CRACK SHEAR IN CONCRETE: CRACK BAND
MICROPLANE MODEL

By Zdenék P. Bazant,’ F. ASCE and Pietro G. Gambarova,® M. ASCE

AssTRACT: The crack band model is applied to the problem of crack shear in
concrete. The constitutive law for concrete within the crack band is provided
by the microplane model, in which the microstrains on weak planes of various
orientations (the microplanes) are assumed to conform to the same macroscopic
strain tensor, and the microstresses from all the microplanes are superimposed.
Due to the neglect of shear stiffness on individual microplanes, the material
behavior is completely characterized by the relation between the normal stress
and strain for each microplane. To simulate crack shear, the law for unloading
contribution on the microplanes after previous tensile strain-softening is im-
portant, since the shear stresses resisting crack shear, as well as the normal
confining stresses and crack dilatancy, result from compression along lines in-
clined with regard to the crack plane. A satisfactory agreement with the existing
results from shearing tests of cracked concrete blocks (i.e., aggregate interlock
tests) is achieved. Since the same type of model was previously shown capable
of modeling strain-softening in direct tensile tests, fracture of notched speci-
mens, and deflections of cracked reinforced beams, the present model appears
to have a general applicability. It can be applied to the shearing of cracks only
partially formed (a system of distinct discontinuous cracks still in the strain
softening stage), to cracks that are being produced simultaneously with shear-
ing, to crack shear when the direction of shearing within the crack plane ro-
tates, and to shearing of concrete intersected by cracks of various directions.
Thus, the model appears suitable for general finite element programs.

INTRODUCTION

In many types of failure, the carrying capacity of concrete structures
strongly depends on the transmission of shear stresses across cracks.
The capability of concrete to transmit shear stresses is substantial, due
to surface roughness (aggregate interlock mechanism). On the other hand,
the shear transmission capability is considerably less than that of intact
concrete, and deformations due to shear are much larger. Obviously, an
accurate mathematical model for the crack shear is needed for finite ele-
ment analysis of failures sensitive to crack shear, such as the diagonal
shear failure of beams and panels, horizontal shear failure of nuclear
containments due to earthquake, cryptodome failure of the top slab in
a concrete reactor vessel, punching shear failure of slabs, torsional fail-
ure of beams, etc.

Extensive experimental information has been acquired in various shear
tests of concrete blocks intersected by distinct, continuous cracks pre-
viously formed by tension (14,21,23,24,28,29,36). These test data serve
as the basis for development of mathematical models for crack shear,
describing the dependence of the shear and normal stresses transmitted
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across a crack on the relative slip and opening displacements (7,18,19,32).
From fracture studies it is now becoming clear, however, that distinct,
continuous cracks represent a rare, idealized situation [Fig. 1(a)], and
that a more typical practical situation involves shear loading on cracks
that are only partially formed, consisting of a band of discontinuous cracks
or microcracks [Fig. 1(b)].

A more general model, describing the shear of both fully and partially
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FIG. 1.—(a-g) Explanatory Sketches; (h—k) Uniaxial Stress-Strain Curves; and
(I-n) Assumed Elementary Material Properties
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formed cracks, is therefore needed. Evidently, such model should de-
scribe not only the shear transmission capability of existing cracks, but
also the process of formation of the cracks themselves. Development of
such a model is chosen as the objective of this study.

CRAck BAND THEORY

It is now generally accepted that fracture in concrete, as well as many
other materials, forms by progressive microcracking within a certain rel-
atively large fracture process zone at the fracture front. This process of
gradual microcracking may be described by a stress-strain relation that
exhibits tensile strain-softening, i.e., a gradual decline of the tensile stress
at increasing strain. The existence of tensile strain-softening was clearly
confirmed experimentally by Evans and Marathe (17), Petersson (30),
and others (20,22,33) (see also Reinhardt and Cornelissen, Cement and
Concrete Research, Vol. 14, 1984, pp. 263-270). Based on arguments of
objectivity and convergence of the mathematical model, as well as anal-
ysis of strain-localization instability, it was shown that the width of the
crack band at its front should be considered as a fixed material property
(3,13). The crack band model has made it possible to achieve good fits
of essentially all basic experimental data on the fracture of concrete, both
the maximum load data for various types of specimens and the resis-
tance curve (R-curve) data, and also the data from direct tensile tests of
unnotched specimens (16,37). From the analysis of these test data it also
appeared that the width of the crack band front should be taken three
times the maximum aggregate size for normal concretes. Furthermore,
the strain-softening stress-strain relation used here was further shown
to give good results for deflections of cracked reinforced concrete beams,
short time as well as long time (12).

In finite element modeling, the crack band is represented by a band
of cracked finite elements, having a single-element width at the front.
As in the original cracking model of Rashid (31), the cracks are assumed
to be continuously distributed, i.e., smeared over the element. The mul-
tiaxial constitutive law that includes strain-softening has been originally
formulated as a total stress-strain relation, analogous to the deformation
theory of plasticity. This formulation is, however, path-independent and
can be applied only to situations in which the principal stress directions
do not rotate substantially during the fracture formation, i.e., during
strain-softening. This limitation can be avoided by a more general ap-
proach, called the microplane model, which attempts to describe the
progressive formation of microcracks on weak planes of various orien-
tations within the material (9,11).

MicropPLANE MODEL

Strain-softening violates the basic hypothesis of the theory of plastic-
ity, usually expressed as Drucker’s stability postulate. The presence of
friction on microcracks and the degradation of elastic stiffness due to
progressive microcracking also invalidate Drucker’s postulate, as well as
the dual Ilyushin’s postulate for inelastic potential theory in the strain
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space. Thus, the theories that use loading surfaces and inelastic poten-
tials can hardly provide a good model for progressive microcracking.
Their use would be further complicated by the fact that the microcracks
cause the elastic stiffness to become anisotropic.

