 0.18. The environ-
mental relative humidity varies sinusoidally with the period T = 365
f:lays, h=h,+ Acos ot —t)) =07 + 0.2 cos [2n(t — 28)/365], i.e.,
1t‘s mean annual value is h, = 0.7, its amplitude is A = 0.2, and its
circular frequency is @ = 2%/365. The age of concrete at the beginning
of exposure to the environment is ¢, = 28 days. In order to separate the
effect of the difference between the initial pore humidity, k,, and the
mean environmental humidity, k., , which does not cause oscillating re-
sponse, we choose hy = h,,, i.e., hy = 0.7, for our illustrative example.
The shrinkage strains are assumed to be proportional to the changes of
poaeolaggnidity, with proportionality coefficient (shrinkage coefficient) k

Aside from the stress and strain analysis described in the foregoing,
the solution also requires solving the diffusion problem of pore humid-
ity, h. The calculation has been carried out in the same manner as de-
?cribgd in Ref. 10, and it yields the numerical values for the following
unction:

B(r,8) = H(w,7, 8, 80) €™ oottt (28)

in which H denotes the frequency response function of pore humidity;
and r = the radius coordinate. Both & and H are complex-valued. Mul-
tiplying Eq. 28 by kg yields the values of the shrinkage strains which
represent the loading terms for the stress and strain analysis and figure
in the algorithm described earlier. Because we chose h,, = h,, only the
complex-valued terms in Egs. 4 and 5 need to be dealt with.

In each time step, the elastic stress and strain analysis is carried out
using one-dimensional finite elements (rings) obtained by subdividing
the radius as shown in Fig. 2. The number of elements is 17; 7 elements
of 10 cm, 5 elements of 4 cm, and 5 elements of 2 cm. The time step
%ulb;;livlision schemes that have been used are shown in Fig. 3 and

able 1.

Ti":ﬁ - to=28days t,+ Vg te = 1545T .
! 8 [=u —+ 1 F
— a— ar; A =
5 'ﬁ / 7 A1, *0.005day At
I
| S - - Dtrel  va Bhre Otrat v 17
° g 2 - —~r ~an ¥ B Ry " -10 "% 1or different schemes

FIG. 2.—One-Dimensional Discretiza- FIG. 3.—Time Step Subdivision
tion of Cylindrica! Wall Schemes
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TABLE 1.—Time Step Subdivision Schemes

Og, iN
Number pounds Relative
of Computer per error,
time time, square asa
Scheme At /A2 steps in seconds inch percentage

(1) (2 3) ) (5) (6)

1 10v4 110 37.7 237.9 +3.8

2 108 119 39.3 225.4 -1.7

3 101/ 132 43.5 227.3 -0.8

4 10"/ 155 49.8 230.2 +0.4

5 10%/% 191 62.1 225.6 -1.5

6 1pv1%8 246 80.0 227.8 -0.6

Accurate

solution 1 805 1,230 229.2 0

*Col. 2 indicates the time step within the third range shown in Fig. 3.

Note: o, = peak value at 7 = 20.95 m and at t; = 18,141 days = 50 yr; accurate
solution based on relaxation function (Ref. 2); T = 365 days; At, = T/16 = 22.81
days.

Because a >> b — a, the values of o, and o, are so close that they
cannot be distinguished. Due to the same reason, the value of o, is very
low and insignificant. Therefore, only o, is given in the following figures
and tables.

The solution obtained is exemplified by the plots in Fig. 1, in which
the locations of discrete times are shown by dots. The figure shows por-
tions of the calculated history of the circumferential normal stress at depths
5 cm below the outer surface.

A comparison of the present solution with that obtained previously
(10), using very short time steps, is given in Fig. 1 and Table 1. For
scheme 1 the errors seem to be generally within 4%. Although the pres-
ent solution does not converge to the exact one monotonically, an im-
provement can be achieved with a finer, but still increasing, time sub-
division. For a life span of 50 yr, the computer time (using CDC/Cyber)

TABLE 2.—Sinusoidal Environmental Humidity Solution

ae, IN
Number of Computer time, pounds per
Scheme At,. /At time steps in seconds square inch
(1) 2 3 ) {5
1 10v4 110 37.7 217.6
2 108 122 40.6 225.9
3 101716 150 47.9 195.1
4 10" 196 62.6 215.4
5 10Y% 278 88.8 198.4
6 10v/1# 423 135 205.3

*Col. 2 indicates the time step within the third range shown in Fig. 3.
Note: o, = peak value at r = 20.99 m and at ¢t; = 18,276 days = 50 yr; T = 14
days; At, = T/16 = 0.88 days.
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FIG. 4.—Distribution of Circumferential Shrinkage Stress in Cylindrical Wall

was about 33 times shorter for the present solution of scheme 1, com-
pared to tha.t in Ref. 10. A saving of this magnitude would be e ' tial
fog a Iargle finite element system. wenha
xample 2.—For a second example, we chose a si i i

mental humidity with a very shortpperiod, T=14 csiar;'l:oil.‘:?l ;ze n=w BO;S-
+ 0.2 cos [2m(t - 28) /14].. All other given data for this examI;Ie are the
same. The solution for this example is given in Table 2, and the distri-
butions of stresses are shown in Fig. 4. The time division is defined in
Fig. 3 and Tal?le 2. Although the solution does not converge to the exact
one monotonically, one may assume that the average of the solutions
of schemes 3-6 could be considered as the correct solution. Then if the
ratio of At,.1/At, is chosen 1 /16, the errors appear to be within 6’% An
gnprovim.er}t. can again be achieved with a finite, but still increas'ing

lu?e su ‘dﬁw.smn. It may be estimated that the previously reported so-
t koan1t time steps much smaller than the fluctuation periods would
take about 600‘t1mes more computer time than the present solution. Thi

m}::ease 1;1 efﬁcisniy is remarkable. S

may be noted that, for the shorter environmental i i

the effect of the fluctuations reaches only a shallow g:;:ﬁa:s? ?n?e}l;togé
expected (approximately up to 5 cm beneath the outer surface) (ngg. 4)

CoNcLusIONS

1. Assuming that the material properties and the strain rates are con-
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stant within each time step, and using an exact integral of the rate-type
stress-strain relations, one may develop, for strictly periodic response,
a complex exponential algorithm which is completely analogous to the
well-known exponential algorithm for steady loading, the only differ-
ence being that all variables are complex rather than real.

2. Since the periodic and drifting mean parts of the response cannot
be separated in advance, due to aging and the initial condition, the ex-
ponential algorithm must be combined and run simultaneously with the
standard exponential algorithm. This approach allows increasing the time
step in a geometric progression, ending with time steps that are orders
of magnitude larger than the prescribed fluctuation period.

3. This new complex exponential algorithm allows a significant saving
of computer time, especially when many cycles of short periods are to
be solved.

4. The new algorithm is useful mainly for spectral analysis of creep
and shrinkage effects in concrete structures subjected to a random en-
vironment of a given spectral density.
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