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Abstract—To facilitate numerical finite element analysis, it is desirable to endow the constitutive model
with normality, associatedness, continuity, convexity and absence of corners. Although these math-
ematical conditions represent only crude approximations of the actual behavior of concrete, it is of interest
to find the best possible constitutive model which meets these conditons. This is one objective of the
present paper. The second objective is to develop a model which permits a simple identification of material
parameters from test data. The material parameters need not be obtained by simultaneous nonlinear
optimization of the fits of all data. Rather, they are obtained in sequence through a precisely defined
procedure which involves solving two systems of linear equations. The model describes not only hardening
but also post-peak softening under various triaxial stress states. The model agrees well with the available

basic test data from monotonic loading tests.

INTRODUCTION

The last dozen years have seen the development
of a number of sophisticated constitutive models
for nonlinear hardening and softening response of
concrete[1-15]). The present paper develops yet an-
other model, since the existing models still have some
serious shortcomings. The material constants are not
easily identified from the given test data, and in-
fringements against the basic rules of classical plas-
ticity in some of these models may cause certain
numerical difficulties in finite element programs. The
objective of the present model is to eliminate these
two shortcomings.

The endochronic model [1, 2, 4, 5], whose first ver-
sion, published in 1974, was perhaps the first realistic
nonlinear triaxial model for concrete, requires that
15-20 independent material constants be determined
simultaneously by non-linear optimization of data fits
with a computer program for incremental loading.
This task is surmountable but tedious and requires a
specialist with a good deal of insight, experience and
patience. No doubt this is the main reason why
applications of this powerful theory have remained
limited even though its use in small as well as large
finite element programs has been proven workable
[5, 16). Moreover, certain discontinuities in the for-
mulation have been perceived as a potential source of
trouble with convergence, even though such troubles
have not arisen in numerical applications {17]. Similar
comments can be made about the plastic-fracturing
theory [3] developed in 1977. A further shortcoming
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of these early models, which was not obvious from
the experimental evidence at the time of their devel-
opment, was that the post-peak strain-softening did
not lead at very large strain to a complete reduction
of the stress to zero (this will be assured by the
present model).

Models that consist of a total stress—strain re-
lation [6, 18], which should properly be enhanced by
an additional path-dependent correction, might be
most realistic for monotonic loading, but are discon-
tinuous upon transitions to unloading. This makes
their use in general-purpose finite element programs
suspect. On the other hand, the existing models
following the classical framework of plasticity, which
ensures trouble-free numerical application, are quite
limited in their data fitting capability and generally
do not describe the post-peak softening.

The present paper, which represents a refinement
and extension of a previous version by Chern et al.
[19], seeks the best possible model whose material
parameters can be easily identified from test data, and
which at the same time adheres to the basic con-
ditions of classical plasticity desired by numerical
analysts: (1) normality rule (for the determination
of the inelastic strain increments from a loading
surface), (2) associatedness, (3) convexity of the load-
ing surface, (4) continuity and (5) smooth loading
surface, i1.e. absence of corners.

Gratifying though the attainment of these objec-
tives might be, we must nevertheless keep in mind
that the reality is more demanding. A complete
description of concrete would certainly require mul-
tiple loading surfaces and deviations from normality,
etc. due to internal friction and microcracking. More-
over, a constitutive model per se, no matter how
sophisticated, cannot provide a complete description
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Fig. 1. Loading surfaces of various properties.

of concrete. As transpires from the latest research on
strain localization instabilities due to strain-softening
[20, 21}, the constitutive model must be combined in
some way with a fracture mechanics approach which
captures the nonlocal properties of the material and
serves to restrict the localization of strain-softening to
a finite volume. Due to the neglect of these aspects,
which are beyond the scope of the present paper, we
cannot expect a very close agreement with all test
results. '

LOADING SURFACE

As an acceptable approximation, concrete may be
assumed to be isotropic. The dependence of the

loading surface on the stress tensor o then reduces to
a dependence on the stress invariants. There are three
independent stress invariants; we will use the mean
stress o, (identical to the octakedral normal stress),
the octahedral shear stress 7,, and the similarity angle
#; they are defined as

3\2/3131{3’2 0y

oo=11, 1o=./3),, cosI =

in which I, = o,, = first invariant of stress tensor o
whose Cartesian components are o, J, =s5;5;/2=
second invariant of the stress deviator s, =0, — 6005
Jy = 5;5xS,;/3 =third invaiant of s;. The lower
case subscripts refer to Cartesian coordinates X,
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Fig. 2. Ellipse of critical state theory of soils and generation of the present slanted ellipse surface (shaded).

(i = 1,2, 3), Einstein’s summation rule is assumed,
and J; = Kronecker’s deita. Angle 6 represents the
polar angle in the deviatoric section, measured from
the positive ¢, direction, a,, 6, and g, being the
principal stresses. Always 0 <6 < n/3 [Fig. 1(c)].
The loading surface which we plan to formulate
must expand at small deformations to describe initial
hardening (as compared to perfect yield), and con-
tract at large deformations to describe progressive
damage or softening. In the volumetric cross-section
(04, 7o) of the principal stress space (a,, g;, 0;), called
the Renduli¢ plane, the surface must be asymmetric,
since the strength in compression is greater than in
tension, and must initially have a positive slope as the
hydrostatic compression —a, is increased, similar to
the Mohr—Coulomb or Drucker-Prager yield criteria.
At high hydrostatic compression —o,, however, the
loading surface must drop to the —g, axis. In con-
nection with the Drucker-Prager yield criterion, this
drop has been described in other works by a separate
surface called the cap, which usually forms a corner
with the Drucker—Prager surface. However, we want
to avoid using a corner because it complicates the
formulation. We avoid it most easily, while still
preserving the basic frictional-dilatant characteristics,
if we formulate the Renduli¢ section as an eccentric
ellipse [Fig. 2(a)]. Such an ellipse has been widely
used in soil plasticity and has been called the critical
state theory [22). The critical state is a term used for
the peak point of the ellipse, for which the normality
rule indicates zero plastic dilatation and zero plastic
compaction. This characteristic is quite critical for
soil response, but not as critical for concrete or rock.
The ellipse, borrowed from the critical state theory
of soils, provides an attractive simple loading surface,
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which was recently adapted for concrete by Zubele-
wicz and Bazant {15]. The shape of the ellipse,
however, is not ideal. We need a surface whose
rise towards the peak is closer to a straight line and
which drops after the peak toward zero more rapidly
than an ellipse. This feature (which was achieved in
Zubelewicz and Bazant’s work by rotation of the
so-called active plane) will be achieved in the present
model by slanting the ellipse to an egg-shaped surface
as shown in Fig. 2c.