For these reasons, it appears preferable to describe the inelastic prop-
erties not globally but individually for planes of various orientations within
the material. The microscopic deformations on these planes, called the
microplanes, must be suitably constrained to the macroscopic defor-
mations. This approach brings about conceptual simplicity in that the
tensorial invariance restrictions, which greatly complicate the formula-
tion of the macroscopic inelastic constitutive laws, do not have to be
introduced in order to describe the behavior on a plane of specified ori-
entation within the material. The invariance restrictions are satisfied only
subsequently, by a suitable combination of planes of various orienta-
tions. For example, in the case of isotropy, each orientation must be
equally frequent.

The idea of defining the inelastic behavior independently on planes
of various orientations within the material [Fig. 1(e), and then in some
way superimposing the inelastic effects from all the planes, arose in the
work of Taylor (35) on plasticity of polycrystalline metals. Batdorf and
Budianski (2) developed this idea in their slip theory of metal plasticity,
in which the stresses acting on various slip planes are obtained by re-
solving the macroscopic applied stress, and the plastic strains (slips) from
the planes of all directions are then superimposed. A similar superpo-
sition of inelastic strains was used in the so-called multilaminate models
of Zienkiewicz et al. (38) and Pande et al. (26,27), and in many works
on plasticity of polycrystals.

To model the tensile strain-softening of concrete due to microcracking,
it is necessary, however, to modify these approaches in that the micro-
structure is constrained kinematicaily rather than statically, i.e., the strains
on planes of various orientations are the resolved components of the
same macroscopic strain, instead of stresses on planes of various ori-
entations being the resolved components of the same macroscopic stress.
A model of this type has recently been developed by Bazant and Oh (9)
and has been shown to match well the available test data from direct
tensile tests. The basic assumptions of this model may be summed up
in the following 2 hypotheses:

Hypothesis I.—The normal microstrain, e, , that governs the progres-
sive development of cracking on a microplane of any orientation is equal
to the resolved macroscopic strain tensor, e;, for the same plane, i.e.,

€, = ninje,-i .................................................... (1)

Here, latin lower case subscripts refer to cartesian coordinates x; (i = 1,
2, 3); n; are the direction cosines of the unit normal i of the microplane;
and repeated latin lower case subscripts indicate a summation over
1,2, 3.

Hypothesis II.—The stress relaxation due to all microcracks normal to
il is characterized by assuming that the microstress, s,, on the micro-
plane of any orientation is a function of the normal microstrain, e,, on
the same plane, i.e.,
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The factor 27/3 is introduced just for convenience.

Compared to the slip theory of metal plasticity, Hypothesis II differs
by dealing with normal rather than shear components, and Hypothesis
I by involving strains rather than stresses. There are 3 reasons for Hy-
pothesis I:

1. Using resolved stresses rather than strains on the microplanes would
cause computational problems for strain-softening, since two strains cor-
respond to a given stress, but only one stress corresponds to a given
strain.

2. The microstrains must be stable when the macrostrains are fixed.
It has been experienced numerically that, in the case of strain-softening,
the model becomes unstable if resolved stresses rather than strains are
used in Hypothesis 1.

3. The use of resolved strains, rather than stresses, seems to describe
better what is happening in the microstructure of a brittle aggregate ma-
terial. The use of resolved stresses is reasonable for polycrystals in which
local slips scatter widely, while the stress is more or less uniformly dis-
tributed throughout the microstructure. By contrast, in a brittle aggre-
gate material consisting of hard inclusions embedded in a weak matrix,
the stresses are far from uniform, having sharp extremes at the locations
where the surfaces of aggregate pieces are nearest. The deformation of
the thin contact layer of matrix between two aggregate pieces, which
yields the major contribution to inelastic strain, is determined chiefly by
the relative displacements of the centroids of the two aggregate pieces,
which roughly correspond to the macroscopic strain. The microplanes
may be imagined to represent mainly these thin contact layers of matrix
and the bond planes between adjacent aggregate pieces, in which the
microcracking is concentrated [Fig. 1(e)].

In Hypothesis II, shear stiffness on an individual microplane is ne-
glected, and the overall shear stiffness of the microplane system is ob-
tained entirely from the normal stiffnesses on the microplanes, i.e., from
changes of distance. This hypothesis has the advantage of simplicity. A
more sophisticated microplane model that takes into account the shear
stiffnesses and inelastic slips on individual microplanes has been de-
veloped in a parallel study (5). It is needed, however, only for triaxial
compressive failures and seems too complicated for the present purpose.

Let us now outline the derivation of stiffness matrix made in Ref. 9.

Equilibrium conditions may be expressed by means of the principle of
virtual work:

4
BW* =S ms;de; =2 fs Sudenf(M)dS ... (3a)

in which S represents the surface of a unit hemisphere; the factor (4m/
3) = the volume of a sphere of radius 1; and dS = sin $d0d [Fig. 2(f)].
Note that the integration need not be made over the éntire surface of
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the sphere, since the values of s,, as well as e, , are eqyal‘at any two
diametrically opposite points on the sphere. Function f), mtroglucmg
the relative frequency of the microplanes of various orientations, 7, char-
acterizes the initial anisotropy of the material. For concrete, initial iso-
tropy may be assumed, and then f (1) = 1.

Substituting Egs. 1-2 into Eq. 3a, we get

2 ds, .
?ﬂs,78eii=J;aninjﬁe,ff(n)ds ................................ (3b)
and because this must hold for any 3e;, we must have
3 2w w2 ds (4)
i=— o f)sinddddO ...
%1% om J; J; g, i/

Furthermore, according to Eq. 1, ds,, = (ds,./de,,) de, = (ds,/de,) ninmdee,
and thus, the differentation of Eq. 4 finally yields

dS,']' = ijkmdek,,, ................................................. (5)
2@ /2
3 ds, . .
inwhich Djm = —f f @ m = f (1) sin dd dd,
2’" 0 0 de,,

WIth  @n = MMMt e e e (6)

in which D%, = the tangent stiffnesses of the microplane system. Be-
cause the sequence of subscripts of Df, is immaterial, there are only 6
independent values of incremental stiffnesseg ' .
Considering elastic deformation of isotropic material, f(:l) = 1, one
finds that the matrix in Eq. 6 always yields Poisson ratio, v = 1/4, and
also E° = E,/2, in which E* is the Young’s modulus of the matenal., and
E, is the initial normal stiffness for the microplane. Since v = 1/4 is not
quite true for concrete, a correction is needed. This adjustment can be
made according to the following hypothesis. ‘ '
Hypothesis II1.—The total macroscopic s.tr.aln, €;, is a sum of astrgm,
e, due to the microplane system and additional elastic strain, €;, 1.e.,

e,','=e,']* +€‘;l' .................................................... (7)

