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A recent nonlocal damage formulation, in which the spatially averaged quantity was
the energy dissipated due to strain-softening, is extended to a more general form in
which the strain remains local while any variable thar controls strain-softening is
nonlocal. In contrast to the original imbricate nonlocal model for strain-softening,
the stresses which figure in the constitutive relation satisfy the differential equations
of equilibrium and boundary conditions of the usual classical form, and no zero-
energy spurtous modes of instability are encountered. However, the field operator
Sfor the present formulation is in general nonsymmetric, although not for the elastic
bart of response. It is shown that the energy dissipation and damage cannot localize
into regions of vanishing volume. The static strain-localization instability, whose
solution is reduced to an integral equation, is found to be controlled ty the
characteristic length of the material introduced in the averaging rule. The -alculated
static stability limits are close to those obtained in the previous nonlocal studies, as
well as to those obtained by the crack band model in which the continuum is treated
as local bu! the minimum size of the strain-softening region (localization region) is
prescribed as a localization limiter. Furthermore, the rate of convergence of static
finite-element solutions with nonlocal damage is studied and is found to be of a
power type, almost quadratric. A smooth weighting function in the averaging
operator is found to lead to a much better convergence than unsmoott. functions.

Introduction

Prediction of damage and failure of brittle heterogeneous
materials such as concrete or rock requires a mathematically
correct and physically realistic description of the strain-
softening behavior (Bazant, 1986; Mazars and Pijaudier-
Cabot 1986). Although it has been argued that strain-
softening does not exist on the continuum level (Read and
Hegemier, 1984), the macroscopic result of distributed
microcracking or void growth is a behavior whose continuum
description must incorporate strain-softening. Numerous at-
tempts to describe this type of behavior by local inelastic con-
tinuum theories such as plasticity or continuum damage
mechanics have been unsatisfactory because the phenomenon
of strain localization caused by strain-softening cannot be cap-
tured objectively (Bazant, 1986). The principal fault of the
local continuum models is that the energy dissipated at failure
is incorrectly predicted to be zero, and the finite-element solu-
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tions converge to this incorrect, physically meaningless, solu-
tion as the mesh is refined.

To remedy the situation, one must introduce some form of a
localization limiter (Bazant and Belytschko, 1987). Its simplest
form is obtained by imposing a lower bound on the finite-
element size, as is done in the crack band model. As a better
localization limiter which permits arbitrary mesh refinement,
one may adopt the nonlocal concept. Introduced into con-
tinuum mechanics long ago by Kréner (1967); Eringen (1972);
Krumhansl (1968) and others, this concept was recently suc-
cessfully applied to strain-softening (Bazant, et al., 1984).
However, the formulation, in which all the state variables
were nonlocal, turned out to be quite complicated. It required
additional boundary and interface conditions, led to a
nonstandard form of the differential equations of
equilibrium, and the finite-element implementation required
imbrication of the elements.

In the preceding study (Pijaudier-Cabot and Bazant, 1986)
to be further expanded here, a new idea which turns out to
bring considerable simplification was introduced. It was
shown that it suffices to consider as nonlocal only the strain-
softening damage, while the elastic behavior (including
unloading and reloading) should be treated as local. This for-
mulation was shown to require no element imbrication and no
overlay with local continuum, which had to be previously used
by Bazant, et al., (1984) in order to suppress certain periodic
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zero-energy modes in the imbricate, fully nonlocal solutions.
The purpose of the present study is to show that, more
generally, the key attribute of the nonlocal formulation for
strain-softening is that the strain as a kinematic variable
should be defined as local, and to study various aspects yet
unexplored, including: (1) Static strain-localization instabili-
ty; (2) Symmetry of the field operator; (3) Influence of
various types of spatial averaging; (4) Convergence at mesh
refinement.

Before embarking on our analysis, it should be mentioned
that other forms of localization limiters are possible and
deserve to be studied. The oldest idea, proposed already by
L’Hermite (1952) in a study of concrete cracking due to
shrinkage, is to introduce a dependence of the strength or yield
limit on the strain gradient. In a general form, which may in-
volve introduction of the strain gradient into the vield func-
tion, this idea has recently been developed by Floegl and Mang
(1981), Schreyer and Chen (1984) and Mang and Eberhards-
teiner (1986). Introduction of higher-order gradients into the
differential equations of equilibrium or into the definition of
strength was studied by Aifantis (1984) and also by Bazant
(1984) and Bazant and Belytschko (1987). As another ap-
proach, Sandler (1984) as well as Needleman (1987) showed
that the introduction of viscosity, whether real or artificial,
may act in certain problems as a localization limiter, although
this can be true only for a limited time period of response.

