CONSTITUTIVE MODEL WITH ROTATING ACTIVE
PLANE AND TRUE STRESS

By Aleksander Zubelewicz' and Zdenék P. Bazant,” F. ASCE

ABSTRACT: A novel constitutive model for concrete, which approximately de-
scribes the basic known test data on nonlinear triaxial behavior including strain-
softening, is presented. The model rests on two basic ideas: (1) The stress-strain
relation is defined as the relation between the normal and shear components
of stress and strain on a certain special plane, called the active plane, the ori-
entation of which varies as a function of accumulated inelastic strains; and (2)
the stress-strain relation is written in terms of microstresses or true stresses
that are obtained as the macrostresses divided by the resisting area fraction of
the material. Strain-softening is obtained principally due to decrease of this area
fraction. Thus, an incremental plasticity law satisfying the normality rule may
be introduced on the microlevel, and a symmetric stiffness matrix is obtained.
The loading surface for the active plane on the microlevel is an ellipse in the
normal-shear stress space, similar to the critical state theory for soils. The model
involves only six empirical inelastic material parameters, for which a simple
sequential identification procedure is developed.

INTRODUCTION

Despite many significant contributions (1,4-9,14,16,27), nonlinear triaxial
constitutive relations applicable up to complete failure continue to pose
a formidable challenge to continuum mechanics of concrete, as well as
rocks and soils. The most sophisticated models developed so far describe
the existing basic experimental data quite well, however, the material
parameters in such models are difficult to identify from test results, and
micromechanics foundations for these models are lacking (2,9,11,13,
15,22,24,28), see Table 1. It is now widely agreed that further advances
have to be based, at least partially, on the understanding of microme-
chanics of deformation.

A promising approach, which has so far been shown to work for ten-
sile microcracking, is the microplane model (8), which represents an an-
alog of the earlier slip theory of plasticity (3). In this approach, the in-
elastic deformation is described independently for planes of various
orientation within the microstructure (the microplanes) and the contri-
butions from all these planes are then superimposed according to some
suitably assumed micro-macro constraint. Numerical studies with the
microplane model reveal that usually the inelastic deformation originates
predominantly from a single active microplane, the orientation of which
varies during the deformation process. This plane represents the direc-
tion of active (i.e., growing or slipping) microcracks or slip-planes. A
similar conclusion ensues from certain studies of failure (slip) criteria.
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TABLE 1.—Comparison of Various Nonlinear Triaxial Models for Concrete

Number
of free
pa""‘"?e' Properties Covered Level of Approximation
ters (in-
cluding | Plas- | Hard- | Soft- | Frac- Very | Excel-
Model elastic) | ticity | ening | ening ture Poor | Fair | Good | good lent
(1) (2) 3) (4) (5) (6) 7 | 8 (9) (10) (11)
Mohr-Coulomb with
cut-off 6 X X X
Cap model 7 X b3 X
Chen and Chen'’s 8 X X X
Critical state model 9 b3 X X X
Endochronic model 15* b3 X X X X
Plastic-fracturing
model 15* X X X X X
Total strain model 222 X x x X
Present model 6* X X X X X

Some of the parameters are fixed values.
®Plus 2 fixed parameters.

As is well known, the von Mises or Drucker-Prager criterion may be
formulated as the relation between the stresses acting on the octahedral
plane. Matsuoka (18-20) showed that an improved failure criterion may
be obtained as the relation between the stress components on a plane
whose direction is not fixed as the octahedral plane but is allowed to
rotate in a certain manner according to the values of the principal stresses.
Due to the rotation of this plane, the influence of the third stress in-
variant is brought in and the result is a failure criterion which is quite
similar to the recently proposed yield criteria of Lade (16,17) and Schreyer
(26,27) using the third invariant of a stress tensor shifted in the stress
space.

Aside from failure criteria, the stress-strain relations have also been
formulated in terms of stresses and strains on one single plane; this plane
was previously considered as fixed and identical to the octahedral plane;
e.g., Gerstle, et al. (11,12) and Kotsovos (14).

Realizing the predominant single-plane source of inelastic deformation
and the importance of the change of orientation and area of this plane
during the deformation process, Zubelewicz (29) proposed that a simple
yet effective nonlinear triaxial constitutive relation may be obtained in
terms of the stress components on a certain special plane the orientation
of which rotates as a function of the strain rate. This plane will be called
the active plane because it characterizes the orientation of predominant
cracking and slipping. The objective of the present study is to develop
this idea and show that a reasonably good representation of the behavior
of concrete can be obtained with surprisingly few material parameters
which can be easily identified from given test data.

