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Size Effect in Shear Failure of Longitudinally Reinforced Beams

by Zden&k P. BaZzant and Jin-Keun Kim

Consequences of recent fracture mechanics studies of concrete for
analyzing diagonal shear failure of longitudinally reinforced beams or
one-way slabs without shear reinforcement were studied. The crack-
ing produced by shear was assumed to propagate with a dispersed
zone of microcracks at the fracture front. Dimensional analysis of the
energy release rate then shows that the nominal shear stress at fail-
ure should not be a constant but should vary as (1 + d/d, A,)", in
which d = beam depths, d, = maximum aggregate size, and A, =
constant. For relatively small beams, representing the great majority
of those tested in the laboratories, the nominal stress at failure is
nearly constant; however, for much deeper beams it considerably de-
clines with increasing size. This trend is confirmed by previous exper-
imental results. In addition to the size effect, a rational formula for
the effect of steel ratio and shear span is derived. Comparisons with
existing test data involving nearly 300 tests indicate that, compared to
the formulas in the current building codes, the coefficient of varia-
tion of deviations from the formula is reduced to less than one-half.

Keywords: beams (supports); building codes; cracking (fracturing); dimen-
sional analysis; failure; reinforced concrete; shear properties; statistical analy-
sis; structural analysis.

STATEMENT OF PROBLEM

Predicting brittle failures of concrete structures due
to tensile cracking of concrete is much more difficult
than predicting ductile failures. The diagonal shear
failure of longitudinally reinforced beams and one-way
slabs without shear reinforcement is a good example.
Although great progress has been achieved in various
theoretical studies'® and extensive experimentation, 8%
the scatter of the deviations of test results from the
formulas in current building codes is enormous (see
Fig. 7.13 in Reference 29) and is much larger than the
scatter of tensile strength or fracture energy.

The current formulas are based on the concept of ten-
sile strength. However, this concept is theoretically jus-
tified only in the case of ductile failures governed by
the theory of plasticity. For failures in which the stress
decreases after reaching the strength limit, as is the case
for tensile cracking, the strength concept is inconsistent
when applied in a continuum analysis. For example, fi-
nite element analysis of cracking based on the strength
criterion can exhibit a strong spurious dependence on
the choice of mesh size.’**' As is well known from frac-
ture mechanics, a theoretically consistent approach
must be based on an energy criterion of failure.
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Having realized this fact, Reinhardt”* recently ana-
lyzed certain test data for diagonal shear failure on the
basis of the classical (linear elastic) fracture mechanics
and found a relatively good agreement with these test
data. However, when some other available data are
considered, the agreement with the linear elastic frac-
ture mechanics is not very good and does not seem
much better than for the strength criterion. This is not
surprising, since the linear elastic fracture mechanics
has been found to be inapplicable to concrete, as dem-
onstrated, e.g., by Naus and Kesler.

The last few years, however, witnessed an increased
interest in basic studies of concrete fracture, and a new
form of fracture mechanics which appears applicable to
concrete has emerged. This new approach does not
treat fracture as a point phenomenon, but recognizes
that in brittle heterogeneous materials such as concrete
the fracture propagates with a relatively large fracture
process zone in which progressive microcracking grad-
vally reduces the tensile stress to zero.*3® The aim of
this paper is to explore the consequences of this new,
nonlinear fracture mechanics for diagonal shear fail-
ure. The main purpose of fracture mechanics is the
prediction of the effect of structure size, and it will be
seen that a considerable improvement can be brought
about in this regard.

STRUCTURAL SIZE EFFECT IN FRACTURE

The structural size effect may be illuminated by con-
sidering structures of different sizes but geometrically
similar shapes, e.g., beams of the same steel ratio and
the same ratio of depth to shear span. The strength cri-
terion may be stated as oy = f, where f/ = direct ten-
sile stength of concrete and o,, = nominal stress at fail-
ure. For reasons of dimensionality, oy = cyP/bd where
P = given load, d = characteristic dimension of the
structure,-e.g, the depth of beam, b = thickness, and
¢y = constant. Thus, if one considers the plot of log gy
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versus log d (Fig. 1), the locus of all failure states is a
horizontal line, regardless of whether one uses elastic,
plastic, or some other strength-based analysis. The only
difference between these types of analysis is the level at
which the horizontal line is to be drawn. Fig. 1 shows
examples for some elementary situations, such as bend-
ing, shear, and torsion of unreinforced beams.