According to this hypothesis, we may write 8W = o dey = 0;def +
0;8¢; in which o; = applied macroscopic stress. Summing the v1r'2uil
works due to 3¢} and 3¢ yields 3W = o7 Seg.- + s;de;, in which of =
stress corresponding to e/ . Since both expressions for W must hold for
any dej and any dey, it follows that s; = o =0y The superposition <_)f
strains according to Hypothesis III may be illustrated by the rheologic
model in Fig. 1(g). The coupling of the additional elastic ,element is in
Se?ﬁz compliances corresponding to the additional elastic strains, €5,
must satisfy isotropy conditions, and so

1 1 1
%hn:ﬁsijﬁkm-*-z_é—; (5,)(8]", _58,,8]0,,) ........................ (8)

in which §; = Kronecker delta; K* and G* are certain additional bul]_s z.:\r‘\d
shear moduli (constants), which cannot be less than the actual initial
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bulk and shear moduli K and G. For fitting of direct tensile test data and
fracture test data, it may be assumed that 1/G* = 0. Due to series cou-
pling, we may now write the incremental stress-strain relation as

405 = Dijondern, With [Djin] = [(D7 Yjow + Clin] ™ oo 9)

Lel“. us now determine the value of K* needed to achieve the desired
Poisson ratio, v, under the assumption that 1/G* = 0. Let superscripts
c aand a disti.nguish between the values corresponding to D, and
Clin - For uniaxial stress, we have €1 = 011/9K* + 0;1/E° and €, =

aut/9K“ — v'ou/EY, in which ey = —veyy, v° = 1/4. Solving for K*, we
get:
Ko = 1+v B - c

5o =) (for v=) oo 10)

We may now write €11 = (1/Ec)[0'11 - vc(()'zz + ag33)] + (1 9K Yoy, + ag;
+ o) = (LE(L + 591+ oss — vl 4 orgy, . 10K Nom * o

As a consequence, the microplane model describes the elastic behavior
of a material having Young’s modulus E under the condition that the
Young’s modulus of the microplane system is E° = [(1 + v9)/(1 + v)]E,
and that the initial normal stiffness of each microplane is E, = 2[(1 +
v)/(1 + v)]E.

In the modeling of direct tensile tests and tensile fracture, compressive
normal strains on any plane generally remain within the elastic range,
and no significant unloading occurs after tensile strain-softening. For such
behavior, it suffices to specify the stress-strain relation for the micro-
planes only for loading. It must describe cracking all the way to com-
plete fracture, at which s, reduces to zero. It is clear that s, as a function
of e, must first rise, then reach a maximum, and then gradually decline
to zero. We choose the final zero value to be attained asymptotically,
for 2 reasons: (1) No precise information exists on the final strain at which
$» = 0; and (2) a smooth curve is convenient computationally. The fol-

lowing expression was used in previous fitting of direct tensile tests and
fracture tests:

- ~(en/eof
R 11

in which E,, €,, and p = positive constants. For p, any value between
P =1and p = 2 seems acceptable. In this study, the values p = 1 and
€, = 0.23 x 1072 have been adopted [Fig. 1(k)]. For e, tending to zero,
Eq. 11 becomes, in the limit, $» = E,e,, which characterizes the elastic
behavior of the material (with v¢ = 0.25).

CRACK SHEAR MODELING

For the modeling of crack shear, we now propose to treat the cracks—
not only partially developed discontinuous cracks but also complete,
continuous cracks—as a crack band of a certain characteristic width, w
which is the same as that used for the modeling of tensile fracture of
concrete. Four distinct arguments can be offered for taking this approach.

1. Heteroge.ne'ity and Tortuosity: Due to the heterogeneous micro-
structure consisting of hard aggregate pieces embedded in a soft matrix,
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the actual stresses in the microstructure exhibit a huge statistical scatter,
and the stresses used in structural analysis can be interpreted only as
statistical averages of the actual stresses taken over a certain represent-
ative volume. As is known from the theory of randomly heterogeneous
media, the representative volume should be considered at least several
times the size of the inhomogeneity, i.e., the aggregate size. It thus can-
not make any significant difference whether the crack is modeled as a
line, perfectly straight, or as a smeared band (4). The same conclusion
follows when we consider crack roughness, i.e., the tortuosity of the
crack surface. The asperities on the crack surface are again roughly of
the size of aggregate, and so a band of one or a few aggregate sizes in
width represents the actual crack at least as well as a straight line.

2. Prior Microcracking: Even if attention is restricted to distinct, con-
tinuous, fully formed cracks, one should realize that the crack must have
been formed before. During its formation, concrete must have been mi-
crocracked over a zone wider than the aggregate size. Therefore, a band
of microcracks must exist on the side of a distinct continuous crack in
concrete.

3. Computational Convenience: The crack band model appears to be
computationally more convenient than the line crack model in the anal-
ysis of crack propagation by finite elements. When a line crack extends
through a certain node, the node must be split into two nodes. Con-
sequently, the total number of nodes increases and the topological con-
nectivity of the mesh is altered, which complicates programming for
propagating cracks. Moreover, if the direction of crack propagation is
not known in advance, the line interelement crack model requires mak-
ing trial calculations for various possible locations of the node ahead of
the crack front through which the crack should pass. The smeared crack-
ing approach, introduced by Rashid (31), avoids these difficulties. The
cracking is modeled simply by adjusting the elastic stiffnesses, and no
additional nodes need be introduced. Cracks of arbitrary direction can
be modeled with a fixed mesh, approximating them as a zig-zag crack
band (6).

4. Numerical Equivalence: It has been demonstrated for tensile frac-
ture, with both sudden stress drop and gradual strain-softening, that
the predictions of failure loads in fracture tests are about the same for
the sharp interelement crack and crack band models, provided the mesh
is not too crude (10).