Another basic idea of the present model is the description of macro-
scopic strain-softening by means of a decrease of the resisting area fac-
tion of the material that defines the ratio of the macro-stress to the mi-
cro-stress or true stress. In terms of true stresses, the constitutive law
need not exhibit strain-softening, which makes it possible to adhere to
normality and Drucker’s postulate on the micro-level. The resisting area
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fraction concept has previously been used by Zubelewicz (29) for a sim-
ilar type of model, and also by Bazant and Oh (parameter p on p. 161
of Ref. 6) in a different type of model for strain-softening due to frac-
turing,. .

MAcRO- AND MiCRO- STRESSES ON ROTATING ACTIVE PLANE

Let n; be the cartesian components of the unit normal vector of the
active plane, in cartesian coordinates x; (i = 1, 2, 3); Fig. 1(a). The stress
vector on the active plane, S, has then the components S; = ayn;, where
g; are the cartesian components of the macroscopic stress tensor. The
normal stress and the components of the shear stress vector on the ac-
tive plane are

g = S,-ni = 0y n,' £ (1)
T, = 5,‘ —on; = o;n; — O'kjn,' mn; = Sk(S,-k - ”l,‘}’lk) = Oy (8,‘]( - n,'nk) ..... (2)
The shear stress magnitude [Fig. 1(a)] then is

T=V TiTA = [Sksm (Bkm - nknm)]l/2 = [Giko'jmninj (akm - nknm)]l/2 """" (3)

The components of the unit vector t of the shear stress resultant, rep-

X3

(a) (¢)

FIG. 1.—Active Plane: (a) Stress Components; (b) and (c) Rotation of Active Plane;
(d) Initial Octahedral Orientation; (e) Rotated Active Plane; (f) Loading Surface
on Micro-Level, f(¢",1") = 0; and on Macro-Level, F (7,m) = 0 (CSL = Critical State
Line)
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resenting the direction of the maximum shear stress on the active plane,
then are

The unit vectors n and t, together with the lateral vector m = n x t
(whose components are m,), define a local cartesian coordiante system
for the active plane [Fig. 1(a)].

Since we will try to formulate the stress-strain relation using only the
stress components on the active plane, we need to answer the opposite
question: Given the values of n;, t;, ¢ and 7, what is the associated mac-
roscopic stress tensor o} ? The answer is any tensor satisfying the con-
dition
O = O T 5)

The solution of this equation is not unique; any tensor such that

0'5;’=0',,—g,t]—h,m] ............................................ (6)

with arbitrary constants g; and #;, satisfies Eq. 5. The tensors ¢} and o
may differ by arbitrary normal stresses in the directions parallel to the
active plane, i.e., o}t and of'm;. Because these normal stresses are ir-
relevant for the stress state on the active plane, we may choose them
arbitrarily, and we choose them as zero;

(T,’;]t] = 0, (T,I;Jm} T (7)

Now, multiplying Eq. 6 by m; or ¢;, and noting that m;t; = 0 (a scalar
product of two orthogonal vectors), we find that 8i = (05 — a)t;, hi =
(o — cf}') m; from which, according to Eq. 7, g = oyt;, h; = o;m;. Sub-
stituting this into Eq. 6, we have o) = o — git; — hym;, = g, — o (tty +
mim;). This may be further simplified using the relation

n,n/- + t,t] + m,‘m]' = 8,} ........................................... (8)

expressing the fact that the vectors (1, ¢;, m;) and (n; ,t;,m;) are orthog-
onal if i # j and parallel if i = j (because these vectors represent the
projections of the unit vector of axis x; or x; onto the coordinate system
n, tand m). Consequently, we have cf-}’ = 0y = 04 (3% — n;ny), from which
we finally obtain

(T,’;I TS OGRNET o e e e e e e e (9)

or alternatively of = S{'n; in which S¥ = ¢)n, = o,n,. The normal and
shear components of tensor (rf-]‘-' are the same as those of tensor o and
are

o =8Nn, = af
N
ij

n]‘ n;, = Oxhin;

TN = S,Nt, =0 n]-t,- = 0, rljt,- ...................................... (10)

.

The macrostresses o} represent the stress resultants over a full unit
area of the active plane. However, only a certain fraction, v, of the active
plane resists stress, while the remaining area due to cracking or damage

carries no stress. Denoting the resisting area fraction as m, the micro-
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stresses, which approximately characterize the true stresses in the mi-
crostructure, may be expressed as

1 1
0';]" = _O'f*;] = T_]U,'knkn]’ = ;SINVII = S,"n, ............................ (11)

The normal and shear microstress components on the active plane are

1 1 1

o =—0'N=—0',7~n]-n,-=—5,~n,v= 5,'-'71,» ............................. (12)
m m "
1 N 1 NN 1 N __N 172

=—qV == V T,' T,‘ == [(T,'ko']‘mn,‘n/'(ﬁkm - rlkn,,,)] N (13)
n n n

As the material deforms, the active plane in general rotates. Denoting
as { is the angular rotation rate of the normal of the active plane, we
may write:

e (14)

The fact that vector n rotates in the plane (n, t) is merely a hypothesis,
albeit a reasonable one. That n should turn in the t direction is suggested
by the fact that shear causes the plane of maximum extension (the weak-
est plane) to rotate in the direction of {; see Fig. 1(b,c). ‘

In view of the rotation of normal n, we need to distinguish the rate
of stress with regard to the material, denoted by superimposed dot, from
the rate of stress on the active plane with regard to the coordinate sys-
tem n, t, m that rotates with the active plane. This rate may be called
co-rotational and denoted by a superimposed triangle. It must not be
confused with the co-rotational rates or objective stress rates known from
the theory of finite deformation; we deal with small deformations only.