For linear elastic fracture mechanics, the size effect
is completely different. As is well known,’2* ¢, varies
inversely as v/d , so the plot of log o, versus log d is a
straight line of slope - ¥2; see Fig. 1. However, except
for extremely large structure sizes, this size effect is
generally too strong for concrete structures, as the sub-
sequent analysis will confirm.

Due to the dispersed nature and progressive devel-
opment of cracking in concrete, the structural size ef-
fect may be described as®

1 d
oy = floN), o) = T <>\ = ;) e))

in which d, is the maximum aggregate size, \ is a rela-
tive structure size, and A, is an empirical constant. The
foregoing equation may be derived for various simple
+ situations and may be also deduced in general by di-
mensional analysis based on a hypothesis characteriz-
ing the dispersed nature of cracking***' (See Appendix).
For structures of a small size relative to the size of
aggregate, i.e., for small A, the value of A/)\; in Eq. (1)
may be neglected in comparison to unity, and then we
have ¢(\) = 1 and oy = f/ = constant. This indicates
that the strength criterion (horizontal line in Fig. 1) is
correct for small size structures, which happens to be
the case for most structures tested in laboratories. For
structures of a very large size compared to the size of
aggregate, 1 may be neglected in comparison to N/, in
Eq. (1), and then o, = f/ (\/\,)*, which is the size ef-
fect of linear elastic fracture mechanics described by the
inclined straight line in Fig. 1. Obviously, Eq. (1) rep-
resents a gradual transition from the strength criterion
for small structures to the linear elastic fracture me-
chanics for very large structures. For A < A, the
strength criterion dominates, and for A > A, the frac-
ture mechanics aspect of failure dominates.
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Fig. I — Illustration of size effect according to various
theories

EFFECT OF STEEL RATIO AND SHEAR SPAN

Eq. (1) could now be combined with some existing
formula for the diagonal shear failure and compared to
test data. However, the huge scatter of the data is due
not only to the size effect, but also to the manner in
which other factors, such as the steel ratio p and the
shear span a (Fig. 2) are taken into account. Thus, to
derive full benefit from a better formulation for the size
effect, we should also try to improve the analysis for
other influences. For that purpose we will try to use
some rational, albeit crude and simplified, arguments.

Consider the end segment of a beam shown in Fig.
2(a), in which a constant shear force V acts throughout
the shear span a. In general, the shear span may be de-
fined as ¢ = M/V where V = shear force, and M =
bending moment in the same cross section. The bend-
ing moment at any distance x from the support may be
expressed as M = Tjd where d = depth of the beam,
T = T(x) = tensile force resultant acting at the cen-
troid of longitudinal reinforcement, and j = j(x) =
variable coefficient. The shear force may then be ex-
pressed as V' = dM/dx, and the derivative of the prod-
uct may be written as a sum of two terms

dT dj
VeV +V, V,==jd v,=2L 1 @
dx dx

As known from various preceding studies,” component
V, is due to a composite beam action and arises from
the transmission of a tensile force into the steel bars by
means of bond stresses, and component V, represents
what is known as arch action, since it arises from an
arch-like variation in the height of the location of the
compressive resultant C = T.
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Fig. 2 — Notation for the analysis of diagonal shear

We need a simple description of the function j(x),
and choose for this purpose

Jj=J Gﬂr 3)
a

in which j, is a constant, defining the location of the
compression resultant C at the end of the shear span, x
= a. According to the classical bending theory of rein-
forced concrete beams with only tensile reinforcement
and with a negligible tensile capacity of concrete, we
would have
Jo=1-= Y(c/d), c¢/d= (n*p* + 2np)¥2 — np (4)
in which p = steel ratio, n = E/E, = ratio of elastic
moduli of steel and concrete, and ¢ = depth to neutral
axis at x = a. Eq. (4) is, however, unnecessarily com-
plicated and may be replaced by the following simpler
expression

Jo=kp" &)

in which k£ and m are certain constants. These con-
stants can always be chosen so that the values given by
Eq. (4) and (5) are almost undistinguishable; see Fig. 3.
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Fig. 3 — Comparisons of two formulas for the effect
of steel ratio on the arm of internal forces

