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Bayesian Statistical Prediction of Concrete Creep and

Shrinkage

by Zden&k P. Bazant and Jenn-Chuan Chern

In present design practice, the statistical approach is used for strength
but not for deformations, including creep and shrinkage. However,
predicting concrete creep properties from design strength and con-
crete composition involves a large uncertainty, much larger than that
of strength. It is shown that by carrying out some short-time creep
measurements, even rather limited ones, the uncertainty can be
drastically reduced, and extrapolation of short-time measurements
can be made much more reliable. This is accomplished by developing
a Bayesian approach to creep prediction. Prior information consists
of the coefficient of variation of deviations from the creep law for
concrete in general, as determined in a recent statistical analysis of the
numerous creep data that exist in literature. This information is com-
bined, according to Bayes’ theorem, with the probability of a given
concrete’s creep values to yield the posterior probability distribution
of the creep values for any load duration and age at loading.

Only a linear creep case is considered, and a normal distribution of
errors is assumed for the given concrete as well as for the prior infor-
mation. To demonstrate and verify the method developed, various
creep data reported in literature are considered. Predictions made on
the basis of only a part of the test data are compared with the rest of
the data, and very good agreement is found. The effects of various
amounts of measured data, and of various degrees of uncertainty in
the prior information, are also illustrated. The present approach is
recommended for concrete structures for which the creep deflections,
creep-induced cracking, or creep buckling are of special concern, e.g.,
nuclear reactor vessels and containments, certain very large bridges,
shells, or building frames.

Keywords: Bayes theorem; concretes; confidence limits; creep properties; er-
rors; probability theory; regression analysis; shrinkage; statistical analysis;
structural analysis; structural design.

Creep and shrinkage appear to be the most uncertain
phenomena with which a designer of concrete struc-
tures must cope. The statistical variability of creep and
shrinkage is much larger than that of concrete strength,
yet so far statistical methods have been well developed

- only for the latter. This is partly because the problem is
more difficult and partly because the consequences of a
substantial error in predicting creep and shrinkage are
generally less disastrous than they are for strength. Ex-
cept for creep buckling, errors in creep prediction and
shrinkage do not cause structural collapse but merely
put the structure out of service due to excessive deflec-
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tions or excessive cracking (which causes reinforcement
corrosion). Nevertheless, for reasons of economy, it is
very important to improve the prediction of the effect
of creep and shrinkage in structures and, in particular,
design structures for certain extreme rather than aver-
age creep predictions.

Probabilistic analysis of concrete creep and shrink-
age has recently been rendered possible by extracting
extensive statistical information from literature (see
Reference 12, in which data for 80 different concretes,
consisting of over 800 experimental curves and over
10,000 data points, have been analyzed statistically and
organized in a computerized data bank). It appears that
if no measurements for a given concrete to be used are
made, the uncertaintg in predicting its creep and
shrinkage on the basis of the chosen concrete mix pa-
rameters and chosen design strength is enormous. Even
with the most sophisticated and comprehensive predic-
tion model,'*"* prediction errors (confidence limits) ex-
ceeded with a 10 percent probability are about =+ 31
percent of the mean prediction.” For the 1971 ACI
Committee 209 Model,! which is much simpler, this in-
creases to about +63 percent, and for the 1978 CED-
FIP Model Code's to about + 76 percent. This is clearly
an unsatisfactory state of affairs.

It has been demonstrated, however, that drastic im-
provement is possible if some experimental data, even
very limited short-time data, are obtained for the par-
ticular concrete to be used.'>” For a creep-sensitive
structure, such as a nuclear reactor vessel, large shell,
or large bridge, the designer usually has at his disposal
some limited short-time test data for his concrete. Con-
sidered by themselves, extrapolation of these data to
long times would also be very uncertain (for an exam-
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ple from a nuclear containment design, see Reference
8). A great improvement is, however, possible if the
statistical information for the given concrete is com-
bined with prior statistical information for all similar
concretes, such as that presented in Reference 12 or 13.
This is the subject of Bayesian statistical analy-
sis.41422:25.21.29-3136.3140 Application of this concept to the
present problem is the objective of this work.

From the physical viewpoint, the causes of random-
ness in concrete creep and shrinkage are basically
threefold: (1) randomness due to uncontrollable varia-
tions in material properties; (2) randomness due to
variations in the environment (weather); and (3) ran-
domness of the creep increments due to the statistical
nature of the creep mechanism itself.'® The first of these
three causes of uncertainty is by far the worst and may
be largely eliminated by carrying out a few limited
measurements and applying the Bayesian analysis that
follows. The second and third causes then remain, and
the worse one of these is randomness of environment.
A separate study, based on spectral analysis of stochas-
tic processes, has recently been devoted to this aspect.
By environmental control in the laboratory, or due to
mass concrete conditions, the second cause is largely
eliminated, and if the properties of the given concrete
are determined well by measurements, randomness of
the creep mechanism then remains as the principal re-
maining cause of uncertainty. For the sake of simplic-
ity, the study does not attempt to distinguish between
the aforementioned different physical causes, but we
should at least be aware that the purpose of Bayesian
analysis is to eliminate the first of the three causes.
Measurement errors from the creep predictions are also
not eliminated.