Let us now seek the co-rotational magrostress rates. In terms of the
microstresses we have o™ = (najnn)*, ™ = (moint)?, from which we
obtain

g'N = T]O':;n]n, + 21’]0’;;7’[,”1] + 1']0',7',»n,~n,- ............................... (15)
A .
TN = no;}n,t, + 'T]O',’]' 1; t + T]O';;n}t, + ‘T]O':;n] b (16)
The co-rotational terms are those with 7; and # and the remaining terms
represent partial derivatives at constant n-direction. Eqs. 15-16 may be
simplified by substituting t, = —(¢"/7") t,{, ojmn; = 0", 6imn, = ",
Gymt; = 1", ofhn; = oinit;{ = 7'f, and by introducing the simplification
o g n _ ! . .
(r,-,-n,-t,- = T]O',lt]tlg = T]O',g = O, this ylelds

oV = n(d" + 27" + " 3) ...................................... (17)
M
N = n(i',, -+ H) ........................................ (18)
M

The last simplification rests on the assumption that gjit;t;, represent-
ing the normal stress ¢, in the direction parallel to the active plane, van-
ishes. In the strict mathematical sense this is not true, but physically it

seems reasonable since the normal stress along the contact layer be-
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tween adjacent aggregate pieces should generally be small and anyway
have a negligible effect.

Since Eqs. 17-18 are basic for the present formulation, it may be help-
ful to rederive them in an alternative way. Consider the stress transfor-
mation due to rotating the coordinate axes through angle A{ around axis
m [Fig. 2(b)];

o' =0cos?{ + g,sin® { + Tsin 2{
T =7c0820+ (0, —0)SINLCOSL ..o vvvniii i (19)

where the primes label the normal and shear stress after the transfor-
mation, and ¢, is the normal stress in the t-direction. For a small rotation
angle, { = {dt, and setting o, = 0, as explained above, Eq. 19 simplifies
as oN' = gN + 27N[dt, TN = N — gN{dt (now written for the macro-
stresses). At constant magnitudes of the stress i}’ompolglents, Lhe co-ro-
tational derivatives are Xhen obtz_iirled asa = (¢ — ¢ )./dt, T = (1" —
™)/dt, which provides o" = 21, 1V = —o™{. Then, adding the rate due
to the changes of magnitude of o" and 7", we obtain the following co-
rotational derivatives of the macrostresses

GV =GN+ 20V N =N N (20)

and in terms of the variable area of fraction, v, we finally have

o = n(d" +a" 3), N = n(*" + 3) .......................... (21)
n |

Substituting this into Eq. 20, we obtain again Eqgs. 17-18.

MicRO-MACRO RELATIONS FOR STRESSES AND STRAINS

The normal and shear macrostresses on the active plane may be ex-
pressed in terms of the principal stresses o, 0, and o3 as follows

B R e o 1 S (22a)

™ = [(o1 — o)’ nind + (02 — o3)’nind + (03 — o ’n3ni]? Lo (22b)

Note that the direction cosines appear only in their squares. Therefore,
as long as the stress-strain relation for the macroplane ignores the ori-
entation of vector t within the active plane, the relations are the same
for all the planes for which n%, n} and n} are the same. Thus, four active
planes actually exist, and are characterized by the normals (n;,n;,n3),
(—ny,n,13), (ny, —nz,m3), (n;,n,, —n3). The negatives of these four vec-
tors also yield the same ¢ and 7" (Eq. 22), however, they represent the
same planes. Thus, the stress-strain relations that we are going to for-
mulate will actually apply to four distinct planes even though we will
speak of only one active plane. . ‘ .