The slanting of the ellipse is easily achieved by
multiplying the equation for the ellipse by an
equation for an inclined straight line which intersects
the tension axis outside the ellipse, at peint 6 in
Fig. 2(b). The ellipse, one axis of which lies on the
hydrostatic axis, is given by the equation

(-9

in which p and ¢ are the nondimensional mean
normal and shear stresses

p=oalfe, a=m1lf: &)

normalized with respect to the uniaxial compression
strength f.. A4, B, C are parameters of the ellipse;
p = —C gives the center of the ellipse, p = —C + 4
gives the apices on the p-axis, and B is the semi-axis
of the ellipse in the shear direction ¢ [Fig. 2(b)).
To slant the ellipse into an egg shape, wemultiply
the right-hand side of eqn (2) with the equation of the
straight line, ¢ = 4,(B, + p), in which [Fig. 2(b)] 4,
is the slope of the line and the point p = — B, is the
intersection point with the tension axis —p. If the
straight line intersected the p-axis between the apices
of the ellipse, which would occur for B, < 4 — C, the

@
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loading surface would have the shape of a figure of
eight. To prevent it, we require B, > 4 — C. Thus, the
equation of the slanted ellipse has the form

2 1/2
q= B{[l —(”’%) ](B, +p)} @

g =+ap+ap*+ap’y %)

in which n=1/2, ay= B,(A*— C¥)ja,, a,=(C*—
A*+2B,C)x,, ay= —(2C + B)a;, and ay= BYA*
For the sake of generality, one could allow a general
exponent n such that 0 <n <1. Equation (5) is
equivalent to eqn (4) only if n = 1/2, and this value
has been used for all data fitting.

Note that the slanted ellipse, shown in Fig. 2(c),
may be also obtained by taking the square root of the
positive values of a cubic parabola such that «, > 0.
Axis p is intersected at three points, which requires
that 4a3 — 2, > 0 [Fig. 2(c)]. This reveals that eqns (4)
or (5) give a two-branch curve. The second branch is
‘open. It is shown as the dashed curve in Fig. 2(c) and
is discarded for our purposes. The p-coordinate of
the peak point of the slanted ellipse, point 4 in
Fig. 2(c), is obtained by setting dg/dp =0, which
yields

or

[p]maxq=p0= _%(a2+ a%——) (6)
%3

This value is real under the conditon 4a—a; >0

stated before.

Equations (4) or (5) do not necessarily yield a
convex curve. Convexity is obtained only if the
p-intercept of the straight line is sufficiently remote
from the ellipse apex in Fig. 2(b), or more precisely
if the ratio 2 6/1 2 is not too small, i.e. (B, + C)/A4 is
sufficiently large. Denote by p, and p, the smallest
two roots of the cubic polynomial in eqn (5) which
represent the abscissae of the right and left apices of
the slanted ellipse [Fig. 2(c)]. By affinity transfor-
mations with regard to axis p and axis ¢ and trans-
lation in the p direction, one can prove that eqn (5)
is convex between p,,, and p,, if and only if the curve
y=[x(1 =x)(x +¢)I" with ¢ =(pg — pe))/(Pxy— Puy)
is convex for 0 <x < 1. Calculating the limiting
values of ¢ for various n and fitting them with a
polynomial, one can show that the condition of
convexity is:

for
n<05 ¢=20
n=051: ¢>0.003
n=06 ¢=>0.057
n=07. ¢2>0.145
n=08 ¢ >0.260. 0]

The slanted ellipse formulation is needed particu-
larly to describe the inelastic response at large strain,
which consists predominantly of microcracking (at
high shear stress) or pore collapse (at high hydro-
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static compression) and results in significant inelastic
volume changes which soften or harden the material.
The loading surface may be written in the form

F(6) = /3t,—r(8,p,7) ®)

in which t will be used as a hardening-softening
parameter. This surface will be assumed to coincide
with inelastic potential whose normal yields the
direction of the inelastic strain increment. In other
words, we assume perfect normality.

(a) Deviatoric section. As is now well documented,
the deviatoric section of a loading surface or potential
for concrete as well as geomaterials should have only
three rather than six axes of symmetry. For example,
the hexagon for the Tresca criterion [Fig. 1(d)] should
be generalized to the irregular hexagon for the
Mohr-Coulomb criterion [Fig. 1(e)]. The presence of
corners in the hexagon, however, is inconvenient
for numerical analysis and a smooth surface. is
preferable. Among simple surfaces, the circular von
Mises-type deviatoric section, assumed in the
Drucker-Prager criterion, is unrealistic for concrete.
The deviatoric section should have the form of a
rounded triangle shown in Fig. 1(c), which is closer
to a triangle (sharper vertices) at small hydrostatic
pressures and closer to a circle for high hydrostatic
pressures. These properties are documented by many
data, the first of which were probably those of
Launay and Gachon [23].