The problem at hand exhibits various mathe-
matical similarities with some other Bayesian
problems,*!425:27.303135-38 Thjg is true of Tang’s** Bayesian
analysis of future settlements of an oil platform for
which some short-time settlements have been observed.

In this study, we aim only at determining the creep
and shrinkage properties of a given concrete. Use of
these properties in structural analysis is another prob-
lem that cannot be included in this study.
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The error of measurement should be eliminated from
test data used in the present analysis, since this error is
not felt by the structures. If many readings at closely
spaced time intervals are taken, it may be assumed that
this error is approximately eliminated by hand-smooth-
ing of the measured curves.

Linearization of creep law and its error

As a reasonable approximation for many practical
situations, the creep law of concrete may be considered
to be linear, i.e., obeying the principle of superposi-
tion. Creep is then fully characterized by the compli-
ance function J(¢,¢') (also called the creep function),
which represents the strain (creep plus elastic strain) at
age f caused by a unit constant uniaxial stress acting
since concrete age ¢'.® For the purpose of statistical
analysis, it is helpful to express the compliance func-
tion in linearized form

J@t')=0§+6, (¢))

in which £ is a certain reduced time and 6,, 6, are ma-
terial parameters. Various creep prediction formulas
can be brought to the form of Eq. (1). We choose here
the double power law®"!!"® because it was shown to
agree better with test data than other well-known for-
mulas. For this law

¢, 0 _ L,

E() EO

E =8@)=0C"+a)@ -1t (2)

0] =

in which E,, ¢,, m, n, and « are material constants.
Their typical values are m = 0.3, n = W, a = 0.05,
and ¢, = 2 to 6; however, the scatter is consider=hle.!
Empirical formulas for estimating these par S
from concrete strength and composition exist.!'>:
able ¢ may be called the reduced time; 6, is a creep 1.
parameter, 6, is the instantaneous deformation (for in-
finitely rapid loading), and E, is called the asymptotic
modulus, typically E, = E. where E_ is the conven-
tional elastic (static) modulus, which corresponds to a
load of about two hour duration and involves much
short-time creep. Note that the earlier use of E, instead
of E, in the power law for concrete creep does not per-
mit an adequate representation of longtime creep be-
cause it results in a much too high value of n.°

All the material parameters in the creep law, i.e., E,,
¢,, m, n, and « are, strictly speaking, random var-
iables. However, to make our problem tractable, only
those parameters that appear linearly in J(¢,¢') can be
considered random. According to the linearization in
Eq. (1), these are the parameters 6, and 6,, whose vari-
ations represent a vertical shift of the creep curves and
a change in their overall slope. Although, in principle,
it would be more realistic to apply factor analysis to re-
duce the number of random material parameters, we
cannot do so since independent statistical data for these
parameters are unavailable. Statistical information ex-
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ists only for the compliance values, which leads us to
the following statistical model
J@t')Y=0Et+0,+e 3)
where e is the error. We will consider that e has a nor-
mal distribution with mean 0 and standard deviation o.
Although the creep compliance depends separately on
the current time ¢ and the age at loading ¢', these two
variables are grouped under one independent variable
£. This is one essential idea of the present analysis,
which permits us use of prior information on creep at
any t and ¢'.

Bayesian estimation

We consider J as a random variable for which the
governing law [Eq. (1) and (2)] is known with a high
degree of certainty, but the material parameters 6,, 0,
are rather uncertain. Assume that the probability den-
sity distribution f'(8,, 6,) of the possible values of 6,
‘and 0, is known from prior testing of various con-
cretes. This distribution is called prior. The probability
that 8, (/ = 1, 2) lies within the intervals (6}, 6% + df)
may be denoted as P(6* < 6, < 6* + d#) and equals
S’ (6, 6,)db,df,.

Now suppose that, for a given concrete of interest,
certain compliance values J; at reduced times £, (j = 1,
2,. . ., N) have been measured. We want to exploit this
information to obtain an improved (updated) probabil-
ity density distribution f”(8,, 8,) of parameters 8,, 6,,
given that compliances Ji(¢), . . ., JW&x) have been
measured. This distribution is called posterior. The
conditional probability that 6, lies within the intervals
Or, 6 + db), given that J,(¢£,) has been measured, may
be denoted as P(8* < 6, < 0* + d6,\J,,. . ., J\)
and equals f7(6,, 6,)d68,df,. According to Bayes’
theoremA.S,14,15.22,27,30.39,40

PO*<09, <0 +do|J,. .. Jy=
kP(J, .. ., J\0)P @6 <6, <6 +db) ()

where k is a normalizing constant assuring that the sum
(integral) of all probabilities P(8* < 0, < 6* +
de;\J,,. . ., Jy) is unity, and P(J,,. . ., Jy|0)) is the
probability of measuring values J(£;) under the condi-
tion that the parameter values are 6, Introducing the
foregoing expressions for P(. . .) in terms of /' (8,, 6,)
and f'(9,, 6,) and dividing by df,df,, we obtain from
Eq. (4)