In plasticity, it is customary to formulate the stress-strain relations in
terms of variables p and g defined as p = o/3 = (01 + 02 + a@3) /32and
q= \/]_2, where [, = sijsx'j/z = [(oy — 02)2 + (o7 — 0'3)2 + (o3 — 0y)]1/6.
The principal stresses may then be obtained as
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. 2
sin {60 +-=«
] ) 3
Orp = —2= Sln9 F
Vel +p @
g3 . 4
sin 6+E11'

in which 8 = (1/3) arcsin (-3V3 L/2g), I, = 6,003, and —7/6 < § <
w/6.
Using Eqgs. 22-23, one can derive the following matrix relations

o p 1 0
{TN} =0 {q ;=1 _a, L EER R R TR LR ETPERPPRRPS (24)
A A
O,N} 01 [ n? n2 n? N
=T {ag,\; T'= ! z 3]; { }= To. ... 25
{TN 02. pini pini  pand ~f 9 @)
3

in which o = (61;,0%,03,012,03,03)", superscript T denotes a trans-
pose, and

. 2 4
A.,:—[n‘l"sm <9+§1r) + n3sin  + 2 sin <9+§w)];

41 , ., 2 2 .2 2 4 v
AT=§ 2sin 9+5,n. + n3 sin’ 0 + 7] sin’ 9+§1r —A%:

p—[zsin<0+2> A]l (Z'GA !

=== )= A | p=|— - A, =

" lv3 3 4, PT\a A,

ot

= [—sin A

S BV 3" A, (26)
Ni N Ty
N% ) N2T2
N} N;T,

Furthermore, =
e, Q= NN, T, + N,T)
2NiN; (N1T5 + N;Ty)

2N,N; (N;T5 + N;Ty)

in which components N;, N,, N;, and Ty, T,, T; of unit vectors N, T
are defined in the cartesian coordinate system x; (i = 1, 2, 3). The re-
lations between components n; and N;, and between t;and T;, take the
form N,‘ = P,']'nj, T,' = P;‘l);tk, tl =n1py, tz = o, t3 = N3p3 in which matrix
P transforms the components of the unit vectors n, t from the principal
directions into the cartesian coordinate system. In the loading step (r,
r + 1), the normal is updated according to the relations:

—_ -1/2
Moy = REMIN)Y2, ¥ =m 4, AL (28)

404

Noting that (n; + £A0(n; + £;Al) = 1 + A%, we may simplify Eq. 28 as
A+ ALY 2 29)

Furthermore, expressing ¢; in terms of A, and A,, we may obtain the
recurrent relation

I (n; + ALt = (o’i — gV n,) 30)
ir+1) [(nk + AL tk)(nk + Ac tk)](r) ’ ) TN i o

in which (Tli + Acti,)) = [n,~(1 + Acpi)](r) ’ [(nk + Ac tk)(nk + Agtk)](,) = My
+ 2tm AL + BHEAL = 1 + AL because men = 1, £n; = 0, tit, = 1. Con-
sequently,
1+ pAL

nl r+ = n

" VTTag

As the initial condition (stress-free state, isotropic properties), no par-
ticular direction may be favored, and so it is necessary that n; = n, =
ns = 1/V3. Thus the initial orientation of the active plane is the same
as for the von Mises yield criterion.

The normal and shear macrostresses and microstresses are related as

Rigy = (ni(y) + ti(r)

R R Y (31)

According to the hypothesis of a single active plane, the energy dis-
sipation written in terms of the stress and strain components on the
active plane must be equal to that written in terms of the macroscopic
stresses and strains, as well as that written on the active plane in terms
of the microstresses and microstrains;

VeV + YN = pe, + ¢, NN + VYV = 014, + 026, + 0,65
. N.-N i , R . . .
O'NﬁN +7 Y = O0n€n + T €y + O33€33 + T12€12 + O73€73 + 031 €31
NN + AN = O e T (32)

Although there are normally four active planes, we rewrite Eq. 32 for
only one active plane. This can be done because the left-hand sides of
Eq. 32 are the same for all the four planes, which means that merely a
factor of 4 is omitted; this is irrelevant because only the relative values
matter.

Now substituting Eqs. 24-26 and 31, and noting that Eqs. 32 must
hold for any possible values of stresses, we obtain the following rela-
tions



= A MY (36)
in which € = (é;1,éx, €3, €12, €, €31)".

ConsTITuTIVE RELATION FOR ACTIVE PLANE

First we need the elastic parts of the normal and shear strain rates on
the active plane. They may be expressed as

€ " k, O
{ﬁe}=c{;ﬂ}, C=[O k] .................................. (37)

Note that one can introduce an elastic potential function ¥ = 1/2 (¢", y*)
C (", ¥")" from which the stress rates may be obtained as ¢" = (3¥/
de”)’, " = (8¥/9y")". In writing Eq. 37, we lump all the elastic defor-
mation into the active plane. Although this might not be quite true, it
is convenient to do so, especially since the resulting elastic part of the
macroscopic stress-strain relation is the same as usual.

