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TRIPLE POWER LAW FOR CONCRETE CREEP
By Zdenék P. Bazant,' F. ASCE and Jenn-Chuan Chern®

ApstRACT: An improved creep law for concrete at constant temperature and
water content is proposed. It gives the creep rate as a product of power func-
tions of the load duration, the age at loading and the current age of concrete.
This law exhibits a gradual smooth transition from the double power law for
very short load durations to the logarithmic law for very long load durations.
The higher the age at loading, the longer the load duration at the transition.
Determination of creep compliance requires evaluation of a binomial integral,
which can be carried out either with the help of a truncated power series or
by replacement of certain integrals with sums. A table of values from which
interpolation is possible is also given. Extensive fitting of creep data from the
literature reveals only a modest improvement in the overall coefficient of vari-
ation of the deviations from test data; however, the terminal slopes of creep
curves are significantly improved, which is especially important for extrapo-
lation of creep measurements. Compared to the previous double power-loga-
rithmic law, the present formulation has an advantage of continuity in curva-
ture, and compared to the log-double power law, the present formulation has
a greater range of applicability involving also very short creep durations, in-
cluding the dynamic range. The new formulation also significantly limits the
occurrence of divergence of creep curves, and permits even a complete
suppression of this property, although at the cost of a distinct impairment in
data fits.

INTRODUCTION

The compliance function for concrete creep may be relatively well-ex-
pressed as a power function of the load duration times another power
function of the age at loading. Extensive statistical studies of the bulk
of the test data that exist in the literature have revealed a much better
agreement than that attainable with other creep formulas previously
proposed. However, as has been pointed out recently (9,10), compari-
sons with test data reveal certain deviations which appear to be system-
atic rather than random. The slope of the creep curves at constant age
at loading, plotted in log-time scale, appears to be too high in compar-
ison with observations when the load duration is long. This paper shows
that this deficiency can be remedied by a particular form of the triple
power law recently proposed on the basis of a micromechanics inves-
tigation (2). The present formulation also has certain advantages over
two previous attempts to eliminate the same shortcoming (3,4).

Review oF Some PRevious CREepP Laws

For most situations within the service stress range of structures, con-
crete creep at constant temperature and water content can be assumed
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FIG. 1.—Creep Curves in Logarithmic ¢ — +' and Normal ¢ Scales (a = True Elastic
Deformation, ¥ = True Creep, 2’ = Conventional Elastic Deformation, b’ = Con-
ventional Creep)

to be linear, following the principle of superposition. It may then be
completely characterized by the compliance function J(t,t'), also called
the creep function, which represénts the strain (elastic + creep) at age
t caused by a uniaxial constant stress acting since age ¢'. According to
the double power law (1,6,10), the compliance function is expressed as

It t')=i+ﬁ(t"”+a)(t—t’)" M

, BTG TOETEY
in which E, = asymptotic modulus, such that 1/E, represents the asymp-
totic value of the creep curve J(t,t') versus log (t —t')aslog (t — t') —
—wor {t - t')— 0; n, m, « and ¢, are material parameters whose typical
values are n =1/8, m = 1/3, ¢; = 3 to 6; and if t and ¢’ are in days a
= 0.05; E;, = 1.5E,3 where E,; = conventional (static) elastic modulus at
an age of 28 days. Since (t — t')" = exp [n In (t — t')], the plots of J(t,t")
versus log (¢,1') at constant ¢’ have the shape of exponentials.

Compared with most long-term test data, the slope of the power curves
of load duration ¢t — t' appears to be too high for very long load dura-
tions. From measurements it appears that the slope of the creep curves
plotted in the scale of log (¢t — t') appears to reach a certain constant
asymptotic value for sufficiently long load durations (Fig. 1). The slope
appears to be the same for all ages at loading. This behavior was de-
scribed in a previous study by a two-part formula that exhibits a tran-
sition to a straight line in the logarithmic scale of load duration (4). In
that study, this transition was assumed to occur suddenly at a certain
transition time which increases with the age at loading. In a subsequent
study (3), a single formula for which the transition from the power func-
tion to the logarithmic function is gradual, without a discontinuous jump
in curvature, was proposed. This formula is, however, more compli-
cated, and is not applicable to very short load durations, unlike the dou-
ble power law. This paper shows that, if one accepts as the basis of
modeling the creep rate rather than the total strain values, one can attain
all the objectives of the previous studies with a simpler and more gen-
eral formula.