"6, 62 = KL (6, 055 J) f' (6., 62) ®)

in which L@,, 6,; J,) = P(J,, . . ., Jy|8). This func-
tion is called the sample likelihood function. The nor-
malizing constant k is determined from the condition

o

_5 _5 Sf"(0,, 6,) db, db, = 1 (6)
Supposing, for the sake of simplification, that the
observed values J,, J,, . . ., Jy are statistically inde-
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pendent, we may express the sample likelihood func-
tion as

L@®,0,;J) = ﬁl £ (16, 62) M

Here, f(J}|0,,6,) is the probability density distribution of
one random variable J;, given that parameter values are
6, and 0,, i.e., f(J;|0,,0,)d8,d8,dJ; is the probability that
the J-value lies within the interval (J;, J; + dJ) under
the condition that the parameter values lie within the
intervals (8, 6, + d6,). For one particular concrete, pa-
rameters 0,, 0, are fixed, and so f(J)|6,,6,) describes the
scatter of J-values in one and the same concrete.
According to our statistical model [Eq. (3)], the
compliance J; for certain parameter values 8,, 6, and a
certain fixed reduced time §; is a normal random vari-
able with the mean (8,£, + 6,) and standard deviation

g, i.e.
J- - 0‘ i 02 2
g

1 [ 1<
exp|—-—
o P 2

.f;‘("j‘ol’ 02) = \/2—;

Standard deviation ¢ is to be evaluated for fixed 6, and
6,, i.e., fixed material properties. Thus, o characterizes
the scatter of J for the given concrete for which mea-
surements J; were taken. If these measurements do not
suffice to determine o for this concrete, a typical value
of ¢ for any similar concrete may be used for which
plentiful data exist.

Assuming o to be independent of reduced time £ and
substituting Eq. (8) into Eq. (7) and Eq. (7) into Eq.
(5), we obtain the result

S, 8) = a, exp[ i E( > ]
fl(ola 02)s = (\/2—7; 6) N (9)

The normalizing constant k follows from Eq. (6)

- —oo

k =[? § L@, 6537 10, 6 db, doz}_'

= (2ropy | | exp
[—% > <M> ]f’ (6, 8;) do, doz}_ (10)
ji=1 o

The posterior (updated) expectation of parameter 6,
given that the observed compliance values were J;, may
be obtained as

= o

=E@) = § | 60,06)d0,d, (1))

where E denotes the expectation. The posterior (up-
dated) probability that the compliance J(¢) at reduced
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time £ will be less than some given value J may be cal-
culated as

PLE) < J] =
§ § PL® < J8, 61 0., 6,) db, do,

—® -

®©

i § @@, 01 =50, 0) ds, db, (12)

—o —oo

where ® represents the cumulative normal distribution
function

1 1 —x2/2
20)= o e a (13)
and
y@,0) = T=E=0 (14)

It is convenient to use a prior distribution that yields
a posterior distribution of the same type; this is called
a conjugate prior.* For a normal distribution, the con-
jugate one is again a normal distribution.* Therefore,
for f’(6,,8,) the normal distribution is chosen. Because
two parameters are used, a bivariate prior distribution
should be properly considered '

S, 0,) = oo
exp{ —i[(e‘ — m'> + <62 — m2> } } (15)
o, 0,

where m,, m, are the means and o,, o, the standard de-
viations of 8,, 6,. Unfortunately, however, no statistical
data have yet been published for the parameters 6, and
0,.

To circumvent this difficulty, we may consider the
univariate distribution of the values of J(§£) and assume
it to be normal

900,%
XK
(7

-.523E6

1
SUE)) = =

1@ - J(E)ﬂ
V2 ofE) exp[ < (16)

2 o/£)

Here, J(£) = mean of the (prior) observations of J at
reduced time £, and o(¢) = their standard deviation,
which may be calculated as 0(¢) = w,J(§) where w, =
coefficient of variation of the prior data, which is con-
sidered, for the sake of simplicity, to be independent of
reduced time £. Extensive data on the values of w, are
given in Table III of Reference 12 and in Table 2 of
Reference 13.

Now, we come to an important step; if we substitute
J(&) = 6,¢ + 6,, this distribution becomes a function of
0, and 6,. Furthermore, noting that AJ = § A8, + A4,
we see that the probability (or frequency) of error AJ =
£ A0, at AG, = 0 is the same as the probability (or fre-
quency) of error Af,, and the probability of error AJ =
Af, at AG, = 0 is the same as the probability of error
Af,. Therefore, on substitution of J(¢) = 6,£ + 6,, Eq.
(16) may be regarded as an approximate probability
density distribution of 6, and 6,, i.e.

exp[_l(ﬂé) — 0§ - 02> ](17)

1
f (01a02)= i~ 2 0;(5)

N2 oA§)

Replacement of the bivariate distribution [Eq. (15)]
with a univariate distribution [Eq. (17)] is a crucial step
in the present analysis, allowing the use of existing sta-
tistics of creep data. A similar step was used by Tang et
al.” in their analysis of settlement of oil platforms.