How can the crack band model simulate the resistance to shear, and
in particular, the opening induced by shearing of the crack (dilatancy)?
We can illustrate it with the help of Figs. 1(b~d). Imagine starting with
an intact concrete block. A horizontal crack, modeled as a band [Fig.
1(b)], is produced by uniaxial tensile stress o, in the vertical direction,
which is simulated numerically by incrementing strain e through the strain-
softening range until o becomes almost zero. Subsequently, either a shear
stress 7 or a shear strain v, depending on the conditions of the simulated
stress, is gradually applied in small increments. Doing this, the normal
strain on the microplanes inclined +45° is increased [Fig. 1(c), right], and
50 s, remains close to zero on these microplanes. However, ¢, on the
microplanes inclined —45° is decreased [Fig. 1(c), left], and so contrac-
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tion (unloading) occurs on those microplanes. For contraction, the nor-
mal stiffness is nonzero and large.

Therefore, the shearing produces in the crack band a set of inclined
compression forces shown in Fig. 1(d). These inclined forces have a com-
ponent along the crack, which may be regarded as the crack friction,
and a component normal to the crack, representing the pressure op-
posing dilatancy. If such a pressure is not resisted by the support con-
ditions, then a simultaneous expansion (dilatancy) occurs so as to reduce
the normal force component to zero.

In the case of a continuous rough crack, the microplanes may be imag-
ined to mainly correspond to the planes of contact between aggregate
pieces, which have various inclinations with regard to the overall crack
plane. The increase in the number of inclined contacts caused by shear
slip corresponds to the stiffening due to unloading normal fraction of
the microplanes of —45° inclination, and the loss of contact for other
contact plane inclinations corresponds to further normal extension on
the microplanes of +45° inclination. It should be noted that there are
always many microcracks near a continuous crack, and the microplanes
also model these microcracks.

In contrast to the modeling of tensile fracture, the modeling of shear
obviously requires a realistic stress-strain relationship [Figs. 1(j—k)] for
unloading on the microplanes. The choice of this relationship is an em-
pirical matter, and after numerical experimentation with many types of
functions, the following stress-strain relations for the microplanes have
been found acceptable.

Inelastic Loading in Compression.—The stress-strain relationship for
the microplane is assumed to have a horizontal plastic plateau, and the
following formula, with 2/m as a convenience factor, is introduced:
1+ v
—, E,=2E———........ (12)
2lo,| 1+
in which ¢, = the asymptotic plastic stress value. A typical curve given
by Eq. 12 is plotted in Fig. 1(i). Numerical trials have shown that the
overall compressive tensile strain-softening can be modeled, even if no
strain-softening is assumed for compression on the individual micro-
planes.

Unloading in Tension.—Since no direct observations of unloading
contraction after tensile strain-softening seem to exist, the formulas must
be based on speculation, although a check is possible by comparisons
with test data for crack shear. At the onset of unloading, the tangential
stiffness should obviously be quite low and should further gradually in-
crease as the cracks are getting compressed. As the compression strength
is approached, the tangential stiffness should again decrease. The lim-
iting compressive stress should be of the same order of magnitude but
somewhat smaller than the compressive strength for monotonic loading,
because the previous strain-softening must have caused some strength
and stiffness degradation. For decreasing tensile preload, the subse-
quent compression response should gradually approach that for mon-
otonic compression. Based on these considerations, the following for-
mula for the unloading after tension appears suitable:

E,

2
s, = —|o | arctan (we,) with o=
kD)
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E, . B
s, = —a + B arctan E(e,,—b) , with a=—-{o.+—],

*
b=er—Pan T (13)
E, B

in which E;, B and o. are 3 additional material constants that define
the unloading response; and €*, ¢* are the coordinates of the reversal
point at which unloading begins. A typical form of Eq. 13 is plotted in
Figs. 1(j-k).

Parameters o.., E, and § must depend on the previously reached max-
imum strain €* (reversal point). The assumed dependencies are plotted
in Figs. 1(I-n). These curves may be characterized by the following
formulas:

’ i ’ " m %2
o. b +c'e En_ 2 [1+ be= ", pm _a” +b"e

= =4 — =TT
fe 1+c'e* E, 0. 1+b"e*

in which a’ = 0.58; b’ = 1.86; ¢’ = 15 X 10°; n' = 3; a" = 0.07 (f./31.5)%
b" = (31.5/f!)* [14.3 — (f{/31.5)*]; ¢" = 14; n" = 0.25; 2" = 2; b" = 146,000.

Reloading.-—For monotonic shear loading of cracks, unloading in
compression and reloading in tension do not seem very important. They
would be, however, important for reversed shear and cyclic shear load-
ing of cracks. One may speculate that the reloading curve for the mi-
croplanes would have the shape sketched in Fig. 1(k), which could be
described by a formula of the type:

"

S, = g ** expo—*">l= (B =€) e (15)

in which e** and o** defines the point at which the reloading begins
[Fig. 1(k)], and E;, characterizes the initial stiffness for reloading, which
depends on e**. The last equation could not be checked, however, against
any test data.

COMPUTATIONAL ASPECTS

The integral in Eq. 6 has to be evaluated numerically. It may be ap-
proximated by a finite sum (8,9)

o ds
ijkm = E Wy l:a,‘/'km __n] ....................................... (16)

a=1 den

in which subscripts, a, refer to the values at certain numerical integra-
tion points on a unit hemisphere (i.e., certain directions); and w, are
the weights associated with the integration points. Since, in finite ele-
ment programs for incremental loading, the numerical integration needs
to be carried out a great number of times, a very efficient numerical
integration formula is needed. For the slip theory of plasticity, the in-
tegration was performed using a rectangular grid in the 8-¢ plane. This
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approach is, however, computationally inefficient, because the integra-
tion points are crowded near the poles and, in the 8-¢ plane, the sin-
gularity arising from the poles takes away the benefit from the use of a
high-order integration formula.