The earliest and shortest expression for the roun-
ded triangular deviatoric section was given simulta-
neously by Gudehus [24] and Argyris et al. [25].
However, as recently pointed out by Lin and BaZant
[26], this expression does not give a convex curve
when the ratio of the radial distances for the tensile
and compression meridians in the deviatoric planes
becomes too small (less than about 0.777), as required
for concrete at small hydrostatic pressures. There-
fore, we use a slightly more complicated two-
parameter formula which was proposed by Willam
and Warnke [27] as part of their five-parameter yield
criterion for concrete failure. This formula guaran-
tees convexity because for each sector 0 <9 < 60° in
the deviatoric section it represents a segment of an
ellipse, and these segments are matched so that the
slope is continuous. In terms of two independent
parameters r. and r,, representing the radial distances
to the compression meridian (0 = 60°) and to the

" tensile meridian (8 =0), Willam-Warnke’s formula

may be written as:

R +(2r,—r.)(2R cos 0 + 5r: —4r,r )"
2R cos 0 +(2r,—r.) ’

R=2(r1—r¥)cosH. )

r(@,p,t)=r.

(b) Shear-volumetric (Renduli¢) sections. Following
the egg-shaped slanted ellipse defined by eqn (5), the
radial distances vary along the compression and
tensile meridians as follows (n =1/2).



Concrete model with normality and sequential identification

Tensile meridian (8 = 0):

o, c 2 & 3~
r1=\/§tliao+a,—%9+az<?°> +a3<?°)] (10)

Compression meridian (8 = 60°):
g, g, 2 gy 3
=3l bt B+ B ) +8(2) |Loan

where t determines the size of the loading surface
(initially t = 0.6 17).

These equations involve eight parameters
®gs « + +» %35 Bos - - ., B3. However, only six of them are
independent since the two apices of each slanted
ellipse meridian on the p-axis must be common to
both meridians [Fig. 1(f)]. This means that the small-
est two roots of the cubic polynomial in eqn (10) must
be the same as for eqn (11), while the third and largest
root may be different.

HARDENING AND SOFTENING RULES

We must now define the rules for hardening and
softening which describe how the loading surface
changes due to inelastic strain that has taken
place. To make a simple, sequential identification of
material parameters possible, we will assume that the
loading surface defined by eqns (8)—(11) can only
expand or shrink radially. This is called the isotropic
hardening and is described by a variation of par-
ameter t. When plotted as g,/t vs r./t or g4/t vs 1, /7,
the loading surface is a single, fixed curve.

The isotropic hardening, to be sure, is a simpli-
fication. In reality, the loading surface may also
translate and change its shape. Shape changes
could be described by a variation of parameters
oy, %y, ..., B2, B3. Such a generalization, however,
would not only be too complicated but also offer only
a limited improvement, since in reality one must
expect many simultaneously active loading surfaces,
all of them varying their sizes and shapes. Moreover,
the existing data seem insufficient to determine any
rules for variation of ay,..., ;.

(a) Deviatoric hardening. In uniaxial compression,
the inelastic strain becomes appreciable at about
0.6 f.. Therefore, we set the initial value of r as 0.6 /¢,
and for the peak stress state we have © = f;. Since the
loading surface will be calibrated from the peak stress
values for various multiaxial types of test, the value
7 =f also indicates the peak stress in other types of
tests, provided they exhibit a peak point. The vari-
ation of 1 from 0.6 f; to f; characterizes the hardening
stage of inelastic response, which is known to be
predominantly deviatoric; see Gerstle et al. [18] and
others [8, 28,29). Therefore we assume the initial
hardening to be deviatoric, characterized in terms
of the effective strain ”, which may be defined
in an invariant manner by the work equality
1 de” =g, dej;, from which
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der = %%, (12)

T

where ¢; is the inelastic strain. Equation (12) is
guaranteed to be non-negative because, for hard-
ening, Drucker’s postulate is satisfied by our model.
Since €" approximately coincides with the axial
inelastic strain ¢; =¢, —g,/E, we have de"/dt =
¢’(t) = 1/H, where function ¢ (t) may be considered
identical to the plastic strain part of the uniaxial
compression curve €,/a,, i.e. ¢(o,)=¢/(0,)—a,/E;
¢’(6)) =d¢/do,, and H is calied the plastic hardening
modulus; H =dr/dé” =do,/de]. The deviatoric
hardening rule for the initial inelastic behavior
may be expressed as dt = H(t,g,,€")de” (for
de">0, 06/, <t <f)).

To describe the variation of H, one may assume
the rising part of the uni-axial compression curve
for 0.6f.<o,<f, to be a quarter-ellipse, i.e.
(t —0.6/)/(0.41.) + (A, —€")/A =1, in which 7
is substituted for the octahedral shear stress 1, and
A, = horizontal offset of the peak stress point from
the intial elastic tangent [Fig. 1(h)]. Calculating
H =dt/de” from this equation, the deviatoric hard-
ening rule takes the particular form:

0.4 £\? A,—€
- o de”,
dt = H de (Ap)__t—O.Gfée
06f:<t<f). (13)

Although the elastic limit is considered as 0.6 /7 in
all the present calculations, note that by changing it
one could control the curvature of the stress—strain
diagram at the peak stress point. Another possibility
(used in most calculations) is to define the curve (")
by a set of points on the basis of the uniaxial curve
o,(¢;), and interpolate between these points.

By defining the effective plastic strain, eqn (12), we
can extrapolate from the uniaxial stress—strain curve
to the stress—strain curve under any multiaxial load-
ing. The peak points of these curves agree with test
results quite well because they are based on one
loading surface, eqns (8)—(11), which is made to fit
the maximum stress states at various types of multi-
axial loading. If, however, A, is assumed to be
constant for all multiaxial loadings, the strains at the
maximum stress state are then found to differ from
the test data considerably for some multiaxial load-
ings. For example, for the proportional triaxial tests
of van Mier, the strain at peak was much less than
he observed, while the peak stress value was predicted
correctly. This experience indicates that the peak
point offset A, must be considered as variable.
In particular, A, appears to be a function of the
similarity angle 6, such that A, is maximum for
@ = 60° (uniaxial compression) and minimum for
0 = 0 (biaxial compression or uniaxial tension). This
may be described by introducing in eqn (13) the
following empirical function:
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A, = Dofo + (1 —a)sin”30] (14)

with m =2, and A,, « are positive constants (z < 1),
A, is the peak stress offset for the uniaxial com-
pression curve [Fig. 1(i)] and A, is the peak offset for
the effective stress—strain curve 1(€").