For the composite beam action contribution, we may
express the rate of change of the tensile force T in terms
of the bond stress u, transmitted from concrete to the
steel bars, i.e., dT/dx = ¢, (x £ D,u,), in which ¢, =
some constants, and £ D, is the sum of the diameters
of all bars in the cross section. This relation expresses
the equilibrium condition of a unit segment of the steel
bar in the longitudinal direction. If the concrete cross
section is kept the same and the amount of reinforce-
ment is varied, L D, is proportional to v/p. Further-
more, the ultimate bond stress is roughly proportional
to f!? where ¢ = 0.5, so we have dT/dx = ¢, Vp f.%,
in which ¢, is some constant. Substituting into Eq. (2),
we thus get

Vi = kp*"fobd 6

To express the arch action contribution to shear, we
may set T = o, pbd, and substituting into Eq. (2) we
obtain

or/x\ "M
Vo=Jo — —> o, pbd? @)
a\a

Experience shows that the diagonal shear failure hap-
pens by inclined cracks whose horizontal projection
roughly equals beam depth d. This suggests taking x =
d as the critical cross section for arch-action shear, and
Eq. (7) then reduces to

AN
V, = jor <;> o,pbd ®3)

Considering the steel stress o, as constant, and substi-
tuting Eq. (5), we further obtain

1-m

(a/dy

V, = ¢ bd ®

in which ¢, is some constant.
Finally, summing the contributions from composite
beam action and arch action, V = V| + V,, and calcu-
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lating the nominal shear stress at failure as v = V/bd,
we acquire the formula

Vo > (10)

(a/dy

in which k, = ¢,/k,. This formula is similar to that used
in the ACI Code,* but it is to a greater extent based on
mechanics analysis and contains more empirical pa-
rameters to be found from test results; these parame-
ters are kK, k»,, p, g, and r.

The foregoing analysis did not take into account the
size effect appropriate for brittle failures due to con-
crete cracking. According to Eq. (1), we should there-
fore multiply the nominal shear stress at failure by
function ¢(N\) ensuing from dimensional analysis of the
energy release by fracture. Thus, we finally obtain the
formula

, /3 d\*
v==FKkop <fc"’ + k, (a/d)’) <1 + )\od,> (1)

in which A, represents an additional empirical parame-
ter.

v = klpp<f:' + Ky

STATISTICAL ANALYSIS OF EXISTING TEST
DATA

Shear failure of beams is one problem for which ex-
tensive statistical information has been accumulated
over the years. This statistical basis was exploited by
Zsutty®®* for the development of a very simple predic-
tion formula, the best one proposed up to now. His
statistical analysis, however, did not particularly cover
the size effect and was made before some of the impor-
tant test results on the size effect became available. Eq.
(11) proposed here has been compared to essentially all
important experimental evidence, both that with regard
to the effect of steel ratio, shear span, and concrete
strength, and the more limited one with regard to the
effect of size (beam depth). The test data used included
those of Moody et al.,'” Diaz de Cossio et al.,?
Mathey,"” Van den Berg,”” Taylor,” Rajagopalan,?
Kani,'*" Leonhardt and Walther,'* Walraven,?® Tay-

lor,? Riisch et al.,* Bresler and Scordelis,!® Krefeld and
Thurston,’s Bhal,® Mattock,' Placas and Regan,? and
Swamy and Qureshi.”

First consider the size effect, i.e., the effect of d/d,
at constant a/d, p, and f!. The necessary data, requir-
ing tests of geometrically similar beams of different
depths, have been generated by Kani, Leonhardt and
Walther, Walraven, Taylor, Riisch, Bhal, and Swamy.
For geometrically similar beams, Eq. (11) may be writ-
ten as (in Fig. 5, C, appears as C)

d \"
= l - 12
v = C < + Xod,.> | (12)

in which C, is a constant. This may also be rearranged
to the following linearized form

C? 1 d 1 1 1 d
— =14 - — - = T+ — (13
or 14 C? Ao d, (13

The latter of these equations yields C,~*as the vertical
axis intercept, and C,"%/)\, as the slope of the regres-
sion line. Data that exist for one particular concrete can
be easily and very closely fitted with Eq. (13), as ex-
emplified in Fig. 4 for Walraven’s and Kani’s test re-
sults, This plot clearly indicates that the size-indepen-
dent strength criterion, currently implied in code for-
mulations, contradicts experimental evidence. So does
the linear fracture mechanics, which corresponds in
Fig. 4 to the straight line of slope - Y.