Aside from simplicity, modeling of creep on the basis of the creep rate
rather than the total strain has advantages from the viewpoint of phys-
ical interpretation and micromechanics arguments. Expressions for the
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creep rate can be deduced from the activation energy theory (rate-pro-
cess theory) (26,27), and also arise from stochastic process modeling of
creep (15), as well as from certain composite material models for con-
crete (2).

TrirLE POWER LAw FOR CREEP RATE

It will be shown that a smooth transition between the double power
law for short load durations and a logarithmic law for long load dura-
tions may be achieved by the following formula for the unit creep rate:

. _!1_1 '+ a
](trt )_E

0 t — tr 1-n <i)n
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in which J(t,t') = 9](t,t')/ot = compliance rate = unit creep rate; and
Ey, ¥n, n, m and a are five material parameters, similar but not identical
to those in the double power law. We will call Eq. 2 the triple power
law since three power functions, namely those of ¢t — ¢’, ¢’ and ¢/t’; are
involved. For a = 0, Eq. 2 becomes identical to a formula proposed be-
fore on the basis of a micromechanics analysis of a solidifying material
(Eq. 22 of Ref. 2).

For very short load durations, t — t' << t’, the value of t/t' is nearly
1, and so Eq. 2 becomes

~ Yt
)=t ———
]( ) E(] (t . tl)l—n
Setting ¢, = nd,, Eq. 3 is identical to the derivative of the double power
law (Eq. 1). For very long load durations, t — ¢t' >> t', we may ap-
proximately replace ¢ — ¢’ with ¢ in Eq. 2, and thus we obtain
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FIG. 2—Two- and Three-Dimensional Graphs of Binomial Integral B(t,t';n)
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TABLE 1.—Binomial

Integral B(t,t';n)

t—t

n t 1 V10 10 /100
(1) &) (3) (4) (5) (6)
0.06 1 | 0.00274 0.00705 0.0153 0.0286
V10 | 0.000986 0.00293 0.00755 0.0164
10 | 0.000324 0.00106 0.00314 0.00809
V100 | 0.000099 0.000347 0.00113 0.00337
100 | 0.000026 0.000107 0.000372 0.00121
V1,000 | 0 0.000028 0.000114 0.000399
1,000 | 0 0 0.000030 0.000122
/10,000 | © 0 0 0.000033
10,000 | 0 0 0 0
0.10 1 | 0.00725 0.0193 0.0430 0.0821
V10 0.00263 0.00814 0.0216 0.0483
10 | 0.000869 0.00295 0.00913 0.0243
V100 | 0.000268 0.00975 0.00331 0.0102
100 | 0.000073 0.000301 0.00109 0.00372
V1,000 | 0 0.000081 0.000338 0.00123
1,000 | 0 0 0.000091 0.000379
V10,000 | 0 0 0 0.000102
10,000 | © 0 0 0
0.15 1 | 0.0154 0.0426 0.0983 0.193
V10 | 0.00564 0.0183 0.0507 0.117
10 | 0.00187 0.00671 0.0217 0.0602
/100 | 0.000583 0.00223 0.00797 0.0258
100 | 0.000160 0.000693 0.00265 0.00947
1,000 | 0 0.000190 0.000823 0.00315
1,000 | 0 0 0.000226 0.000978
10,000 | 0 0 0 0.000269
10,000 | 0 0 0 0
0.20 1 | 0.0259 0.0746 0.178 0.361
V10 | 0.00957 0.0326 0.0940 0.224
10 | 0.00320 0.0120 0.0410 0.118
V100 | 0.00100 0.00402 0.0152 0.0516
100 | 0.000279 0.00126 0.00506 0.0191
VI,000 | O 0.000352 0.00159 0.00638
1,000 | o 0 0.00443 0.00200
/10,000 | © 0 0 0.000557
10,000 | 0 0 0 0
0.25 1 | 0.0383 0.115 0.284 0.593
V10 | 0.0143 0.051 0.153 0.379
10 | 0.00479 0.019 0.0680 0.205
V100 | 0.00151 0.00639 0.0254 0.0907
100 | 0.00428 0.00201 0.00853 0.0339
. V1,000 | 0 0.00571 0.00269 0.0114
1,000 | 0 0 0.000761 0.00358
V10,000 | 0 0 0 0.00101
10,000 | 0 0 0 0
66