(b) Volumetrric hardening. After the peak stress, i.e.
after 7 has already reached the value of f, the loading
surface must shrink in order to describe the post-peak
strain-softening. This means that the value of t must
decrease. However, if there is high hydrostatic com-
pression, no peak exists on the stress-strain curve;
rather, there is continued hardening, i.e. the loading
surface continues to expand and t grows beyond the
value of f{. In this case, as well as in the cases with
a peak, the value t = f7 corresponds to the critical
state at which deg vanishes, i.e. the inelastic expan-
sion is zero (which in soil mechanics is called the
critical state). In the second stage of inelastic behavior,
the softening as well as hardening is dominated
by inelastic volumetric strain ¢; = ¢, /3. This strain
corresponds to tensile microcracking in the case
of softening, and to pore collapse in the case of
hardening.

When the volumetric inelastic strain ¢g is negative
(compressive), i.e. when the current state point is to
the right of the peak of slanted ellipse, the pores are
closing due to their collapse. So, the material hardens,
i.e. T increases. Experience shows that the following
simple expression may describe this adequately:

dr = —A;1de; (hardening, ¢; < 0)

(15)
in which 4, is an empirical parameter; the initial value
is T =f¢. In an integrated form, 7 =7, exp(—4,€5).
The hardening coefficient 4, may be identified on the
basis of hydrostatic compression data. This hard-
ening causes an expansion of the slanted elliptic
surface, as shown in Fig. 1b. ‘

The softening due to microcracking, which is ac-
companied by inelastic volume expansion, results in
a decrease of 7, manifested by shrinking of the slanted
ellipse as shown in Fig. 1(b). This may be approxi-
mately described, as data fitting confirmed, by the
simple expression;

dt = —2Ate; deg

(softening, deg > 0). (16)

For constant A, this equation may be integrated as
T =1, exp(—4%y?). It appears that for large enough
joo| the value of A may be considered as constant,
4 =X, for tension (6,>0), and another constant
A =14, (6,<0) for compression (o, < 0). Typicaily,
A 104,

The transition between hardening and softening
defined by eqns (15)—(16) is continuous because for
deg — 0 there is no hardening or softening. The
transition between softening under tension (6,>0
and ¢g > 0) and softening under compression (¢, < 0
and ¢4 > 0) would be discontinuous if 4 were equal to
4, for all tension states, and 4. for all compression
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states. Therefore we choose a continuous transition
from A to 4, such that

an

100, \*
T

A= l.+(}.c—}.,)<§+§tanh -—) .

Temperature and moisture effects could be intro-
duced by means of additional rules for the variation
of parameter 1.

NORMALITY RULE AND CONTINUITY

Lest problems with convergence would be encoun-
tered in computation, we prefer to adhere to the
normality rule even though it is not necessarily
applicable to materials that exhibit internal friction
and microcracking. Thus, in analogy to classical
plasticity, we assume:

8
de;=£<dz> G =F)
i

(18)
in which G(g) represents the inelastic potential
surfaces, and {di) =di if dA >0 and {di) =0 if
di <0. Equation (18) with dA = (dF/ds,,,)doy,,
(where F = loading surface) was proposed as early as
1938 by Melan [30].

Since fulfilment of Drucker’s stability postulate is
not a necessary condition for materials with micro-
craking and friction, the potential G could in general
be different from the loading surface F, which would
represent a non-associated normality rule analogous
to the classical non-associated plasticity. Again, how-
ever, it is preferable for computational reasons to
assume an associated normality rule. Aside from that,
no strong experimental evidence seems to require
non-associatedness. Therefore, in all calculations
with the present model we assume that G = F.

The total strain increment may now be expressed
as

de;=de§ +dej + del + de + def (19)
in which dej; represents the elastic strain increment,
and de}}, de3 and de are the thermal, shrinkage and
creep strains, the formulation of which is beyond
the scope of the present paper. The stress can be
expressed in terms of the elastic strain as 6; = Cjy €5
in which Cy,, are the elastic moduli. By differen-
tiation, the incremental elastic relation is

do'[j = Cl'jkm de ;m + dC,]kMC:m (20)
in which
aC,-jk,,, 5C,»jk,,,
dCym = 3T dT + h dh. 210

Here we take into account the fact that in concrete
the elastic moduli generally depend on temperature T
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Table 1. Basic conditions from which material constants are determined

Material characteristic Stress state P q 6 r

1. Uniaxial tensile strength o,=f1,0,=0,=0 pe/3 Pi/2/3 0 r,

2. Uniaxial compression strength 6y=—fl,0,=06,=0 -1/3 2/3 60° r.

3. Biaxial compression strength 6,=0y=—f1,00=0 —2p,/3 P/ 213 0 r,

4. Hydrostatic elastic limit 0, =0,=0y=—f( P 0 Qor60° r=r.=0
5. Dilatancy-free state at tensile meridian 0q/0p =0 D X 0 ry=rpn

6. Dilatancy-free state at compression meridian dq/op =0 D r, 60° o= Tma

and pore relative humidity h. We neglect any effect of
microcracking damage on the elastic moduli since
microcracking is taken into account in our model
in terms of the loading surface. If we considered
damage, dC,, would also depend on de;, but this we
neglect for the sake of simplicity.

To maintain a continuous inelastic deformation,
the current stress point must remain on the loading
surface, which requires that F = 0 holds true through
subsequent loading stages. Thus we have for the
inelastic deformation the continuity condition
dF =0, which may be rewritten as

if>

oF oF
30, " 5 =%
with
ot ot Jt ot
P = o
dr P d0+a_,,d +3 dT+ah (2)

The continuity condition, proposed already by
Prager, is again not a strict requirement (see, €.g.
[31]), but its violation might cause numerical prob-
lems. Note that the first two terms in eqn (22) for dz
cannot be both non-zero, according to our definition
of the hardening-softening rules.