As for the formulation of the inelastic part of deformation, note that
it should be written in terms of the microscopic rather than macroscopic
stress and strain rates on active planes. This is because these rates de-
scribe the changes with regard to the material coordinates. The use of
microstresses is convenient because they relate to the true stresses that
act in the resisting area fraction (i.e., unfractured, undamaged fraction)
of the material, which makes it possible to relegate the softening of the
material entirely to the growth of the area fraction m. Furthermore, since
strain softening is in this manner eliminated from the constitutive re-
lation for the microstresses, it is possible to use the mathematical frame-
work of plasticity, which represents the simplest, most consistent, and
numerically trouble-free approach to constitutive relations. The use of
plasticity for the microstresses instead of the macrostresses is better jus-
tified because strain-softening, the chief objection to the use of normality
rule (or Drucker’s postulate), is modeled principally by the reduction of
the resisting area fraction n. Nevertheless, we should be aware that an-
other objection to the normality rule, namely that of friction, is not elim-
inated by the introduction of the resisting area fraction n and the cor-
responding microstresses.

The simplest loading surface which exhibits the principal features of
the behavior of geomaterials, including concrete, is the loading surface
used in the so-called critical state theory for soil plasticity. This surface
has the form of an ellipse in the shear stress-normal stress space. The
ellipse changes its size and shape according to neither isotropic nor ki-
nematic hardening, but in the simple manner depicted in Fig. 1(f). The
elliptical loading surface may be written as

fle", ") = - RO =00+ 0 =0 oo (38)

in which p is a material parameter characterizing internal friction, and
o, and o, are hardening parameters which may be regarded as the cur-
rent values of the tensile and compressive strength limits; Fig. 1(g).

According to the normality rule, the inelastic rates of the normal and
shear microstrains on the active planes are

406

&=\ of ;o= x"—{ ........................................ (39)
do” a7

in which \ is a certain common multiplier. The total rates of normal anFl
shear microstrains on the active plane then are the sums of the elastic
and inelastic components, i.e., € = ¢* + ¢, 4" = 4" + 3", which then
yields

f; v"=k:1+"+x31 ........................... (40)
" at"

¢k A
3

To determine A we use the usual procedure in plas.t'icity. Because f(¢”", 7", 0;)
= 0 at all times, we must have f(¢",7",0,) = 0, i.e.,

d ad
of ¢"+—1+"+—£d,=0
ac” ar" day

f(o'"/ T,0y) =

which is in fact Prager’s consistency condition. Substituting Eq. 40 into
Eq. 41, we have

af da, .

a0, o™

in which f, = 8f/do,, f. = 8f/97,. Now we may solve this equation for
A and obtain

- (foko€" + fiki")
A= ———-—————H
in which H = f2k, + f2k. — (3 f/ao,)(acf/ae"”) fo - Later we will introduce
an expression for (8f/da,)(80,/ 9€") f, = a0y f,|f,|, which then permits solymg
£,(3f/0€™) = afn|fsl, with f, given later by Eq. 45. Then we substitute
Eq. 43 along with the expression for H into Eq. 40, and solve Eq. 40 for
¢" and "; this yields the tangential relation for the normalk'and shear
components of the microstresses and microstrains on the active plane;

fﬁka) fof:
1-22); —kok,
L5

- o |15
i —kok,%; k(-1 |

foko (€% = Mf) + fik (3" = M) +

H

Note that the matrix of this equation, representing the stiffness matrix
for the active plane, is symmetric. This is a necessary consequence of

the normality rule. . .
Further, it is necessary to specify the hardening-softening rule for the

evolution of the loading surface as well as parameters m and . Similar
to many previous works on plasticity, it appears possible to descr1.be the
decay of tensile strength in terms of the path length of the inelastic nor-

mal strain;
G = e I (45)

in ‘which o and f/ are constants, f{ being the initial te.nsile st}-ength \{alue.
Without the decay of tensile strength, it would be impossible to fit the
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test data. Note that Eq. 45 indicates tensile strength decay even for com-
pressive loading with regard to the active plane, and for cyclic loading.
The parameters n and { appear to be approximately functions of the total
accumulated inelastic normal and shear strains on the active plane, and
the following particular forms have been found to work reasonably well
" W~ Wy — oy '
m=e; [=-— ;o= wge Y (46)
w3

in which ap, w, and v, are empirical constants. Eq. 46 implies that the
initial conditions are m = 1 and { = 0.

Note that { is a cumulative angular rotation, which represents an ac-
tual angle only if vector n has constant direction during the loading pro-
cess. If the direction of n is rotating, then { represents no actual angle,
but only a sum of all the previous rotation angle increments.