100 V1,000 1,000 V10,000 10,000

™ 8 ©) (19) (1)
0.0476 0.0728 0.105 0.144 0.191
0.0306 0.0510 0.078 0.122 0.154
0.0176 0.0328 0.0546 0.0836 0.120
0.00867 0.0188 0.0352 0.0585 0.0895
0.00361 0.00929 0.0202 0.0377 0.0627
0.00130 0.00387 0.00996 0.0216 0.0404
0.000427 0.00139 0.00414 0.0107 0.0232
0.000131 0.000458 0.00149 0.00444 0.0114
0.000035 0.000141 0.000491 0.00160 0.00476
0.140 0.218 0.320 0.448 0.606
0.0922 0.157 0.244 0.359 0.503
0.0541 0.103 0.176 0.274 0.403
0.0272 0.0607 0.116 0.197 0.308
0.0115 0.0306 0.0682 0.130 0.221
0.00417 0.0129 0.0343 0.0765 0.146
0.00138 0.00468 0.0145 0.0385 0.0858
0.000425 0.00155 0.00525 0.0162 0.0432
0.000115 0.000477 0.00173 0.00589 0.0181
0.338 0.541 0.816 1.17 1.63
0.230 0.401 0.643 0.969 1.40
0.139 0.273 0.477 0.764 1.15
0.0716 0.165 0.325 0.567 0.909
0.0307 0.0851 0.196 0.386 0.674
0.0113 0.0365 0.101 0.233 0.459
0.00374 0.0134 0.0434 0.120 0.277
0.00116 0.00444 0.0159 0.0516 0.143
0.000320 0.00138 0.00528 0.0189 0.0613
0.648 1.07 1.66 2.46 3.52
0.454 0.816 1.34 2.09 3.09
0.282 0.572 1.03 1.69 2.63
0.149 0.355 0.720 1.29 2.13
0.0650 0.187 0.447 0.906 1.63
0.0240 0.0818 0.236 0.563 1.14
0.00803 0.0303 0.103 0.297 0.709
0.00251 0.0101 0.0381 0.130 0.374
0.000701 0.00316 0.0127 0.0480 0.163
1.10 1.86 2.98 4.57 6.78
0.791 1.46 2.49 3.98 6.10
0.505 1.05 1.95 3.32 5.31
0.273 0.673 1.41 2.60. 4.42
0.121 0.363 0.898 1.88 3.47
0.0452 0.161 0.485 1.20 2.50
0.0152 0.0602 0.215 0.647 1.60
0.00478 0.0202 0.0803 0.287 0.862
0.00135 0.00637 0.0270 0.107 0.383
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TABLE 1.—
(1) (2) @) (4) (5) (6)
0.30 1 | 0052 -| 0.164 0.418 0.902
V10 | 0.0197 0.0738 0.231 0.591
10 | 0.00664 0.0278 0.104 0.326
V100 | 0.00210 0.00938 0.0392 0.147
100 | 0.000604 0.00297 0.0132 0.0554
V14,000 | 0 0.00853 0.00419 0.0187
1,000 | 0 0 0.00121 0.00592
\/10,000 | © 0 0 0.00170
10,000 | 0 0 0 0
0.50 1 | 0.119 0.438 1.29 3.20
vi0 | 0.0463 0.211 0.780 2.30
10 | 0.0159 0.0824 0.375 1.39
V100 | 0.00513 0.0283 0.146 0.667
100 | 0.00154 0.00912 0.0503 0.260
V1,000 | 0 0.00275 0.0162 0.0895
1,000 | 0 0 0.00489 0.0289
/10,000 | 0 0 0 0.00869
10,000 | 0 0 0 0
0.70 1 | 0.193 0.845 2.90 8.34
V10 | 0.0783 0.433 1.89 6.50
10 | 0.0273 0.175 0.969 4.24
V100 | 0.00891 0.0612 0.392 2.17
100 | 0.00278 0.0200 0.137 0.878
V1,000 | 0 0.00622 0.0447 0.307
1,000 | 0 0 0.0139 0.100
/10,000 | © 0 0 0.0312
10,000 | 0 0 0 0