To express the proportionality coefficient di, we
may now substitute eqns (19), (20) and (18) into
eqn (22) and the resulting equation for di. In the
calculations we note that deg/dej = 6;/3. For volu-
metric hardening or softening we thus obtain:

dependent, parameters 4,, 4., 4,, A, and a, standard
compression strength f7, and Young’s and shear
moduli E and G from which the temsor Cj,, is
determined. This is nearly as many constants as
needed in the previous nonlinear constitutive models
which give good descriptions of concrete, such as the
endochronic model, the plastic-fracturing model,
Dafalias’ bounding surface model and others [14].

After extensive efforts it now seems that trying to
do with only few material constants is futile as long
as one adheres to the macroscopic approach. A
drastic reduction in the number of material constants
might perhaps be possible by means of micro-
mechanic models, such as the microplane model [32],
however, at the price of a considerable increase of
computational work.

The material constants in the present model are
nevertheless easier to identify from test data than
those of previous more sophisticated models giving
good descriptions of concrete. While in such previous
models the material parameters had to be determined
in essence simultaneously, by concurrent optimiz-
ation of the fits of many different types of data, our
new model permits that the material constants be
identified from the material experimental character-
istics sequentially, with little difficulty.

IDENTIFICATION OF MATERIAL CONSTANTS

In Table 1 we propose a set of six basic material
characteristics which are graphically illustrated in

di= 6

?
(c,,k,,dem+dc,,k,,em)+ < : dT+—dh>
Ty

oT oh

oF
do,

[

oG
3G e

23
OF 0t 0G )

ot d¢; doy;

Our formulation is now complete. The incremental
constitutive equation is given by eqn (19) with the
elastic strain satisfying eqns (20)—(21), the inelastic
strain increments given by eqn (18) with the pro-
portionality coefficients according to eqn (23), the
loading surface evolution according to eqns (13),
(15), (16), and the hardening-softening rules given
by eqns (15), (16). The constitutive model involves
a total of 14 independent constants to be identi-
fied from test data. They comprise parameters
%gy - - -5 %3, Bos - - - » B3, among which only six are in-

Fig. 3. They can be directly obtained by measure-
ments and suffice for determining material constants
%oy ... %, Pos- .., B3 It is useful to define the non-
dimensional strength ratios

pe=Silfer Po=Solfes Pe=Sclfe

in which f] = uniaxial tensile strength, f, = biaxial
compression strength and f;, = hydrostatic pressure
at the elastic limit in hydrostatic compression. This
state corresponds to the beginning of inelastic volume
compaction due to pore collapse.

24
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Fig. 3. Basic strength data and characteristic stress states used for identification of the compression and
tensile meridians of the loading surface.

The dilatancy-free states in rows 5 and 6 of
Table 1 are analogous to the critical states in soil
mechanics. The dilatancy-free state at the tensile
meridian (row 5) may be obtained by running a
biaxial compression test and measuring the volume
change to determine the last point at which the rate
of inelastic volume increase is zero. The dilatancy-
free state at the compression meridian (row 6) may be
determined similarly from a uniaxial compression test
in which the inelastic volume change is measured.
The useful property of the characteristics in Table 1
is that the states in rows 1, 3, 4 and 5 depend only
on the tensile meridian, eqn (10). Substituting the
stress states from these rows into eqn (10) and its
derivative, we obtain for constants a, ..., a; of the
tensile meridian a system of four linear algebraic
equations:

1 1.2 1 .3 —2,2
G+ 308 F5P 0+ HPB=5Pk
2 4.2 8 .3 2,3
% —=35Pb® +3PH %= FPb%=5Pb
2 3
Oo+ Poedy + Pec 2+ P =0

a +2p.o, + 3play=0. (25)

The hydrostatic tension apex of the slanted ellipse
could be found as the middle root p, of the cubic
equation o+ o,p +ap?+ay;p? =0 (which must
have three real roots as we know). Calculation of this
root, however, may be simplified by noting that
P = P = P is also a root. Thus, dividing this cubic
equation by p —p., we obtain for the smaller
two roots p;, and p, the quadratic equation:
ap?+oup + a5 =0, with

U=+ U3pe, U5 =0+ %P+ W3p%.  (26)
By solving this quadratic equation,
1 2 12
PoyPy= — 2_ [, £ (25 — do;04)']. 27
13 -

Knowing all the roots, we may check for convexity
of the tensile meridian from eqn (7). We should also
check that the conditions a; > 0 and 4a3 — «, are not
violated.

To determine the compression meridian, we write
the conditions that p, and p, as well as the uniaxial
compression strength (row 2 of Table 1) must satisfy
eqn (11) for the compression meridian, and that '
the derivative of eqn (11) must vanish for row 6 of
Table 1. These conditions furnish the following
system of four linear algebraic equations for the
unknown constants f,,...,f; of the compression
meridian:

Bo+pa B+ Py B+ Py B, =0
Bo+ peBi+ LB +pLBi =0
Bo—3Bi +35B,— 5B =3

B+ 2p. B, + 3piB, = 0. (28)

The roots p, and p,,, for the compression meridian
are the same as for the tensile meridian, but the
root p; may be different. We can calculate it easily
by dividing the cubic equation B,+ 8,p +
B.p* + Bsp’ =0 by (p = Pu)(P —Pw)- Then we may
check for convexity of the compression meridian
from eqn (7).

If the convexity condition, eqn (7), is violated
by the tensile or compression meridian, the data in
Table 1 must be adjusted. It is quite possible that the
data in Table 1 have been estimated with an error,
and within the expected scatter range these data may
be adjusted. To ensure convexity, one may have to
move the dilatancy-free state at tensile or com-
pression meridian (row S or 6 of Table 1) upward, i.c.
increase r, or r; or increase the value of the biaxial
compression strength (row 3); or move the hydro-
static elastic limit to the left (decrease p.. ); or decrease
uniaxial tensile strength (row 1), i.e. decrease p,.. In
practical experience, however, such adjustments were
never needed.
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To identify the remaining material constants, one
needs to write a computer program which integrates
the present constitutive relation. This may be done
by using for integration of the present constitutive
equation a finite element program with a single finite
element. By simulating with this computer program
the hydrostatic compression test and the uniaxial
compressive and tensile tests, it is possible to obtain
parameters 4,, 4. and 4, in a trial-and-error manner.
Each of these three parameters may be determined
one at a time independently of the others, which is
easy to carry out. Parameter A, may be directly read
from the uniaxial compression curve as the horizontal
offset of the peak point from the straight line con-
necting the point o, =0.6f; with the origin. Par-
ameter « may be fixed as « = 0.2, although its value
may be improved by iterations.