Macroscopric ConsTITUTIVE RELATION

The microscopic constitutive relation given by Eq. 42 (for loading) must
now be translated into a macroscopic constitutive relation. This can be
done by using the previously determined micro-macro relations for the
stresses (Egs. 24-26). From these relations we obtain

M - & S L @
an =1 g = ko k| e )

2k, (1 1 ofiks
inwhich K, =k, + f—— (-— o"ag — k0> + - 21-"wff— .......... (48a)
H \n m H
o Tk’l’ 1 1 sk,r
K, = L <— o oy — k(,> + - ZT"wf—— ......................... (48b)
H m M H
K f"f*k°(1 " k) + L gy Lok (48¢)
o = -c"w —k, S S+ 7 e PP C
H \n n °H
ke (1 -1 ofks
K..=k, -—f <— c"w+ kT.) + —T"(XOL ..................... (484)
H \n M H

This relation holds only for loading on the active plane. For unloading
on the active plane it must be replaced by

== [y ) ”
an = 0 kJLgn) (49)

Furthermore, using the previously derived matrices Q, R and Q, we
may obtain the following form of the stress-strain relation

{Z} =(Q"K™! Q)—I{Z”} ............. e (50)
q

o &
BY=RTKI'RY W&l o (51)
(o &

= (Q K T Q) € i (52)

The last form, with the full 6 X 6 stiffness matrix, is the form generally
required for finite element programs. However, for fitting test data it is
more convenient to use Eq. 51 with the 3 X 3 stiffness matrix; this form
of the stress-strain relation is admissible only if the principal stress di-
rections do not rotate and if they coincide with the principal strain di-
rections. In general, of course, the principal stress directions do rotate
and do not coincide with the principal strain directions.
As in plasticity, the loading criterion is

BP0, 7)) > 0 oot (53)

If this criterion is violated, the stiffness matrix must be changed to the
elastic stiffness matrix. After that, the elastic stiffness matrix is used
throughout unloading and reloading as long as f(¢",7") < 0. During un-
loading and reloading the orientation of the active plane (which is in-
active) is kept fixed. Plastic deformation starts again when f(c",7") at-
tains a zero value.

As an alternative, the constitutive relation could be also set up entirely
on the macrolevel. For that purpose, the plastic loading surface would
have to be expressed in terms of the macrostresses, i.e., o1, 0, 03, Or
P.g OF G11, Op, ... 03 . Such a loading surface is illustrated for the present
model in Fig. 1(f,g) (right). The expansion or contraction of the mac-
roscopic loading surface in the (p,q) space is governed by parameter m,
while the change of shape of the surface is governed primarily by the
rotation of the active plane [Fig. 1(d,e)].

IDENTIFICATION OF MATERIAL PARAMETERS

One principal advantage of the present model is that the material pa-
rameters are few and can be easily identified from test data. Material
parameter identification begins with a uniaxial compression test. For the
sake of simplicity, we assume the stress-strain diagram to be linear up
to the elastic limit at which a sudden decrease of slope occurs. The pres-
ent model could no doubt be adjusted to also represent the curved shapes
of the rising branches of the uniaxial and biaxial stress-strain diagrams
and obtain correct initial elastic moduli. However, this would mean more
material parameters and a less simple identification procedure. The prin-
cipal intention of this paper is to show what can be achieved with the
simplest model.

The elastic limit is considered as o, = f/, and the correesponding strains
are denoted as €; = €] and €, = ¢, . Using the elastic stress-strain relation
(Eq. 37), we obtain the following expressions for the elastic stiffnesses;

I (S e (54)
3(er + 2€5) (e — &)

Furthermore, using the known value of the uniaxial tensile strength f;,

o
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we obtain according to our loading function (Eq. 38) the expressions

0—1a< 1+——1> =oi+a 55
gl == P e o
: . t (55)

N 6 + 3p’
inwhich a=———f/; b=101+—....................... (56)
T

Further we use the equi-biaxial compression strength f”, i.e., the limit
of elasticity in biaxial compression with o; = o, . Using the micro-macro
relations for stresses in Eqs. 24, 25 and 31, we obtain ¢" = 2 fi/3, " =
f¢V/2/3 and substituting this into the initial loading surface (Eq. 38) we
acquire the following condition from which the internal friction param-
eter p can be solved;

9
f2(1 - 2ph - 3fin*(o. — o)) + 2 oo =0, (57)

Next we need to use the hydrostatic compression test (¢; = o, = a3)
to identify parameter o, . For this test we have P = k.€, until the limit
surface (Eq. 38) is reached. The subsequent inelastic behavior is defined
by Eq. 48 and Eq. 50, which simplify because f, = 0, 1 = 0, ¥* = 0. Thus
we find

P = B Kooy « o (58)

N foke (1

in which kg, =k, + =0 g — ko) o (59)
mn

H=fiko + 0i0ifolfol for==p2O.~0) oo, (60)

Here, for hydrostatic compression, we have f,, = 0, and thus Eq. 58 is
reduced to p = payé, . Integration then yields

P = 0T (61)

in which € = o./k,. By matching the exponential curves in Eq. 61 to
the measured hydrostatic compression diagram, one can easily identify
parameter ag .