Optimally, the integration points should be distributed over the spher-
ical surface as uniformly as possible. A perfectly uniform subdivision is
obtained when the microplanes normal to the o-directions are the faces
of a regular polyhedron. A regular polyhedron with the most faces is
the icosahedron, for which N = 10 (1/2 the number of sides); such a
formula was proposed by Albrecht and Collatz (1). Numerical experi-
ence revealed, however, that 10 points are not enough when strain-soft-
ening takes place. The reason is that the strain-softening curves that are
obtained for uniaxial tensile stresses oriented at various angles with re-
gard to the a-directions significantly differ from each other, even though
within the strain-hardening range, the differences among these curves
are small (9,11). Therefore, more than 10 points are needed, and then a
perfectly uniform spacing of a-directions is impossible.

Various numerical integration formulas with more than 10 integration
points are given in the book by Stroud (34). All calculations in this study
are based on McLaren’s formula (25,34) which has 25 points per hemi-
sphere, is symmetric with regard to the Cartesian coordinate planes, and
is of degree 11 (i.e., integrates exactly all polynomials up to the 11th
degree). For plane stress states, only 16 points need actually be used for
the 25-point formula, because of orthogonal symmetry. Further opti-
mum integration formulas are derived in Ref. 8 on the basis of Taylor
series expansions; they involve 16, 21, 33, 37, and 61 points per hemi-
sphere and are of degrees 9 to 13. The 61 point, 13th degree formula is
highly accurate (8), more than necessary for the present purposes. For
crude calculations, the 16-point or 21-point formulas of degree 9 might
suffice (8).

The following numerical algorithm (9) may be used for the microplane
model:

1. Determine e{” from Eq. 1 for all directions « = 1, ..., N. In the first
iteration of the loading step, use ¢ for the end of the previous step and,
in subsequent iterations, use the value of €; determined for the mid-step
in the previous iteration. In structural analysis, repeat this for all finite
elements and for all integration points within each element.

2. For all directions n®), evaluate ds,/de, for use in Eq. 16. Also check
for each direction whether unloading occurs, as indicated by violation
of the condition s,Ae, = 0. If violated, use for ds,/de, the unloading
curve.

3. Evaluate D, from Eq. 6 and Dy from Eq. 9. In structural anal-
ysis, repeat this for all elements and all integration points in each ele-
ment. When solving just the stress-strain curves, as we do here, cal-
culate then the increments of unknown stresses and unknown strains
from Eq. 9. When analyzing a structure, solve (by the finite element
method) the increments of nodal displacement from the given load in-
crements, and subsequently calculate the increments of €; and o for all
elements and all integration points in each element. Then advance to
the next iteration of the same loading step, or to the next loading step.

2025

CoMPARISON WITH EXPERIMENTAL DATA

A computer program has been written for calculating the response of
a crack band to imposed normal and tangential relative displacement
histories or applied strain histories. The displacements reported in tests
have been considered to occur over the width of the crack band, for
which various values have been used in calculations, typically 0.5d,, d,,
and 2d,, in which d, is the maximum aggregate size [Fig. 2()]. In almost
all cases, the crack band width has been considered equal to d,. The
program begins by simulating the formation of the crack. To this end,
normal displacement in the x-direction [Fig. 5(a)] is mcrem'epted. until
the crack opening (8, = w_.e,) reaches the initial value specified in .the
tests. Subsequently, both normal and shear displacements (or strame':)
are applied in small increments, the response in each loading step is
solved from the incremental stiffness equations (Eq. 9) and the results
are plotted and compared with test data. Since the material parameters
are few, and their effect can be intuitively judged, a trial-and-error ap-
proach suffices to achieve satisfactory fits. ‘ ‘

Paulay and Loeber’s Tests (28).—These are rather extensive data, which
were used in previous theoretical studies (7) and appeared to be most
useful for identifying the material parameters in Eqs. 12-15. Both the
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crack slip and the opening displacement were controlled in these tests.
The aggregate size was d, = 19 mm. The response was measured for 3
different values of the crack opening displacement 8, (0.125, 0.25 and
0.5 mm). The optimum fits achieved are shown in Fig. 2(a). The re-
sponse curves are calculated for various values of the assumed crack
band width w,. However, for the model to be objective, one and the
same value of the crack band width must of course be considered for
all computations. The best compromise is approximately w. = d,. This
is less than the value previously used to fit fracture test data (10), which
was w. = 3d,. This value was needed to fit closely both the fracture
tests and the direct tensile tests. The corresponding histories of normal
stress, o, , produced by shearing are plotted in Fig. 2(b) against the shear
stress, 7. The calculated responses yield somewhat larger confining nor-
mal stresses than the test data shown. This might be due to the neglect
of shear stiffness on the microplanes in the present version of the model
(this stiffness could, of course, be included, see Ref. 5, but the theory
would become more complicated).

In Fig. 2(c), the tangent shear modulus, Gz, of the calculated crack
band response is plotted as a function of the mean shear strain, vy, of
the crack band, for different values of the mean tensile strain €, = 3,/
w,. The results are shown in terms of the ratio to the shear modulus,
G, of intact concrete. The stiffness decreases with increasing crack open-
ing, as expected.

In practical situations, concrete would often be intersected by a system
of parallel crack bands of a certain spacing, s. The overall deformation
is then a sum of the deformations of the crack bands and of the intact
concrete between the bands, both being subjected to the same shear stress.
Thus, the overall averaged shear modulus, G., of the concrete inter-
sected by parallel crack bands appears to be much higher than that for
the crack band alone, and is much closer to the shear modulus of the
intact concrete: roughly, G. = Ggs/w,.. For €3 = 0.66% [Fig. 2(c)] and
for s = 190 mm, the value of G, can be as high as 0.5G [G = E/2(1 +
v) = 11,159 N/mm? for v = 0.18 and f! = 31.5 N/mm?).

Paulay and Loeber also made tests in which the crack opening §, was
forced to be proportional to the shear stress 7. Fig. 2(d) shows such test
data and the theoretical response for 3, = 0.0747 (r in N/mm?, §, in
mmy). One can see a good agreement of the present theory with mea-
surements. As pointed out by Paulay and Loeber, tests at increasing
crack opening produce a greater interface damage than the tests at con-
stant crack opening, and for this reason they generally exhibit a softer
response. In Egs. 12, 13, and 15, the material constants have been op-
timized with regard to the fitting of the tests at variable crack opening,
rather than at constant crack opening. For instance, the best fits of the
curves at constant crack opening [Fig. 2(a)] were obtained with o, = 1.55
fé . Nevertheless, the value 1.10f,, which transpired from the fitting of
the other curves examined here, is still acceptable because the value of
o, basically affects only the plateaus of the theoretical curves, and how
large is o, (at different crack openings) is still open to speculation.