Continued

™ 8 ©) (19) 4R
1.72 3.02 4.99 7.92 12.2
1.27 2.43 4.26 7.05 11.2
0.834 1.80 3.43 6.02 9.96
0.461 1.18 2.54 4.85 8.51
0.208 0.651 1.66 3.59 6.85
0.0783 0.294 0.920 2.35 5.07
0.0264 0.111 0.415 1.30 3.32
0.00837 0.0373 0.156 0.586 1.84
0.00240 0.0118 0.0527 0.221 0.828
7.00 14.2 27.5 51.5 94.7
5.68 12.5 25.3 48.9 91.6
4.09 10.1 221 44.9 86.9
2.47 7.27 18.0 39.4 79.9
1.19 4.38 12.9 32.0 70.0
0.463 2.1 7.80 23.0 56.8
0.159 0.824 3.75 13.9 40.9
0.0513 0.283 1.46 6.67 24.7
0.0154 0.0912 0.503 2.60 11.9
21.4 51.8 121 276 624
18.7 48.0 116 270 617
14.5 41.8 107 259 604
9.49 32.6 93.5 241 581
4.86 21.2 72.9 209 539
1.97 10.9 47.5 163 469
0.686 4.40 24.3 106 365
0.224 1.54 9.86 545 238
0.0698 0.501 3.44 22.1 122

This may be recognized as the derivative of the logarithmic law. Indeed,
integration of Eq. 4 at constant t' yields the expression

JEt)=Ed" [+t "+t " Int+ ()] e )

in which function fy(¢t') is an integration constant. So we see that the
triple power law (Eq. 2) does have the desired asymptotic behavior for
very short and very long load durations.

Integrating Eq. 2, we obtain the integrated form of the triple power
law. It may be written in the form

1 -
Jt')y=—+ ﬁ(t"
E, E
in which 1/E; is an integration constant that represents the asymptotic
instantaneous deformation, and

. t—t' t, n
B(t,t';n) = 1- YA, E=t—t ..
(t,t';n) nLO [ (t'+g) ]& §& & 7)

The last integral is a binomial integral, which can be evaluated in terms
of elementary functions only for certain values of n; however, none of
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F [t =) = Bl A )] (6)

these values is realistic for concrete. Nevertheless, it is possible to ap-
proximate this integral very accurately either by a truncated infinite se-
ries or by replacement of the integral with certain sums. This is de-
scribed in Appendix I. Table 1 lists the values of this integral, from which
interpolation is possible. Graphical plots of this integral are given in Fig.
2(a) and (b).

VERIFICATION BY TesT DATA FROM LITERATURE

The triple power law is intended to model only the basic creep, i.e.,
creep at constant water content and temperature. Extensive comparisons
have been made with the main test data available in the literature
(12,13,16-18,20,22,24,25). Fig. 3 shows as the solid lines the optimum
fits of these data achieved with the triple power law (Eq. 6). The material
parameter values are listed in the figures. The values indicated for the
data of L'Hermite et al. are perhaps most typical for structural concretes.

The fits in Fig. 3 have been obtained by a nonlinear optimization pro-
cedure using Marquardt-Levenberg algorithm (11,21). This algorithm was
used to minimize the sum of squared deviations of the formula from the
test data. The sampling points were placed at regular intervals on the
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FIG. 3.—Fits of Creep Tests

measured creep curves in the logarithmic scale of load duration, and
hand-smoothing of the measured data was used to partly suppress the
measurement error. For more detail of the fitting procedure, see Ref. 10.

In the case of short-term creep data [e.g., Gamble and Thomass (16)],
the optimum fits by the triple power law and the double power law are
undistinguishable (see Table 2); however, for long-term data, the dif-
ference is significant. The pattern of gradual transition to straight lines
in the logarithmic time scale is clearly apparent in the figures. The slopes
of these straight lines are approximately the same as those obtained pre-
viously with the log-double power law (3). In that study it was found
that the straight lines in the logarithmic time scale reduce the coefficient
of variation of the deviations of the terminal slopes of the formula from
the terminal slopes of test data (for all data sets combined) from the
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value of 34% for the double power law to 19%. The same improvement
in the representation of the final slopes of the creep curves is obtained
with the present triple power law. This significantly reduces the error
in extrapolations of creep data.