UNLOADING AND RELOADING

The unloading and reloading in the formulation as
defined so far is elastic. This will be adequate only for
those applications where hysteresis and damage are
unimportant. [nelastic unloading can be added to the
present model, but how to do it without losing the
possibility of sequential identification of material
parameters will require further investigation. The
most often used approach is a combination of kin-
ematic and isotropic hardening. But for the present
model this approach is undesirable because it would
make our present sequential identification procedure
impossible. A promising choice seems to be the use
of contacting nested surfaces of the type introduced
by Iwan, Mréz and Prevost because their use would
have no effect on the previous response at loading
which we have already formulated satisfactorily.

COMPUTER IMPLEMENTATION

The present constitutive model has been imple-
mented at Northwestern University in an explicit
dynamic finite element code. Static tests of concrete
have been simulated with this code using dynamic
relaxation. The caiculation proceeds in finite time
steps (labeled by superscript 7). Due to finiteness of
the step, the current stress point is allowed to pro-
trude slightly outside the loading surface. This pro-
trusion is then eliminated in the subsequent iteration
by a return to the current loading surface. The
method used for the return is the radial return
method (see e.g. [33]). The stress state 6 outside the
current loading surface must be corrected to the stress
6 — Ae”. After the correction Ae¢”, the loading
surface may be approximated according to the
Taylor series expansion ®(é — Aé") = ¢(6) —
(6®/06)7-Ae” =0, in which the dot denotes a scalar
product of two vectors and & = F. It is then assumed
that the correction is in the radial direction, i.e.
Ac” = Cé, in which C is a constant to be found.
Substituting this into the previous condition we can
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solve the value of C, which yields

¢4) .

Ao" = ———¢.

20N\
%) °

These corrections are applied iteratively until the
protrusion of the current stress state outside the
loading surface meets a given small tolerance.

The computational algorithm in the time step
(¢",1"*') may be described as follows. Suppose all
quantities are known up to time ¢". Given the time
step At and the incremental nodal displacement Au,
we seek ¢"*! for each finite element.

(29)

1. Evaluate strain increment Ae = BAu and elastic
stress increment Ao = D®Ac. The trial final stress is
6"t =g"+ As".

2. Fi=F(6"), F,=F(e"*"). If F,<0, one is still
in the elastic range or unloading; go to 5.

3. Find y such that F(¢"+ yAe®)=0. y can be
determined approximately by a linear interpolation
asy = —F /(F,— F)). Thus, (1 — y)Ae°® is the part of
loading which should be adjusted according to the
loading surface.

4. Evaluate d4 from eqn (23). Then compute Ag”
caused by the strain increment (1 —y)Ae and find
¢"*'=¢"+yAa"+ Ac”. Then update 1 and other
parameters. Then adjust the stress value back to the
loading surface, i.e. iterate using eqn (29) until
F(e"*")=0.

5. Go to Step 1 and start the next finite element.

COMPARISON WITH TEST DATA

Various typical test data from the literature have
been analyzed with the present model in order to
assess how closely they can be represented. For this
purpose, it has been assumed that the test specimen
is in a homogeneous stress state, even though this
may be questionable for strain-softening. Thus, the
response was calculated using a single finite element,
either a unit cubic element with six nodes or an
axisymmetric four-node element of square cross-
section, each integrated numerically at one point (the
center). In simulating the tests that involve strain-
softening, the maximum principal strain increments
were prescribed for all the loading steps, in order to
ensure a stable post-peak response. The material
parameter values corresponding to these fits are given
in Appendix B.

The uniaxial compression data reported by
Hognestad et al. [34], van Mier {35] and Kupfer et al.

. [28} are matched in Figs 4(a)—(c), as shown by the

solid lines. The data are shown as the data points or
the dashed lines. Figure 4(d) shows the fit of the
uniaxial tensile test data by Petersson (36].

Figures 5(a) and (b) also show comparisons with
biaxial compression data reported by Kupfer et al.
{28]. Figures 5(c) and (d) show comparisons with
the standard triaxial compression tests by Balmer
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[37], and by Kotsovos and Newmann [29]. In these
tests, first a hydrostatic pressure is applied, after
which one principal stress is increased further.
Figure 5(e) shows comparisons with triaxial tests of
van Mier [35].

Figures 6(a) and (b) show the fits of the volumetric
strain of concrete at uniaxial and biaxial com-
pression. Figure 6(c) shows the comparison with
hydrostatic compression data [38]. By fitting these
data, the hardening parameter for hydrostatic com-
pression is determined.

Figures 6(d) and (e) show comparisons with test
data from cyclic uniaxial and biaxial tests {39, 40]. It
is seen that the use of constant elastic moduli in the
present theory yields unloading slopes which are
much too steep, especially in Fig. 6(d). Improvement
could be achieved only by introducing damage-
dependent elastic moduli.

The fits of typical test data which can be obtained
with the present model are generally quite satis-
factory, and are as good as those obtained previously,
e.g. with endochronic theory or plastic-fracturing
theory, while the identification of the material par-
ameters is here more straightforward.
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LOCALIZATION LIMITERS FOR STRAIN-SOFTENING

The present model can be applied in the usual finite
element codes only to the extent that no strain-
softening takes place. If it does, one must implement
some type of localization limiters [41], which prevent
localization of strain-softening to a zone of vanishing
volume and avoid spurious mesh sensitivity and
incorrect convergence. The simplest device to achieve
this is to impose a lower limit on the element size, as
is done in the crack band model [42). If the mesh
needs to be refined arbitrarily, one can introduce the
concept of nonlocal damage in the manner proposed
in [43]. This concept means that the parameters of the
present model which control strain-softening would
have to be expressed from spatial averages of stress
and strain taken over a certain representative volume
of the material of characteristic size.