Numerical integration

Integrals of the type of Eq. (12) must be evaluated
numerically. Caution is required, since the integral ex-
tends over an infinite domain. From the practical view-
point, this is usually the most sensitive task in Bayesian
analysis, and various studies have been devoted to it.!"*
None of them, however, seems to be directly applicable
to the present integrand.

Fig. 1(a) shows the shape of the exponents of the
function f7(6,,0,) for the case when f'(8,,0,) = 1 (dif-

=)
Peak of the surface

Fig. 1—(a) Exponent of function f"(8, 6,); (b) transformation of coordinate sys-

tem
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fuse prior); the integration was done with 40 integra-
tion points for both 6, and 6,, and the statistical param-
eters of the test data by Rostasy®* were considered. The
surface decays rapidly in one direction and extremely
slowly in another. For this reason, it is necessary to in-
troduce new independent variables # and v, which con-
vert the bivariate normal distribution to a standard
form.

Function f"(6,,0,) that needs to be integrated in the
integrand of Eq. (12) may be written, according to Eq.
(9), in the form

1", 8,) = a, exp [— (A48 + B + 2D6,6,
+ 2F6, + 2F9, + G)] f'(6,, 6,) (18)

with coefficients

N

A=ﬂ+*1—,B=‘LEEf+ -
20° ) 202,(g) 20° ;7 20y
D=$’§N&+ 2:(_2)2,
E = —ég ,»—5{%,
-2022 "
- 2«72,);1J2 _210;% 4

where N = number of observed creep data. In the spe-
cial case of a diffuse prior [ /' (8,, 6,) = const.], the
second terms in these expressions vanish because o,/(§)
— oo, We seek to transform Eq. (18) to the form
f"@,, 0) = ae e f(6,, 05) (20)

where u, v are new variables given by a certain linear
transformation [Fig. 1(b)]

u=ab, + bo, +c, v=(ab,— bo, + d)e (21)
which transforms the quadratic polynomial in Eq. (18)
to its principal coordinates. Comparison of the coeffi-
cients in Eq. (19) and in Eq. (20) and (21) yields the re-
lations

a+eb? = A, b +er*? =B, (22a, b)
ab(l —e) = D, ac - ebd = E, (22c,d)
bc+ead = F, E+ed =G 22¢, D

Further, one needs to solve from these equations a, b,
¢, d, e under the conditions that a, b, ¢, d, e are real
anda > 0, b > 0, and e > 0. After some tedious al-
gebraic manipulations, one can show that such a solu-
tion exists, and one solution (with e < 1) is
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<A—eB>‘/’, b—< —-eA>‘/z
T\l -& T\l - ¢

a =
c_aE+bF, d_aF-bE,
@+ b T ea + b))
A+ B - [(A — B + 4D*
e = (23)

A+ B + [(A - B} + 4D

which can be verified by substitution into Eq. (22a-f).
Another solution exists (with e > 1), but it is equiva-
lent since it merely corresponds to interchanging u and
v. The inverse of the linear transformation in Eq. (21)
is

0,
6

[a(e "y — d) + b(u — )@ + b»)!
[a(u — ¢) — b(e v — D)@ + b)' (24)

and the Jacobian of the transformation in Eq. (21) is

| = ou/a00,, o0u/db,| _ | a,
= |av/a8,, av/86,] ~ |—b+e,
= (@ + b)) e (25)

In the integrals in Eq. (11) and (12), we may now sub-
stitute

"6, 6) d6, do, = ~ e " dudv (26

-

in which Eq. (24) must be substituted for 6, and 6,. The
integration over # and v is to be carried out from — oo
to oo,

The integrals may be efficiently evaluated using the
Hermite-Gaussian formula which has, for the variable,
the form §=, f(x)e~* “dx = L, w,f(x,), where w, is cer-
tain known weights.** In the case of two variables [Eq.
(26)], this integration formula yields for the integral in
Eq. (12) the approximation

PLJE) <1 = — E E Wl @) 7)

k=1 m=1

in which K and M are the chosen numbers of integra-
tion points for coordinates # and v, and ®(y,,,) is given
by Eq. (13)

|
Yim =~ (J = 8,8 — 05,) 28

Q

and 6,,,, 0, are evaluated from Eq. (24) for 4 = u,
andv = v,.

Eq. (27) is the final result to be used in computer
calculations.

Examples

To demonstrate the theory, consider the test data by
McDonald.® From the fitting of these data, one obtains
double-power law parameters m = 0.305, n = 0.147,
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and « = 0.059,'? and based on the scatter of these data
(fixed 6,, 0,), it can be roughly estimated that ¢ =
0.01x10-%/psi. The prior information may be deter-
mined from the BP model'? using the following param-
eters: cylinders 15.2 X 40.6 cm, sealed, at 23 C, 28 day
cylindrical strength 6300 psi, water-cement-sand-gravel
ratio 0.425 : 1:2.03 : 2.62, cement type II, and age at
loading ' = 90 days. Furthermore, the value of coef-
ficient of variation for all concretes (prior information)
may be considered as w;, = 0.24, according to Refer-
ence 12 (provided the BP model is used).