Compared to the previous log-double power law (3), the present for-
mulation has the advantage that, in addition to the long-term response,
the short-time creep for load durations below 0.1 day and down to the
dynamic range (duration 0.001 s) is also represented well. This is ap-
parent from the curves in Fig. 3, and is made possible by the fact that
the triple power law asymptotically approaches the double power law
with about the same parameter values as those found in the original data
analysis (6,10). Close fits of both the short- and long-time creep were
also obtained with the previous formulation (3) in which the transition
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TABLE 2.—Coefficients of Variation for Deviations from Test Data

wy wy ®
Data set TPL DPL TPL DPL TPL DPL
(1 @ 3 4) (5) (6) (7)
1. Canyon Ferry Dam | 6.27 (3.36) | 10.20 | 9.39 (5.56) | 15.80 | 3.95 (4.75) | 4.60
2. Ross Dam 4.50 14.26 | 7.48 12.28 | 2.76 3.50
3. Dworshak Dam 5.12 8.43 | 7.43 12.28 | 5.30 5.46
4. Rostasy et al. — — — — 0.72 1.00
5. L’Hermite et al. 1.46 3.24 | 2.55 5.22 | 4.90 4.90
6. Shasta Dam 4.01 4.52 | 6.71 7.55 | 3.80 4.10
7. Wylfa Vessel 1.50 12.0 3.02 19.79 | 5.02 4.14
8. Gamble-Thomass 2.99 5.12 | 4.65 7.87 | 3.02 2.82
@, & 3.69 (3.28) | 825 | 6.34 (5.66) | 14.14 | 3.95 (4.06) | 4.03
TABLE 3.—List of Double Power Law Parameters
Data set 1/E, x 107 m n a U
() @ @) ) (5) (6)
Canyon Ferry Dam 0.543 0.322 0.115 0.10 7.267
Ross Dam 1.885 0.451 0.114 0.01 2.814
Dworshak Dam 1.076 0.353 0.058 0 13.51
Rostasy et al. 1.549 0.437 0.185 0.224 1.031
L’Hermite et al. 0.420 0.329 0.084 0.198 7.786
Shasta Dam 1.115 0.701 0.099 0.032 17.46

Wylfa Vessel 1.823 0.262 0.228 0 1.357
Gamble-Thomass 1.083 0.550 0.061 0.281 5.844

from the double power law to the logarithmic law was sudden, with a
jump in curvature. Compared to that formulation, the present one has
the advantage of smoothness, i.e., continuous curvature.

The method of calculation of the aforementioned coefficients of vari-

ation was the same as that described in detail in the previous work (4,10).

DiveRGENCE OF CREEP CURVES

When creep recovery curves are calculated from the double power law
by means of the principle of superposition, they may be sometimes ob-
tained as non-monotonic. In the case of aging materials, such a behavior
does not violate any fundamental law of thermodynamics (5). However,
it is unclear whether non-monotonic recovery curves are indeed a true
property of the material (they have sometimes been observed in exper-
iments, but mostly unobserved), or whether they are caused merely by
an error in the creep formula, or some neglected nonlinear effects, such
as microcracking or viscoplastic flow. Therefore, until better experimen-
tal data becomes available, it seems preferable to avoid, if possible, creep
formulas that yield non-monotonic recovery curves. Even if one objects
to these arguments on the basis of inapplicability of the principle of su-
perposition to creep recovery, creep formulas that admit non-monotonic
recovery appear to have certain other disadvantages; e.g., they yield
negative values of stress at thé end of long-time relaxation curves cal-
culated from the principle of superposition.
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Non-monotonic recovery is obtained if the slope of the creep curve
decreases with the age at loading, t’, at fixed current age t. In other
words, the creep curves should not diverge (5), i.e.
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The double power law has been found to violate this nondivergence
condition when t — t’ is long and ¢’ is short (5,10). Precisely, the non-
divergence condition for the double power law is

=0 (nondivergence) ................. i, (8)

' 1_nl "
ot = at™) ©)

Differentiating Eq. 2 with respect to t', we obtain the nondivergence
condition for the triple power law:

[ n ,,,] 1-n "
1- 2@t at™ |t =) s —Z @+ at™t e (10)
m m

of which Eq. 9 is a special case. The right-hand side of Eq. 10 is always
positive. The bracketed expression on the left-hand side can be either
positive or nonpositive. If it is nonpositive, Eq. 10 is always satisfied,
which happens for some computations of the material parameter values
from test data. If this bracketed expression is positive, divergence is
avoided only for load durations satisfying the inequality

, L= m) + ety

t—t m
m—n(l+at')

It so happens that optimum data fits are often obtained for material
parameter values for which the divergence time given by Eq. 11 is finite.
Comparisons of the divergence times for the double power law and for
the present triple power law are given in Table 4 for the optimum fits
of various test data from the literature. Note that the time at the start
of divergence is generally much longer for the triple power law, which
represents an improvement. Also note that, for most test data, the op-
timum fits attainable under the condition of no divergence, i.e., the con-
dition of nonpositiveness of the bracketed term on the left-hand side of
Eq. 10, are often much worse than the optimum fits obtained without
any restriction on the material parameter values.

Keeping the time at which divergence begins as long as possible is not
the only desirable aspect of a creep formula. It is also desirable to min-
imize the distance by which the creep curves diverge apart after the start
of divergence (this minimizes, in creep recovery predictions, the amount
of reverse recovery). To quantify this property, we divide the scale of
log ¢ into equal time intervals, with 6 intervals/decade. We define as A;
the excess of the vertical distance of two adjacent creep curves over the
minimum distance between these two curves, occurring at the time at
which the divergence begins. Subscript j = 1, 2, 3, .... N refers to the
points at which the vertical distances are taken, and subscripts i = 1, 2,

. refer to various combinations of times t' for the various pairs of
creep curves [see Fig. 4(a) and 4(b)]. The values of ¢+’ were considered
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TABLE 4.—Elapsed Time Limits for Nondivergence, in Days

Data set 4 DPL® TPL
M @ ® (4)
Canyon Ferry Dam 2 8.2 9.7 (11.2)
(17,18) 7 29.8 34 (44)
28 127.4 136 (217)
90 442.5 437 (945)
365 2,037.8 1,772 (7,797)
Ross Dam (16,17) 2 6.0 8.4
7 21.1 34.0
28 85.5 191.5
90 280.3 1,020.8
365 1,184.7 20,492.0
Dworshak Dam (22) 1 3.6 45
3 11.0 13.5
7 25.7 31.4
28 102.7 125.8
90 330.2 ‘ 404.3
Rostasy et al. (25) 28 130.4 231.0
L’Hermite et al. (20) 7 33.8 415
28 152.1 200.3
90 558.6 828.2
730 6,283.9 17,313.5
Shasta Dam (17,18) 28 75.8 74.0
91 296.3 279.0
365 1,773.0 1,767.0
2,645 33,315.7 o
Wylfa Vessel (12,13) 7 27.6 455
60 110.5 444.1
400 1,578.6 8,265.4
4,560 17,996.3 ©
Gamble and Thomass 2 6.8 7.7
(16) 7 28.7 34.1
17 84.8 108.2
40 254.2 366.9

‘See Table 3 for the list of Double Power Law parameters.

equally spaced in the log ¢’ scale, and all possible pairs of creep curves
were considered in the calculation. Six values of t' were considered per
decade in log ¢'. The values of ¢’ ranged from one day to seven yr, and
the values of ¢ ranged from one second to many decades. With the fore-
going definitions, the average distance by which the creep curves di-
verge may be characterized by one of the following two coefficients:

3%) (38

] J

the first being a linear measure and the other a mean square measure.
J is the mean of all data points uniformly spaced in log (t — ¢') and log
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FIG. 4.—(a) Divergence of Creep Curves; (b) Non-Monotonic Recovery Curve Ob-
tained by Principle of Superposition; (c) Mean Point of Data

(t — t') scales [Fig. 4(c)]. The symbol of pointed brackets is defined by
(x) = xif x > 0, {x) = 0if x = 0. The values of these coefficients for the
optimum fits of individual test data from the literature by the triple power
law have been combined into overall coefficients defined as