Walraven and Reinhardt’s Tests (36).—Blocks split in two parts [Fig.
3(@)] by a tensile crack and fastened together by 4 external steel bars
were used, and the histories of shear stress, r, crack opening displace-
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ment, §,, and the confining normal stress, 0, as a functiop of the dtan_—
gential displacement, §;, were measured. The aggeggte size was d, =
16 mm. Seven specimens were tested; for the same 1n1.t1a1 crack op}e:mng
and for the same crack opening history (3, as a function of 3,), the ex-
perimental response curves have been replaced t?y mean curves in ordir
to make possible a comparison with the theoretical prediction. Six tests
are considered here. One other test was deleted because its response
curve of 7 versus 5, was strikingly softer than for.the‘other tests. The
theoretical fits achieved are shown by solid lines in Fig. 3. The agree-
ment with test data is quite good for the shear stress response, bu;1 is
less satisfactory for the confining stress. (One might wonder whether
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this could have been caused by some initial slack in the installation of
the external reinforcing bars in these tests.)

Fig. 3(a) compares the test data and the theoretical results for two tests
with no initial crack opening. Although characterized by different re-
straining bars, these two tests show very similar displacements histories,
and the mean history was used to obtain the theoretical prediction. Fig.
3(c) shows a good overall agreement for the case in which the crack
opening is practically proportional to the applied shear.

Fig. 3(b) shows another case with a relatively large initial crack open-
ing, 8, = 0.2 mm. For this case, the calculated curves seem to be some-
what stiff at large 8, . Fig. 3(d) shows a case for a large initial crack open-
ing, 8, = 0.4 mm. Here, the agreement of the shear stress response is
very good, while the calculated confinement stress is too high for me-
dium 3, . Overall, if one considers that the scatter in these types of tests
is quite large (standard deviation of at least 10% of the mean), the overall
agreement between theory and experiment appears to be quite accept-
able.

Laible, White and Gergely’s Tests (23).—In these tests, precracked
specimens with external restraining steel bars were used, and the shear
loading was cyclic. The maximum aggregate size was 38 mm, and the
initial crack opening was 0.76 mm for most tests. Numerical simulations
were limited only to the first, monotonically increasing part of the first
cycle. Figs. 4(a-b) show not only the mean measured responses (dashed
lines B and E), but also the responses for the stiffest and the weakest
specimens (dashed lines A, C and D, F). The displacement history is
shown in Fig. 4(c) for Test Al. In the other tests, the path was similar.
The calculated response for shear [Fig. 4(a), Test Al] is quite close to
the mean of measured responses, while the calculated response of con-
fining normal stress [Fig. 4(b)] is near the weakest experimental re-
sponse. The average friction coefficient is close to 2 for the theoretical
results, and close to 3.25 for the experiments. This last value seems,
however, to be very high compared to other tests. In contrast to Paulay
and Loeber’s tests, concrete of a lower strength (f. = 20.5 N/mm?) was
used. As a consequence, the shear response of the cracks is markedly
softer here. This difference seems to be correctly modeled by the pre-
vious formulas for E;/E, .

Mattock’s Tests (24).—Since reinforcement embedded in concrete and
crossing the crack was used, evaluation is hampered by the additional
uncertainty in determining the effect of dowel action. Therefore, these
data are harder to evaluate theoretically. Tests MM1, MM2, and MM3,
with two closed stirrups intersecting a single preformed crack at right
angles (diam 9.4 mm, steel ratio 0.89%) were considered. The initial crack
openings were 0.225, 0.400, and 0.625 mm, respectively. The contribu-
tion of the dowel action to the transmission of shear is estimated to be
no more than 15% in Test MM1, 10% in Test MM2, while in Test MM3,
this contribution is probably negligible due to early yielding of steel caused
by a large initial crack opening. Thus, the effect of dowel action is prob-
ably small, due to the relatively small steel ratio and the small diameter
of the stirrups.

Mattock’s data are plotted in Figs. 4(d—j). The dowel action contri-
bution was estimated by extrapolating the test results of Paulay, Park
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and Philips (29), and based on this the response curves for no dowel
action were estimated as shown by the thin dotted curves in Figs. 4(d, (1)
(see also Ref. 15). The shear stress response for Test MM1, §hown in
Fig. 4(d), is somewhat too stiff for small values of 3,, which is r}ot the
case for Tests MM2 and MM3. Perhaps the initial crack opening in Test
MMI1 might have been less than the reported value [see the dashed curve
in Fig. 4(e)]. The theoretical prediction obtained with the displacement
history B [Fig. 4(f)] matches the experimental curve well.

As for Tests MM2 and MM3, the theoretical prediction is very close
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to the experimental results [Fig. 4(h)]. Both the experimental response
curves [Fig. 5(g), heavy lines] and the experimental displacement his-
tories [Fig. 4(i)] have been somewhat smoothed [Fig. 4(j)] to make it
easier to compare the theoretical results and the test results.

GENERAL LoADING PATHS

The models that are formulated as an algebraic relation between the
stresses and the relative displacements on the crack are independent of
the loading path in which a given state has been reached. Therefore,
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they cannot be applied to general nonproportional loading paths in which
the response should significantly differ from proportional loading. The
microplane model is ideally suited to describe path dependence. For dif-
ferent loading paths, the distribution of unloading and loading among
the planes of various orientations is different, and so the overall re-
sponse depends on the loading path even though the monotonic relation
between stress and strain on each microplane is path-independent.

At the present, no experimental data seem to exist with regard to path-
dependence of crack shear. Therefore, the present theory cannot be
checked in this regard. Its application to arbitrary loadings is, however,
possible since the theory is rationally based and satisfies the require-
ments for a general constitutive theory. Two examples are presented to
illustrate the predictions for general loading paths.