CONCLUSIONS

1. The objective has been to find the best possible
model which has the following two desirable proper-
ties:
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(with associativeness), (b) convexity, (c) continuity

with regard to subsequent loading surfaces and (d) 2. These conditions are met by developing a
absence of corners on the loading surface. . loading surface model for which: (a) the deviatoric
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cross-sections are rounded triangles; (b) the shear-
volumetric (Renduli¢) meridians are slanted ellipses;
(c) strain-softening is modeled by a reduction of the
yield limit; (d) the pre-peak hardening is governed by
deviatoric inelastic strain and depends on the simi-
larity angle; (e) the subsequent hardening as well as
softening is governed by volumetric inelastic strain.
Unloading and reloading are assumed to be elastic in
the present form of the model.

3. The principal advantage of the model is that the
material parameter identification can be carried out
sequentially, rather than by simultaneous nonlinear
optimization of the fits of all the data considered
collectively. The detailed procedure to do this is
given. It involves solution of two systems of four
linear equations. The basic experimental information
consists of: (a) uniaxial compression strength, (b)

uniaxial tensile strength, (c¢) biaxial compression -

strength, (d) hydrostatic elastic limit, (e} dilatancy-
free states for uniaxial and biaxial compression, (f)
strains at uniaxial and biaxial peak stresses.

4. The model agrees well with the basic known test
data from monotonic loading tests of concrete.

Acknowledgements—The work was sponsored partly by
the U.S. Department of Energy through the Engineering
Mechanics Program in the Computational Mechanics
Section (J. M. Kennedy, Manager) of the Reactor Analysis
and Safety Division at Argonne National Laboratory. and
partly by AFOSR Grant No. 83-0009 to Northwestern
University.

REFERENCES

1. Z. P. Bazant, A new approach to inelasticity and failure
of concrete, sand and rock: enodchronic theory. In
Proc. Soc. Engng Sci. 11th Ann. M1g (Edited by G. J.
Dvorak), pp. 158-159. Duke University, Durham, N.C.
(1974).

2. Z. P. Bazant and P. D. Bhat, Endochronic theory of
inelasticity and failure of concrete. J. Engng Mech. Div.
ASCE 102, 701-722 (1976).

3. Z. P. Bazant and S. Kim, Plastic-fracturing theory for
concrete. J. Engng Mech. Div. ASCE 105 407-428
(1979).

4. Z. P. Bazant and C.-L. Shieh, Hysteretic fracturing
endochronic theory for concrete. J. Engng Mech. Div.
ASCE 106, 929-950 (1980).

5. Z. P. Bazant and C.-L. Shieh, Endochronic model for
nonlinear triaxial behavior of concrete. Nucl. Engng
Design 47, 305-325 (1978).

6. Z. P. Bazant and T. Tsubaki, Total strain theory and
path-dependence of concrete. J. Engng Mech. Div.
ASCE 106, 1151-1173 (1980).

7. O. Buyukozturk and J. Tassoulas, A constitutive model
for concrete in compression. Proc. Third ASCE Engng
Mech. Div. Specialty Conf., Austin, Texas (1979).

8. C. T. Chen and W. F. Chen, Constitutive relations for
concrete. J. Engng Mech. Div. ASCE 101, 465-481
(1975).

9. J. C. Chern and A. H. Marchertas, Private commu-
nication (January 1985). ’

10. H. S. Levine, A two-surface plastic and microcracking
model for plain concrete. Proc. Winter Mig ASME,
Phoenix, Arizona, pp. 27-47 (1982).

11. F. B. Lin, Private communication on doctoral dis-
sertation in preparation, advised by Z. P. BaZant,
Northwestern University (1985).

F. B. LiN et al.

12. Y. Takahashi, Elastic-plastic constitutive modeling of
concrete. ANL 83-23, Argonne National Laboratory
(1983).

13. G. Valente, Ultimate strength criteria of concrete under
biaxial and triaxial loading. Paper H 2/4, Proc. 5th Int.
Conf. Struct. Mech. in Reactor Technology, Berlin
(1979).

14. B. L. Yang, Y. F. Dafalias and L. R. Herrmann, A
bounding surface plasticity moded for concrete. J. Engng
Mech. Div. ASCE 111, 359-380 (1985).

15. A. Zubelewicz and Z. P. Ba%aat, Private commu-
nication (1984).

16. J. W. Jeter, An evaluation of endochronic concrete
theory. Workshop on Constitutive Relations for Con-
crete, Report of the New Mexico Engng Res. Inst,
Albuquerque, N. M. (1982).

17. B.J. Hsieh, On uniqueness and stability of endochronic
theory. J. appl. Mech. ASME 47, 748-756 (1980).

18. K. Gerstle et al., Behavior of concrete under multiaxial
stress states. J. Engng Mech. Div. ASCE 106, 1383-1403
(1980).

19. J. C. Chern, A. H. Marchertas, Z. P. Bazant and

" F. B. Lin, Damage-plastic loading surface model
for concrete. Report, Argonne National Laboratory,
Argonne, Illinois (1986).

20. Z.P. Bazant, Mechanics of distributed cracking. ASME
Appl Mech. Rev. 39, 675-705 (1980).

21. Z. P. Bazant, T. B. Belytschko and T. P. Chang,
Continuum theory for strain-softening. J. Engng Mech.
Div. ASCE 110, 1666-1692 (1984).

22. A. Schofield and P. Wroth, Critical State Soil Mechan-
ics. McGraw-Hill, London (1968).

23. P. Launay and H. Gachon, Strain and ultimate strength
of concrete under triaxial stress. Paper H1/3, Proc. Ist
Int. Conf. Struct. Mech. in Reactor Technology, Berlin
(1971).