1 1 & v
== ;:1 Wy, @ = <ﬁ > wﬁ(m)> ........................... (13)

m=1

in which subscript m = 1, 2, ... M refers to the individual data sets. The
values of these coefficients are listed in Table 2, for both the triple power
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FIG. 5.—Curves Obtained by Fitting Triple Power Law (Solid Lines) and Double
Power Law (Dashed Lines) to Test Data from Refs. 1, 2, 17 and 18

law and the double power law. We see that the amount of divergence
is significantly reduced for the present formulation; for the double power
law we have @ = 8.3% and ®, = 14.1%, while for the present triple
power law we have &; = 3.7% and ®, = 6.3%. Fig. 5 clearly shows the
early start of divergence of the double power law (dashed line), in con-
trast to the triple power law (solid lines).

Let us now examine the optimal fits under the restriction of nondiver-
gence, i.e., (m — n)t’ " — na < 0 (based on Eq. 10). Noting that all ma-
terial parameters must be positive, one obtains from this condition the
inequality n = m/(1 + «t'™) for all t’, i.e.

in which t,;, denotes the minimum age at loading for which represen-
tation of creep properties is desired.

For the purpose of optimization of data fits, it is of interest to intro-
duce an algebraic expression that automatically satisfies Eq. 14:

m ( q )2 m
n= — + or n=——7++5s'(1 +tanhg) ..... (15)
1+ at e 1+sq 1+ ot pmin

The second term in these expressions corresponds to what is known in
optimization as the penalty term, in which g is any real number, and s
or s' is a suitably chosen coefficient based on fitting experience. The fact
that the penalty term can never be negative ensures fulfillment of Eq.
14. This enables optimization of data fits without any inequality restric-
tion, provided that the material parameters are considered as E;, ¢,, m,
a and ¢, instead of E;, ¢;, m, @ and n.

Fig. 6 shows one example of optimization of test data under the non-
divergence condition. Note that the optimal fits clearly approach in-
clined straight lines for sufficiently long load durations. It is also obvious
that the deviations from test data are higher than those when the di-
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FIG. 6.—Fit of Wylfa Vessel Test Data under Nondivergence Constraint

vergence property is permitted; see Fig. 6. Another fit of Canyon Ferry
Dam data (m = 0.375,n = 0.136,a = 0.121) shows that a longer period
of nondivergence and a smaller divergence magnitude can be achieved
when the closeness of fit is sacrificed; see the values in parentheses in
Tables 1 and 2.

PracTicaL PrebicTioN MODEL

The capability of the creep formula to fit the test data confirms the
correctness of the form of the formula, but does not mean that one can
better predict creep in absence of any measurements, i.e., on the basis
of design strength and composition. The prediction problem, typical in
design practice, involves far greater uncertainty (7-10). It appears that
the error in predicting material parameters is vastly greater than the er-
ror in the form of the creep formulas. Thus, for the prediction problem,
no significant improvement can be expected from the present formula-
tion, and none is achieved, as far as the overall coefficient of variation
of deviations from measured data is concerned. Nevertheless, the more
correct shape of the creep curves is an advantage even for predicted
creep curves, since it achieves more realistic mutual relations of various
creep values.

Extensive analysis of basic creep data (12,13,16-18,20,22,24,25) indi-
cated that the same values of material parameters as for the double power
law (7-10) can be used for the present formulation. This means, e.g.,
that the present formulation yields reasonable values also for the short-
time deformations, including the dynamic range. The ends of the creep
curves are generally lower than for the double power law, which im-
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Setting £, = t’, and supposing that the interval (0, ;) is sufficiently small,
we can rewrite Eq. 19 as

N
Bt t') = _§2_1b1(§1 +to) + nIn 10 A(log &) 2 b ty) oo (21)
i=1
in which the step A(log &) = log (&/&-,) is constant. Trapezoidal rule is
applied during the numerical integration (c; = ¢, = 0.5, ¢, = ... = cy_;

= 1). Eight time steps/decade in the log t-scale suffice for high accuracy.
The accuracy of the integration may be checked by comparing the slope
obtained numerically with that given by Eq. 21. The first discrete time,
&, is chosen as 0.0001 t’ (it was checked that 0.01 ¢’ yields about the
same results). Using the approximation [¢'/(t' + £)]" =1 — (ng/t’), the
first term in Eq. 21 may be expressed as

2
%bl(gl o) = ;l_fl (22)
o

This approximation is very accurate if # is small and &, << t'.