None of the available data for one particular con-
crete and fixed p and a/d are, however, sufficiently ex-
tensive to allow statistical analysis. For that purpose, all
the aforementioned available data for the size effect
must be analyzed collectively. This cannot be done by
linear regression alone, since coefficients A, p, g, and r
of Eq. (11) are involved nonlinearly. Trial and error
approach coupled with nonlinear optimization (Mar-
quardt-Levenberg algorithm)* has been used to de-
termine the optimal values of these coefficients. The
optimum fit of the data, achieved with Eq. (11), is
shown in Fig. 5(a) as the linearized regression plot [Eq.

a/d=3
p=08 X
1, =4000 (pst)

(a) Walraven
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{

o
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Fig. 4 — Comparison of Eq. (11) to Walraven’s and Kani’s test results
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Fig. 5 — Comparison with existing test data for beams of different sizes

(13)], and in Fig. 5(b) as the plot of the logarithm of
the nominal shear strength versus the logarithm of rel-
ative size d/d,. Due to combining test data for differ-
ent concretes, different beams, and from different lab-
oratories, the scatter is now much larger; however, the
size effect is clearly confirmed. The strength criterion,
implied in the current design approach, would corre-
spond to a horizontal line in both Fig. 5(a) and 5(b),
which would obviously contradict the test data. On the
other hand, a straight line of slope — 2 in Fig. 5(b)
would give too strong a size effect, in clear disagree-
ment with test results.

Note also that if the range of beam sizes were re-
duced to about one-half, no clear size effect would be
apparent and the strength criterion would represent the
data for the smaller beams as well as the present the-
ory. This accentuates the need of testing beams of
widely different sizes if any evidence on the size effect
should be obtained. Fig. 5(b) also brings to light the
gradual transition from a strength criterion that applies
for small beams to a linear fracture mechanics criterion
that would no doubt be applicable to very large beams.

To obtain more extensive evidence, and also to ver-
ify the dependence on p, a/d, and f/, numerous further
data were included, although each of them, taken
alone, provides no information on the size effect as
such. In their majority, these further data correspond
to the smallest beams admissible for a given aggregate,
and thus they cannot be expected to strengthen the evi-
dence on the size effect. The values of all six coeffi-
cients in Eq. (11) have been optimized with regard to
this complete statistical evidence, and the results have
been plotted as the measured value of nominal shear
strength v, versus the value given by the optimized for-
mula [Eq. (11)]. If the formula were perfect, the plot
would have to be a straight line of Slope 1, passing
through the origin. Thus, the deviations from a straight
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line plot represent the errors. A plot of this type is
shown, for the proposed Eq.(11), in Fig. 6(d). The
standard deviation of the vertical errors with regard to
the regression line, and the correlation coefficient r, are
listed in the figure. It should be mentioned that the val-
ues of f. were considered in psi (1 psi = 6895 Pa), and
that the cubic strength of concrete f,. (f..is in psi), when
indicated, was converted to the cylindrical strength ac-
cording to the formula f/ = [0.76 + 0.2 log (f../
2840)] 1...»

As a result of all these statistical comparisons, the
following formula is proposed for the mean ultimate
nominal shear strength

10¥p
= ——YP T Nj 51 (14
v, T d/33d, NFf! + 3000 vp/(a/dy] (14)

For the sake of comparison, the formulas used in
ACI Standard 318-77% and in the CEB-FIP Model
Code 1978 have also been used to fit these data. How-
ever, the coefficients of these formulas had to be dis-
regarded because they are not intended to give the mean
values of the ultimate nominal shear strength but the
values for the initiation of cracking. These formulas
may be written as

<
I

Min <k, N+ ko %1, 3.5 \/f> (ACI) (15)

u

v =k Tpa k(1 + k; p) (CEB-FIP) (16)
in which f! and v for ACI are in psi, v and 7, for

CEB-FIP are in MPa and

v.d
V.d = 4 for a > 2d,
a-d u
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Fig. 6 — Comparison of various formulas with the bulk of the existing test data on

the ultimate shear strength

tes = 0.01 f, + 0.06 for f,, < 20

Teq = 0.008 f, + 0.1 for f,, > 20 (17
k = Max(1.6—d, 1)
p = Min(A4,/bd, 0.02) for CEB-FIP