To get an idea of the usefulness of the Bayesian ap-
proach to creep prediction, the prediction for varying
amounts of data for the given concrete (i.e., for pro-
gressively better likelihood functions) is given in Fig. 2.
First Fig. 2 shows the predicted 90 percent probability
band and the mean for the concrete of McDonald if the
prediction was based strictly on the prior information,
i.e., if the data of McDonald were not known to us.
Furthermore, Fig. 2 also shows the Bayesian prediction
of the mean creep and the 90 percent probability band
when only the first four data points of McDonald are
known, and also when the first eight points are known.

It should be noted that the 90 percent probability
band progressively narrows with the increasing amount
of data for the concrete of McDonald and that the me-
dian prediction comes closer to the remaining later data
not used in the prediction. The most significant im-
provement of prediction is brought about by consider-
ing the first data point [Fig. 3(a)].

Also note that the width of the 90 percent probabil-
ity band (scatter band) increases with increasing time.
This effect is particularly pronounced when assuming
constant w,; if ¢, were assumed constant, the width of

7
McDonald 1975,sealed, ”
0.4 } t'=90days 7
0=00Ix10-8/psi 7
) s/
with prior e /1
5 s
-8 7
[-Y) //
e 0.3 | prior 90%
? [~
=)
vy
=
)
+<0.2 -
59
- © O Data used in analysis
— x x Data not used
0.1 1 1
100 10! 102 03
t—-t (days)

Fig. 2—Prior, posterior median and probability band
wy for McDonald’s test data

94

the probability band would not increase so markedly
with time.

From Fig. 3(b) and 3(c) the effect of prior informa-
tion (i.e., of the statistics from Reference 12) can be
seen. Fig. 3(b) shows three curves: Curve A is the me-
dian prediction based on prior information only; Curve
B is the prediction updated on the basis of first four
data points and based on full prior information as
shown in Reference 12; and Curve C is the prediction
based on the same first four data points if this prior in-
formation is considered to be highly uncertain, i.e., the
information on coefficients of variation from Refer-
ence 12 is ignored and only the mean prediction for-
mulas from the reference are used. Fig. 3(c) shows the
comparison for the 90 percent probability band. For
this particular data the prediction based on the diffuse
prior (o, = o0) happens to be quite good. However, this
is not so for all data, e.g., for those of Rostasy et al.,
as Fig. 4(b) demonstrates.

From these comparisons, it can be seen that, for
concrete creep, the benefit of the prior information is
smaller than the benefit of obtaining at least some

0.4

McDonald 1975,sealed, (o) 4
d Madian

+'+ 90 days

N=4

04 T = 00IxI0-8/psi //
with prior i
(a)

03

03
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B —— Posterior (T =000 %psi
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02 @iffuse prio)”
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0.1 L
00 10' 102 10%

o

10!

(e}
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1'=80 days
o3l with prior

| O=0.01x10-8/psi
Uy and madian with 4>
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J(t,t') in 107%/psi
[=]
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B
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[C3]
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o2k o0 ___ L —T [ . oz2f Lo e
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= ife ] 30
%os y !
; /
& Ao .”
8 (3 /
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[ / "
; came 0001108 /pai
— 0002106 /pai
I/' =

0.5 0.20 0.25 0.30 035 040 048
J(t,t') in 107%/psi

Fig. 3—Various types of posterior predictions for
McDonald’s data: (a) Prediction based on one data
point; (b) median prediction based on a different num-
ber of data points; (c) prediction for actual and diffuse
prior; (d) cumulative density function J(£); and (e) pre-
dictions based on different values of standard devia-
tion ‘
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Fig. 4—Various types of posterior prediction jfor Rostasy et al.’s data: (a) Predic-
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of shifting the prior upwards

short-time creep data for the given concrete. (A similar
conclusion was reached empirically in Reference 13.)
This last conclusion is further reinforced by the predic-
tion in Fig. 3(a), which is based on the full prior but
only the first data point of McDonald and on the
knowledge that o is roughly 0.01 X 10 -~ ¢/psi for these
data. The mean prediction agrees surprisingly well with
the rest of the data of McDonald. (This case is called a

“‘dominant prior’® and a ‘‘soft Bayesian prediction.”’?)

From Fig. 3(d) an idea of the shape of the cumula-
tive probability density function ® (¥) can be drawn for
the J(¢) values at various ¢ — ¢’, obtained for Mc-
Donald’s data, according to Eq. (12) or (27).