Parameters ay and o; govern the softening properties in uniaxial
compression. Knowing already the values of parameters k, , k., 0., o?,
w and oy, it suffices to assign only the value of a; in order to be able to
plot the strain-softening diagram for uniaxial compression. By choosing
various a;-values, the proper value can be found in a trial-and-error
manner.

Eq. 46 for m and {, and particularly parameters w, and o, from Eq. 46,
control principally the shape of the failure surface (the maximum load
surface) in the octahedral cross section. This shape is rather sensitive to
the evolution of the orientation of the active plane, characterized by the
relations #; = {f, and { = w¥". The shape of the failure surface in the
octahedral cross section is not known very accurately; however, it is gen-
erally agreed that the surface is noncircular at low hydrostatic compres-
sion, having the shape of a rounded triangle, and expands to a nearly
circular shape at a very high hydrostatic compression (the circular shape
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corresponds to the von Mises or Drucker-Prager failure criteria). The
present formulation with Eq. 46 provides this type of failure surfaces in
the octahedral cross section. Moreover, it has been found empirically
that parameters w, and w; may be considered to be about the same for
all concretes and can be fixed once for all as

Wy =80Psi; @ =b5wg.. ... (62)

Since parameters w, and w; can apparently be fixed for all concretes,
there are only six free inelastic material parameters to be found from test
data: f{, €1, €, a9, @;, and . This is indeed a relatively small number
of parameters. Moreover, these parameters need not be solved simul-
taneously from the given test data but may be identified in sequence.

CompaRISON WITH TEST DaATA

Important test data from the literature (2,9,11,12,13,15,22,24.1,28) have
been fitted with the present model; see Figs. 2-4. In these figures the

(@) -—=— Popovics formula
| — model
_ .= 4650 psi
PV NS biaxial (G=0,, 75=0)
\,
-ab 4 (€4=€,)
0
4
o J/
5 | /
9 y/ uniaxial (g,=c3=0)
o /
< 11
w2 )
/
!
/
!
- 7,
ll
O 1 1 1 1
] -0.002 -0.004 -0.006
strain e,
-4 -~ -
(b) 7 , Sinha, Gerstle,

- Tulin, 1964
fo= 3750 psi

axial stress o3, ksi
1
[\9)

O
@)
|
O
O
o
@

axial strain €,

FIG. 2.—(a) Fit of Uniaxial Test Data by Popovics (19), and (b) Fit of Uniaxial Cyclic
Compression Data of Sinha, Gerstle, Tulin (25)
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data are represented by the data points, and the present constitutive
model is plotted as the solid curves. Unfortunately, no sufficiently large
data set exists for one and the same concrete, and therefore, test data
for different concretes with different strengths have to be used at pres-
ent. The material parameter values obtained by the foregoing material

N
)

identification procedure are listed for all these data in Table 2. Note that
the material parameter values for the lowest strength concrete (f: = 3,570
psi) differ appreciably from those for the other concretes, which are of
a considerably higher strength. Especially, it may be noted that for this
concrete at oy = f. the axial strain is very large (e; = 0.05); obviously,
this low strength concrete is quite soft and therefore not very well com-
parable with the other concretes.

The fit of Popovics’ empirical formula (22) [Fig. 2(a)] and Balmer's test
data (28) [Fig. 2(b)] demonstrated a good representation of strain-soft-

TABLE 2.—Material Parameter Values ldentified by Data Fitting

ar %@—0’3), ksi

fe=7020 psi
1

L
0005 0

5005 ~0010 -0015
.7;60 lateral strain €, axial strain €,
X k7]
g X
- o]
[0 "]
g 8
240 2
-204
5 Schickert,
aimer;, 1949 Winkler, A
1-3570 psi 1977 12 2 72
Q " L L 1 str‘elsg DOtt\ 1
0 -0.02 -0.04 0002 O -0002 -0006

axial strain € €,-€5 at €,=€, €4-€,

FIG. 3.—(a) Comparison with Balmer’s Triaxial Test Data (2); (b) Fit of Triaxial Test
Data of Green and Swanson (11); and (¢) Fit of Experimental Nonproportional Triaxial
Stress-Strain Data of Schickert and Winkier

(@) = (b)
€s biaxiat_ o ¥ [unixial °
1_ g L\ =&
5
2 2
o o |
€,2€, oHe - %)O-B
oal® o uniaxial | & _ Rush, 1969 05
Q-E [ T,
ST B A 1-4650psi
};- oa Kupfer, 204
o oo Hilsdor, 4
& o, Rush, 1963 |#
fe= 4650 psi g
L L | O 1 | 1 L ’—o;/,
0.001 O -0001 -0002 o) -0001 -0002 e