In Eq. (17), d is in meters, but f, in the present form
must be given in MPa. Coefficients k, and k, in these
formulas have been optimized to obtain the best fit of
all the 377 data points. The resulting optimum fits are
shown for the ACI and the CEB-FIP formulas in Fig.
6(a) and (b), and the values of the optimum coeffi-
cients are listed for these formulas as well as the pres-
ent model in Table 1. The scatter apparent from these
figures and quantified by the values of standard devia-
tion and the correlation coefficient in these figures is
obviously much larger than the scatter for the pro-
posed formula, especially in the case of CEB-FIP for-
mula. It must be kept in mind, however, that these for-
mulas are not intended to give the ultimate strength but
the initiation of diagonal shear cracking (as loosely as
it may be defined).

The best previous formula is doubtless that of
Zsutty,*® which reads

el (18)
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Table 1 — Coefficients obtained by nonlinear
regression for v,

Number of
available
Model test data k, k, [N P q r
ACI 318-77 377 1.64|7423
CEB-FIP 377 1.31({54.7
Zsutt a/dz2.5 296 58.4 0.38 0.35 {0.28
Y\ a/d<25 81 7829 0.554| —0.0057(1.50
Proposed model 296 7.23(32842510.29 0.52 |2.51

in which k,, r, p, and g are four empirical constants.
The values of these constants have been optimized
again to obtain the best possible fit of the 377 data
points used in Fig. 6. The resulting plot is shown in Fig.
6(c). It may be noted that this formula agrees with the
data nearly as well as the proposed formula. However,
the size effect evidenced in Fig. 5 is not modeled by this
formula, although it could be introduced by multiply-
ing the formula with the function ¢(\). Note also that,
in contrast to the present formula, Zsutty’s formula is
purely empirical, not based on some mechanics analy-
sis.

As another useful statistic, one may consider the
population of the values of Y = (v,(o/v) — 1, in which
v,y is the calculated value and v, is the measured value
of nominal shear strength. These values are plotted as
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a function of the logarithm of relative size in Fig. 7.
The proposed formula [Fig. 7(d)] appears best. Zsut-
ty’s is nearly as good, although it does not reflect the
declining trend of the data as a function of d/d,, ap-
parent from Fig. 7(c) as well as Fig. 7(d). The scatter
for the ACI formula [Fig. 7(a)] is much larger, and
even more so for the CEB-FIP formula [Fig. 7(b)]. De-
spite this larger scatter, a declining trend with regard to
the size is noticeable in Fig. 7(a) and (c).

DESIGN PHILOSOPHY: CRACK INITIATION OR
FAILURE?

The philosophy of the present design codes is to
achieve a certain safety not against the ultimate load in
diagonal shear failure but against the load for which
the initiation of diagonal shear cracks is observed.
Therefore, comparisons have also been made with the
(much less numerous) available test data on the nomi-
nal cracking shear stress v.. Fig. 8 shows such a com-
parison in terms of the measured v, against the calcu-
lated v,., as obtained by optimizing the coefficients in
the formula in Eq. (11), (15), (16), (17), and (18). (Note
that all the existing test data for the initiation of diag-
onal shear cracking are confined to the values of d/d,
between 10 and 24.) In Fig. 8 the proposed type of for-
mula again gives the best agreement with test data, al-
though only slightly better than Zsutty’s formula. The
improvement compared to the ACI formula is, in terms
of v., not very significant, but it is more significant
compared to the CEB-FIP formula. The values of the
optimized coefficients used in plotting Fig. 8 are listed
in Table 2.

The statistics for the nominal cracking shear stress v,
may also be worked out for the variable ¥ = (v,./ V)
— 1. These values are plotted for all the four formulas
against the logarithm of the relative size d/d, in Fig. 9.
It is apparent that, for crack initiation, the size effect is’
much less pronounced, nearly undetectable. In fact, for
the true crack initation, the size effect should be non-
existent, since the beams do not contain any initial
stress concentrator (a notch). The fact that any size ef-
fect seems to be apparent indicates that the observed
values of v, did not in fact correspond to the true crack
initiation, which, of course, is very difficult to define as
the cracking begins by a gradual formation of invisible
microcracks.