The first example [Fig. 5(b)] compares the case when, after uniaxial
cracking due to €,, either shear strains v,, and v, are increased pro-
portionally (Case B), or vy,, is increased first, followed by an increase of
¥ at constant vy,, (Case A), until the same final value of shear strain is
reached. As is seen from the response curves, the final states are rather
different.

The second example [Fig. 5(c)] compares the usual case, in which con-
crete is first cracked by strain €, and then is loaded by shear strain v,
(Case C), with the case in which €, and v,, are increased simultaneously
and proportionally (Case D), beginning from intact concrete, so that the
crack is being created simultaneously with the application of shear. Again,
one can see a great difference in the final states.

CONCLUSIONS

1. The crack band model, in which the relative displacements across
the crack are uniformly distributed over a certain specified width of the
band, is a satisfactory and computationally convenient general model for
crack shear.

2. For the purpose of arbitrary general loading path, the constitutive
relation of concrete within the crack band may be described by the mi-
croplane model, in which the strains on the planes of weakness of var-
ious directions within the material (the microplanes) correspond to the
same macroscopic strain tensor and the stresses from all microplanes are
superimposed. It appears reasonable and acceptable to neglect the shear
stiffness on each microplane, so that the behavior on a microplane of
any orientation may be characterized by a relation between the normal
stress and strain on that microplane.

3. The crack shear response is very sensitive to the unloading law of
the microplanes. Crack shearing produces contraction along the lines of
a 45° inclination, in which the shearing induces large inclined compres-
sive stresses. These stresses produce the shear stress resultant, as well
as the normal confining stress across the crack, and when confinement
is not provided by the support condition, crack opening due to shear
results.

4. Satisfactory representation of the data from crack tests can be ob-
tained with this model.
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5. Since the same model has been previously shown capable of mod-
eling strain-softening in the direct tensile tests, the fracture tests of notched
specimens, and the deflections of cracked reinforced concrete beams, the
crack band model (combined with the microplane constitutive law) ap-
pears to have a very general applicability. Thus, it should be possible
to apply this model for calculating, e.g., the response to shear when the
cracks are only partially formed (a system of discontinuous cracks), when
the direction of shear within the microplane varies during the loading
process, when the cracks are being created simultaneously with shear-
ing, and when the material is intersected by cracks of various directions.
In view of this general applicability, the model appears suitable for use
in finite element programs.

ACKNOWLEDGMENT

Partial financial support under AFOSR Grant No. 83-0009 to North-
western University is gratefully acknowledged. Support in the initial stage
of the work was received under NSF Grant No. CEE8303148 to North-
western University.

APPENDIX.—REFERENCES

1. Albrecht, J., and Collatz, L., “Zur numerischen Auswertung mehrdimen-
sionaler Integrale,” Zeitschrift fiir Angewandte Mathematik und Mechanik, Band
38, Heft 1/2, Jan.~Feb., pp. 1-15.

2. Batdorf, S. B., and Budiansky, B., “A Mathematical Theory of Plasticity Based
on the Concept of Slip,” NACA TN1871, Apr., 1949.

3. Bazant, Z. P., “Instability, Ductility and Size Effect in Strain-softening of
Concrete,” Journal of the Engineering Mechanics Division, ASCE, Vol. 102, Pa-
per 12042, No. EM2, Apr., 1976, pp. 331-334.

4. BaZant, Z. P., “Crack Band Model for Fracture of Geomaterials,” Fourth In-
ternational Conference on Numerical Methods in Geomechanics, Z. Eisenstein, ed.,
Vol. 3, University of Alberta, Edmonton, Canada, 1982, pp. 1137-1152,

5. Bazant, Z. P., “Microplane Model for Strain-Controlled Triaxial Behavior,”’
Mechanics of Engineering Materials, C. S. Desai and R. H. Galagher, eds., Chapter
3, John Wiley & Sons, London, England, 1984, pp. 45-59.

6. Bazant, Z. P., and Cedolin, L., “Finite Element Modeling of Crack Band
Propagation,” Journal of Structural Engineering, ASCE, Vol. 109, No. ST1, Pa-
per 17618, Jan., 1983, pp. 69-92.

7. Bazant, Z. P., and Gambarova, P. G., “Rough Cracks in Reinforced Con-
crete,” Journal of the Structural Division, ASCE, Vol. 106, No. ST4, Paper 15330,
Apr., 1980, pp. 819-842.

8. Bazant, Z. P., and Oh, B. H., “Efficient Numerical Integration on the Surface
of a Sphere,” Report, Center for Concrete and Geomaterials, Northwestern
University, Evanston, IIl., 1982.

9. Bazant, Z. P, and Oh, B. H., “Model of Weak Planes for Progressive Frac-
ture of Concrete and Rock,” Report No. 83-2/448m, Center for Concrete and
Geomaterials, Northwestern University, Evanston, Ill., Feb., 1983.

10. Bazant, Z. P., and Oh, B. H., ““Crack Band Theory for Fracture of Concrete,”
Materials and Structures, (RILEM, Paris), Vol. 16, No. 94, July—Aug., 1983,
pp. 155-177.

11. Bazant, Z. P., and Oh, B. H., “Microplane Model for Fracture Analysis of
Concrete Structures,” Proceedings of the Symposium on the Interaction of Non-
nuclear Munitions with Structures, C. A. Ross, ed., U.S. Air Force Academy,
Colorado Springs, McGregor & Werner, Inc., Washington, D.C., May, 1983.

2033

12.

13.

14.

15.

16.

17.

18.

19.

20.

21

22.
23.

24.

25.

26.

27.

28.

29.

Bazant, Z. P., and Oh, B. H., ““Deformations of Progressively Cracking Rein-
forced Concrete Beams,”” American Concrete Institute Journal, Vol. 81, 1984, pp.
268-278.

Bazant, Z. P., and Panula, L., “Statistical Stability Effects in Concrete Fail-
ure,” Journal of the Engineering Mechanics Division, ASCE, Vol. 104, Paper 14074,
No. EMS5, Oct., 1978, pp. 1195-1212.