lateral strain €, axial strain €, volumetric strain

FIG. 4.—(a) Fit of Axial and Lateral Strain Diagrams; (b) Volume Change Dia-
grams; and (c) Biaxial Failure Envelope of Concrete for Uniaxial and Biaxial Tests
of Kupfer, Hilsdorf and Riisch (1963)
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4,650 -0.0023 0.00075 100 500 0.5 50 300
4,930 | -0.0023 | 0.00075 | 100 | 500 | 04 | 50 | 300
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FIG. 5.—(a) Standard Triaxial Stress-Strain Diagram for Concrete; (b) Nonstand-
ard Triaxial Stress-Strain Diagram for Concrete; (c) Failure Surface for Triaxial
Compression Test, Concrete (f. = 4,640 psi)
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ening and unloading after strain-softening. Due to the use of secant
moduli, the rising branch does not start with the correct initial elastic
modulus. However, the present model could doubtless be adapted to
describe the correct initial glastic modulus if further parameters were
introduced. In particular, this could be done by introducing a depen-
dence of the rotation of the active surface on the total strains. The ma-
terial identification, however, would then become more involved.

Note also in Fig. 2(«) that the failure surfaces on octahedral (w plane)
projection have the well-known non-circular shapes (24) even though
the third stress invariant is not used in the plastic loading function; this
shape is a consequence of the rotation of the active plane.

The biaxial failure envelope (15) for plane stress, representing a col-
lection of the peak stress points for proportional loading at various con-
stant stress ratios, is fitted in Fig. 4(c). Its shape is reasonable, although
it gives much too high strength values in the compression-tension quad-
rant. This could be avoided by using, instead of Eq. 38, the loading sur-
face f = 7" + (€ ~ o})(o! + £ = 0 with £ = (co, — 0)'/K", 0! = [(c — 1o,/
k)", o/ = [(c = 1)/0./k]". Three additional parameters ¢, k, n would then
have to be identified.

In Fig. 2(b), representing cyclic uniaxial compression data for large strains
(28), no attempt was made to describe the hysteretic loops. However,
the overall representation is satisfactory. The fits of the data by Green
and Swanson (13) and by Schickert and Winkler (24) in Figs. 3(b,c) and
5(a,b) are also acceptable, with errors in the range of typical scatter of
measurements.

In judging the goodness of the fits in Figs. 2-5, one should realize
that only six free (and two fixed) inelastic material parameters are used
(Table 1). Closer fits would no doubt be possible with more elaborate
formulas involving a greater number of parameters.

SuMMARY AND CONCLUSIONS

The present constitutive model has the following basic characteristics

1. A certain active plane is assumed to exist such that the constitutive
relation may be written as a relation between the normal and shear stresses
and strains on this plane.

2. The orientation of the active plane, initially coinciding with the oc-
tahedral plane, is not fixed but is assumed to vary during the defor-
mation process.

3. The constitutive law on the active plane is written in terms of mi-
crostresses (or true stresses) and microstrains which refer to the resisting
area fraction of the material.

4. The resisting area of fraction on the active plane and the orientation
of the active plane are variable and depend on the previously accumu-
lated inelastic normal and shear strains on the active plane.

5. The instantaneous axis of rotation of the active plane is considered
to lie within the active plane and be normal to the resolved shear stress
component on the active plane.

Since the constitutive law is written in terms of the microstresses (true
stresses) and the microstrains, it need not exhibit strain softening, which
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can be obtained on the macrolevel by means of a variation of the re-
sisting area fraction n which relates the microstresses (true stresses) to
the macrostresses. Consequently, the constitutive law on the microlevel
may be assumed to follow the classical theory of incremental plasticity,
including the normality rule. An incremental (tangential) stiffness ma-
trix, which is independent of the rates of stress and strain (except for
the choice between loading and unloading), exists and is always sym-
metric. For practical reasons, though, it has been convenient to include
tensile strain-softening due to fracturing on the micro-level.

The loading surface on the active plane is chosen to be of the same
type as that in the critical state theory for soils (Cam clay), i.e., an ellipse
(in the plot of normal stress versus shear stress) which expands (neither
isotropically nor kinematically) according to an evolution law for the ten-
sile strength and compression strength limits.

The important test data from the literature can be relatively closely
approximated with the present constitutive model (Fig. 2—4).

The present model involves only six free inelastic material parameters
to be identified from test data, plus two further parameters which are
fixed for all concretes and need not be identified from test data.

The material parameter values need not be identified simultaneously
but their sequential identification is possible, and is relatively simple.

To identify the inelastic material parameters, the following data are
needed: the compression strength, the tensile strength, the axial and
lateral strains at the peak stress point, the equi-biaxial strength in
compression, the approximate shape of the hydrostatic compression curve
beyond the elastic limit, and the approximate shape of the strain-soft-
ening diagram in uniaxial compression.

The model gives the correct non-circular shape of the failure surface
in the octahedral cross section; however, this shape is achieved auto-
matically, without fitting any test data on this shape. The noncircular
shape is caused by rotation of the active plane.
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