The fact that no significant size effect on the nomi-
nal shear stress at cracking is observed while at the
same time the size effect is clearly confirmed by tests of
the ultimate nominal shear strength raises a question
with regard to the present design philosophy of design-
ing against crack initiation rather than ultimate failure.
Since the ultimate value of » decreases with size, there
obviously exists a certain sufficiently large size for
which the ultimate » ceases to be larger than the value
of v for crack initiation. This is, of course, natural to
expect. It is known from nonlinear fracture mechanics
that the strength reserve due to stable crack growth be-
comes smaller as the size increases and vanishes when a
certain size is exceeded.

Thus, designing against the crack initiation rather
than ultimate failure does not assure a uniform safety
margin. The safety margin decreases with increasing
d/d,, and for a sufficiently large d/d, the safety margin
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initiation of diagonal shear cracking

must become completely wiped out. Therefore, in the
writers’ opinion, the design approach in the codes
should be changed to one based on safety against ulti-
mate failure, or even better, a combination of both cri-
teria.

The aforementioned insufficient safety margin for
very large beam sizes cannot be, however, detected
from the available experimental evidence. For the di-
agonal shear failure, and even more so for other types
of brittle failure such as punching shear, torsion, etc.,
the available experimental evidence is confined, in its
majority, to structures of about the smallest size that is
admissible with the given aggregate. Actual structures
are, however, for the most part, of a much larger size.
The extrapolation from tests on small size structures to
much larger actual structures is, of course, the main
purpose of fracture mechanics, since testing of very
large structures would hardly be economically feasible.

PROPOSED DESIGN FORMULA

In view of the shortcomings of a design based on the
shear stress at crack initiation, a design formula should
be obtained by appropriately scaling down the formula
for the mean ultimate strength [Eq. (14)]. The scaling
down should be such that for smaller beam sizes the
safety margin should be about the same as for the pres-
ent ACI formula. To get an idea of the safety margin,
we plot in Fig. 10(a) all 296 data points in comparison
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Table 2 — Coefficients obtained by nonlinear
regression for v,

Number of
available
Model test data k, k, Nl P q r
ACI 318-77 184 1.79 | 5429
CEB-FIP 184 1.28 ) 49.8
Zsutty 184 64.7 0.3810.330.29
Proposed model 118 109 | 400 [25{0.30(0.47[1.24

to the ACI formula; the ordinates represent the mea-
sured values of v, at the ultimate state, and the abscis-
sas the values predicted by the ACI formula [Eq. (15)].
Perfect agreement would correspond in Fig. 10 to a
straight line of Slope 1. The huge scatter in Fig. 10(a)
is due to the fact that a comparison to ultimate load
data is now being made for a formula originally devel-
oped for crack initiation rather than failure. An even
larger scatter is seen in a similar plot [Fig. 10(b)] based
on Eq. (16) for the CEB-FIP formula. From Fig. 10(a)
and 10(b) we see that the present design formulas pass
near the lower limit of the existing data points, al-
though some data points lie, disturbingly, well below
the formula [Fig. 10(a),(b)], especially for the ACI for-
mula [Fig. 10(a)].

Various scaling factor values have been tried with
Eq. (14) to determine the value for which only a few
data points would lie below the formula, and only
slightly below it. This led to the following design for-
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mula, which is proposed here as a replacement for the
present code formulation of ACI or CEB-FIP

8 3
y = —\/~p_—<\/_f; + 3000 /£>
f d o’
1 + —
25d,
v.d
itha = — 19)
with o M, (
Here o = a/d for the case of concentrated load (Fig.

2), and o = {£/4d for that of uniform load (here f! must
be in psi). This formula is shown by the straight line in
Fig. 10(d). Unlike Fig. 10(a), no data points fall signif-
.icantly below this formula. Note that the band of data
points based on this formula becomes much narrower
than for the present code formulations [Fig. 10(a),(b)]
and is also somewhat narrower than for Zsutty’s for-
mula shown in Fig. 10(c). This formula was also scaled
(replacing k, in Eq. (18) by k, = 0.75k,) so that only a
few data points would lie below the formula.

The fact that no data points in Fig. 10(d) for the
present formulation lie high above the straight inclined
line means that the proposed formula is overall eco-
nomic. The economy may be quantitatively character-
ized by factor ¢, = L, A/ny where ¥ = ordinate of data
centroid, A; = vertical deviation of data points from
the straight line (i 1,2,. . .n),and n = number of
all points. Only the points lying above the straight line
are counted. The smaller is ¢,, the better the economy.
Calculations yield ¢, = 0.595, 0.844, 0.448, and 0.290
for Fig. 10(a), (b), (¢), and (d), respectively. The num-

bers of points that lie above the inclined straight line
are n = 249, 289, 286, and 286, respectively.