To show that similar results are obtained for other
creep data from literature, predictions have been cal-
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culated for the test data of Rostasy et al.** and for
Shasta Dam data®?**; see Fig. 4(a) through (d) and 5(a)
and (b). There are some differences, however. For the
data of Rostasy et al., the measured points happen to
lie closer to the median of the prior, much more so than
for other test series. Nevertheless, use of the prior still
does improve the prediction based on a reduced num-
ber of data points (N = 4, N = 8, and N = 14). For
Shasta Dam concrete, the opposite is the case; the mea-
sured data lie far off the prior median prediction, and
this is why the posterior curves are so different. Espe-
cially note that the first two data points combined with
the prior give a very poor extrapolation to longer times,
much poorer than that for the concrete of Rostasy et al.
and of McDonald.
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The prior information greatly modifies the predic-
tion when the measured data lie outside the 50 percent
probability band w,, of the prior. An example of this is
artificially constructed in Fig. 5(b), in which the actual
prior median was deliberately shifted upward, keeping
the data as measured. We see that such a shift has a
great effect on the median and makes the posterior
probability band wider.

It is interesting to contrast the Bayesian analysis with
simple statistical regression based on only measured
data and prior knowledge of the formulas for the mean
values; see Fig. 6(a), (c), and (¢) showing the linear
regressions made in the £ scale as well as corresponding
plots in log(t — t’) scale in Fig. 6(b), (d), and (f). If
only a few data points, e.g., four points in Fig. 6(c) are
used, the probability band rapidly widens with time,
while for a long data series [Fig. 6(a)] it remains nar-
row. In the latter case, the probability band might be
narrower than that obtained from Bayesian analysis
with all the prior information, but the Bayesian ap-
proach is more realistic.
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It should be noted that, while extrapolating data of
statistical regression, one is predicting statistical prop-
erties of the future creep of the particular specimen
measured. On the other hand, in our Bayesian analysis,
we are predicting statistical properties of creep of all the
specimens that could possibly be made from the given
concrete. It is the latter case which is of interest for de-
sign, and the statistical variability for this case is ob-
viously larger.

Determining standard deviation ¢ for the likelihood
function is important. ¢ characterizes the scatter of J-
values at some fixed time when a great number of iden-
tical creep tests on a given concrete (fixed 6,,8,) is per-
formed under the same conditions. Such data have re-
cently been presented by Cornelissen, Reinhardt et al.,
and Alou and Wittmann.>!*?**2 One typical example
from the Reinhardt et al.’s results is shown in Fig. 7,
from which one can see that for their concrete roughly
the value ¢ 0.02 x 10-%/psi would be appropriate
for characterizing the likelihood function for the sum
of creep and shrinkage strains. Strictly speaking, o de-
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Fig. 7—Reinhardt et al.’s statistical data for identical
specimens

pends on time, as can be seen from Fig. 7, although it
was neglected in the foregoing analysis. To avoid the
need for many tests for the given concrete, it may also
be assumed that ¢ is the same as observed before on
similar concretes. Note that the o-value for the likeli-
hood function is different from the value of standard
deviation that results from a regression analysis of one
creep test (with many J-values for different times but
the same specimen, as shown in Fig. 6).

The effect of various choices of ¢ (for the likelihood
function) is shown in Fig. 3(e). A smaller o, if justified,
gives a distinctly better median prediction and a nar-
rower probability band.

As can be seen from these examples, the value of
standard deviation ¢ for the concrete under considera-
tion has a great influence on the width of the scatter
band for creep extrapolation. At the same time, the di-
rect information on ¢ is usually scant, since only few
measurements are normally carried out for the concrete
at hand. In such situations, the value of ¢ has to be
based on an analysis of the data for various similar
concretes. For these predictions, the standard devia-
tions for the data of Rostasy et al. and Shasta Dam
data were estimated as w = 0.01 X 10-°/psi. For the
prior predictions according to Reference 12, the fol-
lowing information was needed: Shasta Dam data —
Cylinders 15.2 x 66 cm, 21 C, sealed, 28 day cylinder
strength 3230 psi, water-cement-sand-gravel ratio 0.58 :
1:2.5:7.1, cement type IV, m = 0.376, n = 0.127, «
= 0.043, and t' = 28 days. Rostasy et al. data — Cyl-
inders 20 cm diameter and 140 cm length, environmen-
tal relative humidity > 95 percent, temperature 20 C,
28 day cube strength 6500 psi, water-cement-sand-
gravel ratio 0.41 : 1 : 2.43 : 3.15 (by weight), and age
at loading ' = 28 days.

One notable simplification in our statistical model is
that the values J,, J,,. . ., Jy, as well as similar data for
the prior, are implied to be statistically independent,
but in reality they are not completely so. If, for exam-
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Fig. 8—Effect of spacing of data points on the predic-
tions

ple, the creep value is high, compared to the mean, at
¢ = 1000, it will be high at £ = 1001 and will be quite
close to the value at ¢ = 1000. This is so because, in the
physical mechanism of creep, the randomness arises
through creep increments rather than their accumu-
lated values.'® The correlation of adjacent J-values be-
comes weaker with increasing time intervals between
these values, and for relatively sparse data our assump-
tion of statistical independence of J,, J,,. . ., Jy, im-
plied in Eq. (7), is probably quite good. Obviously, one
should avoid using very dense data. Nevertheless, the
effect of data density does not seem to be critical, es-
pecially for the mean predictions. What happens when
additional data points are inserted between each two
adjacent points of Rostasy’s data has been checked.
The resulting mean prediction remained almost the
same (see Fig. 8). On the other hand, the effect of these
inserted points on the 90 percent probability band was
stronger (Fig. 8).