24. G. Gudehus, Elastoplastische Stoffgleichungen fiir
trockenen Sand. Ing.-Arch. 42, 151-169 (1973).

25. J. H. Argyris, G. Faust, J. Szimmat, E. P. Warnke and
K. J. Willam, Recent developments in the finite element
analysis of prestressed concrete reactor vessels. Nucl.
Engng Design 28, 42-75 (1974).

26. F. B. Lin and Z. P. Bazant, Convexity of smooth yield
surface of frictional material. J. Engng Mech. Div.
ASCE 112, 1259-1262 (1986).

27. K. J. Willam and E. P. Warnke, Constitutive model
for the triaxial behaviour of concrete. IABSE Seminar
on Concrete Structures Subjected to Triaxial Stresses,
Bergamo (1974).

28. H. Kupfer, H. K. Hilsdorf and #. Riisch, Behavior of
Concrete under biaxial stresses. ACI J. 66, 656666
(1969).

29. M. D. Kotsovos and J. B. Newman, Generalized
stress—strain relations for concrete. J. Engng Mech. Div.
ASCE 104, 845-856 (1978).

30. E. Melan, Zur Plastizitit des raumlichen Kontinuums.
Ing.-Arch. 9, 116-126 (1938).

31. Z. P. BaZant, Work inequalities for plastic fracturing
material. Int. J. Solids Struct. 16, 873-901 (1980).

32. Z. P. Bajant and B. H. Oh, Microplane model for
progressive fracture of concrete and rock. J. Engng
Mech. Div. ASCE 111, 559-582 (1985).

33. D. R. J. Owen and E. Hinton, Finite Elements in
Plasticity: Theory and Practice, pp. 215-219. Pineridge
Press, Swansea (1980).

34. E. Hognestad, N. W. Hansom and D. McHenry,
Concrete stress distribution in uMimate strength design.
ACI J. 82, 455-477 (1955). ’

35. Jan G. M. van Mier, Strain-softening of concrete under
multiaxial loading conditions. Dissertatiedrukkerij
Wibro, Helmond (1984).

36. P. E. Petersson, Crack growth and development of
fracture zones in plain concrete and similar materials.



wuucrete model with normality and sequential identification

Report TVBM 1006, Lund Institute of Technology
(1981).

37. G. G. Balmer, Shearing strength of concrete under high
triaxial stress-computation of Mohr’s envelope as a
curve. Structural Research Laboratory Report No. SP-
23, Denver, Colorado, (1949).

38. S. J. Green and S. R. Swanson, Static constitutive
relations for concrete. AFWL-TR-72-2, Air Force
Weapons Laboratory, Kirtland Air Force Base (1973).

39. O. Buyukozturk and T. M. Tseng, Concrete in biaxial
cyclic compression. J. Struct. Engng Div. ASCE 110,
461-476 (1984).

40. B. P. Sinha, K. H. Gerstle and L. G. Tulin, Stress-strain
relations for concrete under cyclic loading. ACI J. 62,
195-210 (1964).

41. Z. P. Bazant and T. B. Belytschko, Strain-softening
continuum damage; localization and size effect. Pre-
prints, 2nd Int. Conf. on Constitutive Laws for En-
gineering Materials, University of Arizona (Edited by
C. Desai), pp. 11-33 (1987).

42, Z. P. Bazant and B. H. Oh, Crack band theory for
fracture of concrete. Mater. Struct. 16, 155-177 (1983).

43. G. Pijaudier-Cabot and Z. P. Bazant. Nonlocal damage
theory. Report No. 86-8/428n, Center for Concrete
and Geomaterials, Northwestern University, Evanston,
Illinois (1986); ASCE J. Engng Mech. 113 (1987) (in

- press).

APPENDIX A. CALCULATION OF THE DERIVATIVES
OF THE LOADING FUNCTION

By chain rule,
of &f da,

= A
da; doydo;

of 26

of dt,
o 66,}-'

= Al
dty 00 Aab

In calculating the derivatives in this expression one needs to
note that

d0,/0a,;=08,/3, 01/80;=15,/3t, and
0J3/00 ;= s;54— z 1,6,
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APPENDIX B. BASIC INFORMATION ON TEST DATA AND
VALUES OF MATERIAL CONSTANTS

1. Hognestad et al., Fig. 4(a), [34].

p.=0.1, py=115 p,=13, pu=06, 1,=200: the
coefficients for slanted ellipse are o, = 0.0175, o, = —0.466,
a,=0.194, «,=0433, B,=0.0218, B,= —0.5806,
B,=0.2414, 8, =0.539.

2. Kupfer et al., Fig. 4(b), (28]

p=0.1, p,=115 p,=135 =06 1,=250,
4 =0.0170, o, =-04501, oa,=0.1820, a,=0.3887,

B, =0.02186, B, = —0.5786, B, = 0.2340, B, = 0.4997.

3. Van Mier, Fig. 4(c), [39)

p,=005 pp,=13, p,=17 u=06  1,=200,
og = 0.00844, «a,= —04760, a,=0.1709, a,=0.2669,
B, =0.01064, §,—0.6003, B, =0.2155, B, =0.3367.

4. Petersson, Fig. 4(d), [36]

p# = 0.60, 4, = 2000; other coeflicients are the same as Hog-
nestad et al.

S. Balmer, Fig. 5(c), {37]
u =0.60, 1, = 200, 4, = 280; other coefficients are the same
as Hognestad et al.

6. Kotsovos and Newman, Fig. 5(d), [29]

u =0.6, 4, = 150, 4, = 280; other coefficients are the same as
Hognestad et al.

7. Green and Swanson, Fig. 6(c), [38]

n =06, 4, =90; other coefficients are the same as
Hognestad et al.

8. Sinha, Gerstle and Tulin, Fig. 6(d), [40}

u=0.65, i,=110; other coefficients are the same as
Hognestad et al.

9. Buyukozturk and Tseng, Fig. 6(e), [39]

u=0.65, 4, =220.