Fig. 11 shows the same comparisons as Fig. 10, but
in different variables. The ordinates are, similarly to
Fig. 9, the values of Y = (v,/v,y) — 1. The compari-
sons lead to similar conclusions as Fig. 10. (Note that
only 25 data points of the 77 data points of Kani” are
plotted in Fig. 7 and 11, although all data points agree
with the formula well; this is because they all refer to
the same beam size and are all crowded in such a small
spot that they could not be graphically distinguished.)
From Fig. 11(a) we see that the points laying signifi-
cantly below the ACI formula correspond indeed to
large beam sizes, which again confirms our previous -
argument about the size effect and how it affects the
safety margin.

REMARK ON THE EFFECT OF SHEAR
REINFORCEMENT

It is certainly a reasonable design approach to as-
sume, as is done in current codes, that the ultimate load
in presence of shear reinforcement (stirrups) is a sum of
the ultimate load in absence of the shear reinforcement
plus the additional capacity due to the shear reinforce-
ment alone, obtained by plastic analysis. This ap-
proach, however, is not as easy as it might seem, since
the presence of shear reinforcement mitigates the size
effect, as shown in Reference 34 by a similar dimen-
sional analysis. No meaningful experimental evidence
seems to be available for the size effect in presence of
shear reinforcement. It is, nevertheless, theoretically
evident that the reduction in the loss of safety margin
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Fig. 11 — Same comparison as in Fig. 10, plotted in a different variable
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with the increasing size, which has been demonstrated
here for the presently used strength-based formulas for
the cracking nominal shear strength, may be consider-
ably milder or even insignificant when shear reinforce-
ment is present. This question is of great interest for
very large structures and calls for further investigation.

IMPLICATIONS FOR PLASTICITY ANALYSIS

Recently, in an effort to replace purely empirical de-
sign formulas by some rational mechanics analysis, it
has become popular to apply plastic limit analysis not
only to ductile failures of concrete structures due to
yielding of reinforcement but also to brittle failures
due to failure of concrete. The results of the present
study shed further doubts on this approach. Plasticity
yields an incorrect size effect for the brittle shear fail-
ure of beams and is likely to do the same for other
brittle failures such as torsion of beams or punching
shear of slabs. This is, of course, not surprising since
the stress-strain relation of concrete has no yield pla-
teau and exhibits strain softening, which causes that the
limit stress state cannot exist simultaneously along some
postulated failure surface, as required by plastic limit
analysis, but is reached successively at various points of
the failure surface. ,

In some recent investigations it was concluded that
plastic limit analysis ‘‘works’’ for punching shear fail-
ures of slabs. However, to make it ‘“‘work,”’ the tensile
strength had to be considered to be 1/200 of the com-
pressive strength. This is about 20-times less than the
actual tensile strength. How can it be so low? A likely
explanation is the fracture mechanics size effect, and if
this is so it means that plastic limit analysis does not
work. Various apparent successes of plastic limit anal-
ysis of brittle failures of concrete structures, recently
presented in the literature, are likely due to the fact that
really large structures have never been tested and the
size effect has never been checked.

With the exception of conditions of very high hydro-
static pressure and of structures that fail primarily due
to yielding of reinforcement, plasticity is not the cor-
rect theory for concrete. Fracture mechanics, of the
proper type, is.

IMPLICATIONS FOR FINITE ELEMENT
ANALYSIS OF CRACKING

Finite element analysis based on the strength crite-
rion does not yield any size effect, i.e., it corresponds
to a horizontal line in Fig. 1 or 5(b) when failure loads
for geometrically similar structures, obtained with sim-
ilar meshes, are compared. The fact that the experi-
mental results in Fig. 5(b) disagree with the horizontal
line means that this type of finite element analysis can-
not be used for what is its main purpose, that is, to
predict the failure of a real size structure after calibrat-
ing the finite element code by means of laboratory-size
tests. Therefore, fracture mechanics-type cracking cri-
teria must be used for this purpose in finite element
codes. Not, of course, linear elastic fracture mechan-
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ics, because such finite element anlaysis would give the
size effect according to the straight line of downward
slope — 2 in Fig. 1 or 5(b), but nonlinear fracture me-
chanics. A finite element model of this type, which is
suitable for large-scale computation and leads to the
curved transition diagram shown in Fig. 1 or 5(b), has
been presented in References 35 and 33.