The foregoing problems with the lack of indepen-
dence of adjacent data values can only be completely
avoided if creep is considered as a stochastic process in
time.'* However, Bayesian analysis in such a context
would be difficult. The same problem is encountered in
the analysis of continuous data records in general, and
various simple methods of accounting for the correla-
tion of adjacent data values in a time series have been
devised.?

A related question is: How should the experimental-
ist properly choose the times of reading the strain in a
creep test? Optimally, the readings should be uni-
formly distributed when plotted in the £-scale. This
spacing does not correspond to a uniform spacing in
either £ and ¢’ or log ¢ and log ¢'. However, a uniform
spacing in log (+ — t') and log ¢’ is close to optimal.
Crowding the readings in some segment of the £-scale
is equivalent to assigning a larger weight to the corre-
sponding measurements, which introduces subjective
bias.
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Prediction of shrinkage and drying creep

The present method of analysis can also be applied to
predicting shrinkage of concrete. Instead of J(z,t'), the
basic variable is then the shrinkage strain ¥ = ¢,
which depends on current time ¢ and age ¢, at the start
of drying, €, = e,(t,1,). According to References 12
and 13, the shrinkage law may be written as ¢, =
€nki(1 + 7,/F)"" wheref = t — t,, €, = constant for
a given concrete, k, = function of humidity, and based
on diffusion theory, 7, = 7,D* where 7, = function of
1, and D = effective thickness of concrete member. In-
cluding the error, we may write this law in the linear-
ized form

Y=0¢f+0,+e 29

in which Y = 1/é%,, £ = 1/t, 0, = 7k, €4 )% 0, =
(k, €4,)"%, and e = error. Here, 6, and 6, may again be
considered as random material parameters whose ran-
dom scatter corresponds to an uncertainty in e, and
74. Since the form of Eq. (29) is identical to Eq. (1), the
present Bayesian analysis can be followed.

Although the double power law [Eq. (1) and (2)] may
be applied, in an approximate sense, to drying concrete
members," it should be properly restricted to creep at
constant water content, called basic creep. The addi-
tional creep due to variable moisture content, called
drying creep, must be modeled differently because it
depends on cross section thickness and has a different
time and age dependence. The creep law describing
both basic creep and drying creep was given in Refer-
ences 12 and 13. This law may still be written in the
form of Eq. (1), provided that £ is redefined as

E=W"+x)@ -1ty
k! 3 -0.35
+ 2’1 R tl—m/2<l + Tsh ) (30)
¢, E, t—t

The coefficients and functions in the added drying
creep term are given in Eq. (12) of Reference 13; ¢, is
a function of temperature and of ' — ¢, where ¢, is the
age at the start of drying, &, is a function of environ-
mental humidity 4, and 7,, is the same as in Eq. (29) for
shrinkage (as diffusion theory indicates). With the def-
inition of reduced time ¢ according to Eq. (29), all our
preceding Bayesian analysis [Eq. (4)-(28)] remains ap-
plicable.

Instead of considering the ratio ¢,/¢, in Eq. (30) to
be fixed by the prediction model from Reference 12, 6,
= ¢,/E, may be introduced as a third random param-
eter characterizing the drying creep term separately
from the basic creep term (double power law). Then
Eq. (3) must be replaced by

J, ')y =0£+0m + 0, + e 3D

where 7 is another reduced time for the drying creep
term, and e is the error. The required generalization of
the preceding analysis would be relatively straightfor-
ward, but the numerical integration of f”(6,,6,,6,)
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would be considerably more tedious. Due to the lack of
meaningful separate statistics for the drying creep term,
a generalization of this type would hardly make sense
at present.

Ramifications and possible refinements

The best method for linearizing the creep law is an
interesting problem. The linearization in Eq. (1) and (2)
for creep without drying has one obvious disadvantage.
The normal distribution admits errors of any magni-
tude, and a negative error in J of a large magnitude can
make J negative, which is physically impossible. For the
same reason, large negative errors are less likely than
equally large positive errors in J, which is not reflected
in a normal distribution for J. This situation could be
remedied by introducing an asymmetric distribution for
J, e.g., the log-normal distribution.