Daschner, F., and Kupfer, H., “Versuche zur Schubkraftiibertragung in Ris-
sen von Normal-und Leichtbeton,” Bauingenieur 57, 1982, pp. 57-60.
Eleiott, A. F., “An Experimental Investigation of Shear Transfer Across Cracks
in Reinforced Concrete,” thesis presented to Cornell University , at Ithaca,
N.Y., in 1974, in partial fulfillment of the requirements for the degree of
Master of Science.

Entov, V. M., and Yagust, V. L., “Experimental Investigation of Laws Gov-
erning Quasi-static Development of Macrocracks in Concrete,” Mechanics of
Solids (translated from Russian), Vol. 10, No. 4, 1975, pp. 87-95.

Evans, R. H., and Marathe, M. S., “Microcracking and Stress-Strain Curves
for Concrete in Tension,” Materials and Structures, (Paris), No. 1, Jan.—Feb.,
1968, pp. 61-64.

Fardis, M. N., and Buyukozturk, O., “Shear Transfer Model for Reinforced
Concrete,” Journal of the Engineering Mechanics Division, ASCE, Vol. 105, No.
EM2, Paper 14507, Apr., 1979, pp. 255-276.

Gambarova, P. G., “On Aggregate Interlock Mechanism in Reinforced Con-
crete Plates with Extensive Cracking,” Final Report of the IASBE Colloquium on
Advanced Mechanics of Reinforced Concrete, Delft, The Netherlands, June, 1981,
pp- 99-120.

Heilmann, H. G., Hilsdorf, H. H., and Finsterwalder, K., “Festigkeit und
Verformung von Beton unter Zugspanungen,” Deutscher Ausschuss fiir Stahl-
beton, Heft 203, W. Ernst & Sohn, West Berlin, Germany, 1969.

Houde, ]., and Mirza, M. S., “Investigation of Shear Transfer Across Cracks
by Aggregate Interlock,” Research Report No. 72-06, Département de Génie
Civil, Division des Structures, Ecole Polytéchnique de Montréal, Montréal,
Canada, 1972.

Hughes, B. P., and Chapman, G. P., “The Complete Stress-Strain Curve for
Concrete in Direct Tension,” Bulletin RILEM, No. 30, 1966, pp. 95-97.
Laible, J. P., White, R. N., and Gergely, P., “Experimental Investigation of
Seismic Shear Transfer Across Cracks in Concrete Nuclear Containment Ves-
sels,”” Special Publication SP53, American Concrete Institute, 1977, pp. 203-
226.

Mattock, A. H., “The Shear Transfer Behaviour of Cracked Monolithic Con-
crete Subject to Cyclically Reversing Shear,” Report SM 74-4, Department of
Civil Engineering, University of Washington, Seattle, Wash., Nov., 1974.
McLaren, A. D., “Optimal Numerical Integration on a Sphere,” Mathematics
of Computation, Vol. 17, 1963, pp. 361-383.

Pande, G. N., and Sharma, K. G., “Multi-laminate Model of Clays—A Nu-
merical Evaluation of the Influence of Rotation of the Principal Stress Axes,”
Report, Department of Civil Engineering, University College of Swansea, UK.,
1982; see also Proceedings, Symposium on Implementation of Computer Procedures
and Stress-Strain Laws in Geotechnical Engineering, C. S. Desai and S. K. Sax-
ena, eds., Acorn Press, Durham, N.C., Aug., 1981, pp. 575-590.

Pande, G. N., and Xiong, W., “An Improved Muiti-laminate Model of Jointed
Rock Masses,” Proceedings, International Symposium on Numerical Models in
Geomechanics, R. Dungar, G. N. Pande, and G. A. Studer, eds., Balkema,
Rotterdam, The Netherlands, 1982, pp. 218-226.

Paulay, T., and Loeber, P. J., “Shear Transfer by Aggregate Interlock,” Spe-
cial Publication SP42, American Concrete Institute, 1974, pp. 1-15.

Paulay, T., Park, R., and Phillips, M. H., “Horizontal Construction Joints in
Cast-in-Place Reinforced Concrete,” Special Publication SP42, American Con-
crete Institute, 1974, pp. 599-616.

2034



31
32.

33.

35.
36.

37.

. Petersson, P. E., “Fracture Energy of Concrete: Method of Determination,”

Cement and Concrete Research, Vol. 10, 1980, pp. 7889, and ‘‘Fracture Energy
of Concrete: Practical Performance and Experimental Results,” Cement and
Concrete Research, Vol. 10, 1980, pp. 91-101.

Rashid, Y. R., “Analysis of Prestressed Concrete Pressure Vessels,”” Nuclear
Engineering and Design, Vol. 7, No. 4, Apr., 1968, pp. 334-344.

Reinhardt, H. W., and Walraven, J. C., “Crack in Concrete Subject to Shear,”
Journal of the Structural Division, ASCE, Vol. 108, Paper 16802, Jan., 1982, pp.
207-224.

Riisch, H., and Hilsdorf, H., “‘Deformation Characteristics of Concrete under
Axial Tension,” Voruntersuchungen, Bericht Nr. 44, Munich, Germany, May,
1963.

. Stroud, A. H., Approximate Calculation of Multiple Integrals, Prentice Hall, En-

glewood Cliffs, N.J., 1971, pp. 296~302.

Taylor, G. 1., “Plastic Strain in Metals,” Journal of Inst. Metals, Vol. 62, 1938,
pp- 307-324.

Walraven, J. C., and Reinhardt, H. W., “Theory and Experiments on the
Mechanical Behavior of Cracks in Plain and Reinforced Concrete Subjected
to Shear Loading,” HERON Journal, Vol. 26, No. 1A, Department of Civil
Engineering, University of Technology, Delft, The Netherlands, 1981.
Wecharatana, M., and Shah, S. P., “Slow Crack Growth in Cement Com-
posites,” Journal of the Structural Division, ASCE, Vol. 108, Paper 17181, June,
1982, pp. 1400-1413.

. Zienkiewicz, O. C., and Pande, G. N., “Time-Dependent Multi-laminate Model

of Rocks—A Numerical Study of Deformation and Failure of Rock Masses,”
International Journal of Numerical and Analytical Methods in Geomechanics, Vol.
1, 1977, pp. 219-247.

2035