Nonlocal Generalization of Continuum Damage
Mechanics

The principal idea for the treatment of softening is that only
those variables which cause softening may be considered as
nonlocal while the model must reduce to a local one for the
special case of elastic response, which also includes unloading
and reloading. This condition can be satisfied by a nonlocal
formulation in which the strain, when used as a kinematic
variable, is local. To implement this condition it is convenient,
albeit not necessary, to use continuum damage mechanics
because in this theory the strain-softening is characterized by a
distincr single variable w, called damage. For the nonlocal
generalization, we adopt the simple, scalar damage fornula-
tion, although the same concept could be implemented in a
similar manner in the anisotropic damage models, derived,
e.g., by Mazars and Pijaudier-Cabot (1986) and Ladevéze
(1983), which are more realistic. Various other constitutive
theories can also be generalized to such a nonlocal form, par-
ticularly those which use fracturing strain or a degrading yield
limit. (Bazant, et al. 1987). Unimportant from the viewpoint
of the type of localization studied here, plastic strains will be
omitted from the formulation; their inclusion, however,
would require no conceptual changes.

As usual in continuum damage mechanics, we may in-
troduce the relation between the strains ¢; and the stresses o;;
in the form (Lemaitre and Chaboche, 1985)

0= (I—Q)Cukmekm ey

in which C,4,, are the elastic constants of the material and Q is
the damage. We assume  to be nonlocal, defined by spatial
averaging as follows

Q(x)=w(x)=

1
V) Sva(s—x)w(s)dV(s) )
in which

V. (x)= 5 , (s =xdV(s). ?)

Superimposed bar denotes the spatial averaging operator, x
and s are the coordinate vectors, V'=volume of the body, and
a=given weighting function. Initially @=w=0, and always
0=Q=1,0=w=<l.
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As the simplest form of the weighting function, one may
consider a=1 within a certain representative volume V,
centered at points x, and a=0 outside of it. As we will see,
however, a uniform weighting function over a finite domain
does not yield the best convergence. A much better con-
vergence on mesh refinement is obtained when function
a(x~s) decays smoothly with the distance from point x. A
suitable form is the Gaussian (normal) distribution function,
previously used for nonlocal elasticity by Eringen (1972);

a(x) =exp[ - (kI1x1/0)7] 4)
in which we have, for one, two and three dimensions
ID: Ixl=x k=xl2
2D: Ix) = (6 +pR)i2 k=2 (%)

ID: Ixl=(F+p+ )Y k=(6vm)Vi.
x, v, ¢ are the Cartesian coordinates.

The expressions in equation (5) have been determined from
the condition that the integral of «(x) for an infinite body be
equal for one dimension to the length / (line segment), for two
dimensions to the area of a circle of diameter /, and for three
dimensions to the volume of a sphere of diameter /.

The function in equation (4) decays so rapidly that for
points s whose distance from point x exceeds 2/ one may set
a=0. Calculation of V, (x) according to equation (3) is needed
for the treatment of boundaries. Function « in general extends
bevond the boundaries of the body. The domain beynnd ihe
boundary is simply deleted from integration, but the weighting
function is scaled so that the integral of all effective weights
a’(x, s)y=a(s—x)/V,(x) over the body should be exactly 1 for
any Xx. In numerical programming, the integrals in equations
(2) and (3) are approximated as finite sums. The values of
«’ (X, s) are generated for all combinations of all integration
points of all elements in advance of the finite-element analysis.
The programming of the averaging integral, which was
demonstrated by Bazant, et al. (1987) in a study of cave-in of a
tunnel due to compressive strain-softening for a nonlocal
finite-element system with up to 3248 unknowns, is easier
when the integral in equation (2) extends over the entire body.
When a finite averaging domain is used, it is important to
closely match by finite elements the precise boundaries of this
domain, but this is difficult to implement (Saouridis, et al.,
1987).