Use of Dirichlet Series.—Integration is also possible by approximat-
ing the power functions in Eq. 7 by sums of exponentials, called Dirich-
let series (2,19). Within the interval (2) 0.3 7, = f < 0.5 1, one may use
the approximation (2)

M+1

and similarly

M+1 M+1
F7l= D AT H T D B (24)
n=1

p=1
Here, A, and B, are coefficients defined as (2)

for v,p=1,2,..M-1:B,, A, = —a(n)r,, 7, =10"" 1,= 10#7 1,
for v,u=M ‘B, Ay = —1.2a(n)yy 25)
for v, p=M+1 ! Bue1, Amar = B(n)ty

in which r = exponent of the approximated power function = n orn — 1
or —n for Egs. 23 or 24, 7y, = 10°7y; and a(n) and B(n) are coefficients
that have been determined by least-square fitting and are found in Table
1 of Ref. 2. Substituting the approximations in Egs. 23 and 24 into Eq.
7, one can integrate and the result is

MA1 4
B(t,t')=n Y —2[1— et

w=1 Ty

M+1 M+1

. AB, _,. ,
+at" YD e M e (26)

p=1 »=1 s

in which 7,, = (1/7,) + (1/%,). This expression can be easily evaluated
with a computer.
Asymptotic Approximation.—Setting t = ¢’ + £ in Eq. 7, we obtain
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TABLE 5.—Function f(', n)

n
t' days | 0.06 010 | 0.150 | 0.20 0.25 0.30 0.50
) @ 3) @ (&) (6) U (8)
1 —0.994 | -0.984 | —0.965 | —0.939 | —0.921 | —0.851 | —0.729
3.16 | —0.991 | —0.975 [ —0.942 | —0.894 | —0.838 | —0.728 | —0.201
10 —0.983 | —0.949 | -0.876 | —0.760 | —0.600 | —0.354 [ 1.50
31.6 | —0.946 | —0.903 | —0.752 | —0.500 | —0.119 | 0.444 | 5.82
100 —-0.917 | -0.830 | —0.549 | —0.051 [ 0.751 | 2.00 | 16.10
316 -0.878 | —0.727 | -0.244 | 0.663 | 2.22 478 | 38.90
1,000 —-0.829 | -0.586 | 0.196 | 1.75 4.58 9.48 | 87.2
3,162 -0.769 | — — — — — —

B(t,t";n) = nf [1 - (%) ](t- YT 27

Differentiation then yields

dB(t,t'; n) _ [1 _ (ﬁ)n] tn—l(l _ t_’>n_1 28
_dt = ; n F) (28)

Here we may introduce the approximation [1 — (¢'/£)]" ' =1~ (n — 1)
t'/t for t — t' >> t', upon which Eq. 28 becomes

4BG. Esm) [1 + (t) (-1 1)<t'>m] gt (29)
—_— = =] —m-D—+m-Dl=) |t
dt t t t &

Integration now yields

" w1
B(t,t';n) = f(t,t";n) + [t” —nt"Int—nt't"' —nn - 1Y’ ';:l

(for t—t' >>H) o (30)

in which f(¢’, n) is a function tabulated in Table 5. This table has been
calculated from the numerical values of B(t, t';n).

Remarks. —It is instructive to check other possible series approxima-
tions. Introducing s = ¢’ + ¢ < ¢, Eq. 3 could be written as

. o t\"
J(s. t') = b2 (" +a)s—t')y? (—) ............................ (31)
Ey S
Integration then yields
’ 1 ¢1 pm " ’
Jet')==+—@ "+ o)t " Ht, t;n)........... . (32)
E, E

in which ¢; = n¢, and

' t'\" " ds t & (n=1\ (- £\
morm=[ (1-5) Fenge 3 () G- () Jeo

The radius of this series (i.e., 4;,1/4;) must be less than unity as i ap-
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proaches infinity, if the series should converge. However, here the ratio
of two subsequent terms of the series is found to have the limit (for

i— ) of 1, and, therefore, the series in Eq. 33 is divergent.
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