With the double power law, an asymmetric distribu-
tion of J appears naturally by introducing the follow-
ing alternative linearization of the double power law

Y=0£(+0m+0,+e (32)
where
Y = log(J — I/E), ¢ = log(t —t'),
n = logt' "+ a), 6, =n
0, = log(¢,/Ep) (33)

Parameter 6, is added for reasons of generality, even
though in the double power law 6, = 1. Use of a nor-
mal distribution for ¥ would then correspond to a log-
normal distribution for (J - 1/E,), preventing errors
that would cause J to be less than 1/E,. Another possi-
bly advantageous feature of Eq. (32) and (33) is that the
(equally likely) errors would be larger the larger the J-
value (longer times), as expected. The fact that the age
at loading ¢’ appears in Eq. (32) in an independent var-
iable different from the variable characterizing load
duration ¢ — ¢’ is also an advantage. This approach,
however, would have the disadvantage that the instan-
taneous deformation 1/E, would be deterministic (zero
error) and would have to be determined in advance.
Another questionable aspect of the present statistical
model, which would be avoided by Eq. (32) and (33), is
the fact that Eq. (1) or (3) cannot distinguish between
t’ and (¢ — t'), and consequently imply that the error
is the same for all the combinations of (+ — ¢') and ¢’
that yield the same valueof £ = (¢/ ~" + &) (¢t — ¢')".
Consider, e.g., that measurements on a given concrete
are made only for the age at loading ' = 28 days and
terminate at load duration ¢t — ¢’ = 60 days. Then, for
n=Y%,m= 0.3, and @ = 0.05, the corresponding £
is 0.520. For ¢’ = 1000 days, the same £-value is
reached at (¢t — ¢t') = 5835 days. At these times, the
standard deviation of J is supposed to be the same ac-
cording to the present model, while obviously it should
be much larger than for 1’ = 28 days and (¢t — ¢') =
60 days if all measurements were confined to ¢’ = 28
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days. Thus, if the measurements for a given concrete
are limited to a narrow range of ¢’ and cover a broad
range of (¢ — t'), extrapolation in ¢’ has a larger error
than the present model would predict. This problem
may be overcome by using separate variables for t —
t’, as in Eq. (32) and (33), but here again the difficulty
is to obtain the prior statistical information for such an
approach.

Various other creep prediction formulas may be
brought to the linear two-variable form of Eq. (1) or
Eq. (32). This includes Branson’s formula used in the
ACI Committee 209 recommendation® as well as the
log-double power law® and the triple power law'® —
laws that represent an improvement of the double
power law for basic creep. The present method of anal-
ysis is applicable for all these laws; the only change
needed is to redefine £.

Further interesting questions arise with regard to the
effect of reduced time £ on the statistics. For example,
in Eq. (8) for the likelihood function, standard varia-
tion o is considered independent of £. However, it
might be also reasonable to assume that ¢ = o J(§)
where w is a fixed coefficient of variation andJ(£) is the
mean of given data at £. This assumption would lead to
larger errors at large J and smaller errors at small J. A
similar question arises for the effect of ¢ on the statis-
tics of the prior. In Eq. (17) it was assumed that o,(£)
= w,Jo(§) where w, is fixed. Alternatively, one might as-
sume that ¢; is independent of £, in which case the
coefficient of variation w, would decrease with increas-
ing &. The present statistical data from creep testing do
not give a clear answer to these questions.

It should also be kept in mind that the statistical ap-
proach based on creep formulas is, in itself, a simplifi-
cation. The fundamental law governing creep is not an
algebraic formula but a certain evolution law described
by a differential or integral equation in time. Its proper
stochastic generalization is a random process in time.'®
This approach would be particularly appropriate under
general conditions of time variable stress (or tempera-
ture, pore humidity), and a combination of a random
process with Bayesian analysis would be a better treat-
ment of our problem.

Conclusions

1. For predicting creep (or shrinkage) in creep-sensi-
tive structures, it is important to carry out some short-
time measurements for the given concrete and then ex-
trapolate them to very long times by combining the
measured data with prior statistical information on
creep of concrete in general. This may be accomplished
using the Bayesian statistical approach.

2. The creep law needs to be linearized by introduc-
ing a certain reduced time combining the creep dura-
tion and age at loading.

3. The statistical variability of material parameters
for the prior may be determined on the basis of the sta-
tistical variability of the compliance values, which was
previously determined in a study of most test data from
literature, involving over 800 measured curves.
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4. The standard variation for the likelihood function
characterizing the given concrete may be estimated,
without a large set of measurements, on the basis of re-
cent statistical creep observations by Wittmann, Alou,
Cornelissen, and Reinhardt.

5. A certain transformation of variables permits de-
termining the posterior (updated) probability density
distribution of material parameters by integrating nu-
merically with the help of Hermite-Gaussian formula.

6. A strong improvement in the mean longtime pre-
diction can be achieved by the Bayesian approach even
if only a few short-time measurements are made, pro-
vided that they do not greatly differ from the mean of
the prior. Extending the measurements in time does not
bring too much further improvement in the mean long
time prediction, but it significantly further reduces the
coefficient of variation of the longtime prediction.

7. When the measured short-time data lie outside the
50 percent probability band of the prior, Bayesian use
of the prior greatly modifies the longtime extrapolation
compared to that obtained by statistical regression of
measured data alone.
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