CONCLUSIONS

1. For diagonal shear failure of reinforced beams and
one-way slabs without shear reinforcement, it is appro-
priate to consider the size effect which theoretically re-
sults from a dimensional analysis of the energy release
rate in the propagation of fractures that have a dis-
persed cracking zone at their front.

2. A size effect of this type agrees with available test
data far better than either the lack of size effect corre-
sponding to the strength criterion or the size effect of
linear elastic fracture mechanics.

3. As a function of the ratio of beam depth d to
maximum aggregate size d,, the nominal shear strength
exhibits a gradual transition from the strength criterion
(which prevails for d/d, < 25) to an energy criterion
for fracture (which prevails for d/d, > 25). For ex-
tremely large beam depths, the size effect of linear
elastic fracture mechanics is approached asymptoti-
cally. Most of the existing test data are confined to the
range for which the strength criterion dominates.

4. The present practice of designing against the initi-
ation of diagonal shear cracks rather than ultimate
failure does not yield a uniform safety margin when
different beam sizes are considered, and the safety
margin becomes completely wiped out for a sufficiently
large size. From the viewpoint of the size effect, only a
design formula based on the ultimate failure load [Eq.
(19)] can provide a uniform safety margin against cat-
astrophic failure for all structure sizes.

5. A rational, mechanics-based formula for the ef-
fect of steel ratio and relative shear span can be ob-
tained by superimposing the shear forces transmitted by
composite beam action and by arch action. This yields
a formula which is similar to that presently used in ACI
code but is in better agreement with test data.
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APPENDIX

For readers’ convenience we summarize the dimensional analysis
from Reference 37 that leads to Eq. (1). To take the dispersed and
progressive nature of cracking at the fracture front into account, the
following hypothesis may be introduced: The total potential energy
release W caused by fracture in a given structure is a function of both
(1) the length of the fracture @, and (2) the area of the cracked zone
amd,.

Here m = material constant characterizing the width of the crack-
ing zone at the fracture front.* Under Part (1) of the hypothesis we
understand the part of energy that is released from the uncracked re-
gions of the structures into the fracture front.
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Variables @ and amd, are not nondimensional. They are, however,
allowed to appear only in a nondimensional form. This form is given
by the following variables

g - 20)
d da:

representing the nondimensional fracture length and the nondimen-
sional area of the cracked zone. Furthermore, W must be propor-
tional to volume d?b of the structure (where b = thickness) and to
the characteristic energy density ¢3/2E, in which oy = P/bd = nom-
inal stress at failure, P = given applied load, and d = characteristic
dimension of the structures. Consequently, we must have

1 P\?
= T\ 2 2 & (e2))
w 2. <bd> bad® f (o, o, §)

in which fis a certain continuous and continuously differentiable
positive function, and parameters £; represent ratios of the structure
dimensions characterizing the geometrical shape of the structure. For
similar structures, £, are constant. The condition for the fracture to
propagate is

114 .

— =G,b (22)
da

in which G, is the fracture energy, a material property characterizing
the energy consumed per unit extension of the fracture, per unit
thickness.
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Consider now geometrically similar structures, for which parame-
ter £, are constant and only the characteristic dimension d varies. Ac-
cording to the chain rule of differentiation, df/da = f, (3a,/da) + f,
(da,/da), in which we introduce the notation f, = df/dw,, f, = 9f/da,.
Thus, substitution of Eq. (21) into Eq. (22) yields
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Furthermore, the fracture energy may be expressed as the area under
the complete tensile stress-strain curve, including the strain softening
down to zero stress, times the width of the cracking front md*
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in which E, is the initial elastic modulus of concrete, E, is the mean
strain-softening modulus, which is negative, and f/is the direct ten-
sile strength of concrete. Substituting Eq. (24) and P = ¢, bd into Eq.
(23), we may obtain®’
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in which B = [(1 — E/E)/f,)"* and N\, = mf,/f,. B and A, are con-
stants when geometrically similar structures of different sizes are
considered. Thus, Eq. (25) proves our starting equation, Eq. (1).
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