Length /, called the characteristic length, represents a
material property and is of the same order of magnitude as the
maximum size of material inhomogeneities. Length / has been
determined experimentally (BaZant and Pijaudier-Cabot,
1987a) by comparing the responses of specimens in which the
damage (e.g., microcracking) remains distributed with the
responses of fracture specimens, in which damage localizes.
For concrete, such experiments indicated that / is roughly
equal to 2.7-times the maximum aggregrate size.

Length / can be determined also by micromechanics
analysis. In a parallel study (Bazant, 1987), a local
homogeneous elastic continuum, containing an array of grow-
ing circular cracks with periodic spacing / and quasi-periodic
crack sizes, was analyzed. It was shown that by applying the
usual homogenization conditions, one obtains a nonlocal con-
tinuum with local strain and a nonlocal cracking strain, for
which the weighting function is uniform and the
characteristics length is equal to crack spacing. For the case
when the crack spacing is not constant but randomly
distributed, this indicates that one should superpose at each
point a set of uniform weighting functions with various
characteristics lengths /. This, however, appears to be approx-
imately equivalent to using a nonuniform weighting function.

For a uniform weighting function, volume V, has a similar
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meaning as the representative volume in the statistical theory
of heterogeneous materials. However, its size /, is smaller than
that of the representative volume and is too small to obtain
statistical averages of the microstructure. The representative
volume in the statistical theory must be several times larger.

The specific free energy py per unit volume (with p being the
material mass density) and the energy dissipation rate o may
be expressed as

o% =" = D) C o€ (6)
o= —3d(pL/31) = —0Q3(pY)/30=QY ~
in which Y, called the damage energy release rate, is
Y==0(p¢)/00="2C ) n€,€4m- )

The damage evolution is characterized in general by an
equation of the type w = f(¢;,w). An integrable special form of
the damage evolution law has been used in all computations;

w=g(N=1-[1+b(Y-Y)]™" (8)

in which b, n = positive material constants, n>2, and
Y, =local damage threshold.

Damage is assumed to grow only for loading. For unloading
or reloading, & =0, which means the response is elastic. The
loading criterion and the nonlocal damage Q are defined as
tollows

If F(&)=0and F(&)=0,then Q=& h

] > (9)
[fF(@)y<0,orif F(e)=0and F{&) <0, then 2=0. P
Function F (&) represents the loading function and is defined
as F(@)=w—«(w), where «(&) is a softening paraineter
which is set to be equal to the maximum value of & achieved
up to the present. The initial value of «(&) is zero. The damage
expression in equation (8) was found to approximate closely
the behavior of concrete. provided that different local damage
thresholds Y, are introduced for tension and compression
(Mazars and Pijaudier-t_abot, 1986).

The formulation o7 the loading function automartically
satisfies the dissipation inequality. The density of the euergy
dissipation rate due to damage is o= QY, and since 2=0. we
have 020.

In view of the use of a loading function, it might be more
appealing to introduce some potential function, similar to
plasticity. However, a formulation with a potential function
has not yet been developed in the literature on continuum
damage mechanics of concrete or geomaterials.

The fact that equation (1) uses nonlocal rather than local
damage, and that the unloading condition is stated in terms of
the nonlocal damage, represents all that is different from the
classical local damage theory.

The original formulation of the nonlocal damage theory in
the previous study by Pijaudier-Cabot and BazZant (1986) used
a somewhat different definition of nonlocal damage. The
averaged quantity was the damage energy release rate Y rather
than the local damage, and so the nonlocal damage was deter-
mined as Q=g (Y). This original formulation can be regarded
as a simplified approximation of the present formulation. The
numerical results for these two different definitions of
nonlocal damage appear to be quite close.

The strains as well as w have at least a C,-continuity (i.e.,
they could consist of Dirac delta functions). According to
equations (9) and (2) and the fact that & = YQ, the dissipation
rate density is given by a spatial averaging integral over w.
Consequently, ¢ must have at least a C,-continuity. This sim-
ple argument proves that the energy dissipation cannot
localize into a zone of zero volume, and numerical solutions
confirm it.

In general, one could show that by introducing any variable
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which causes the dissipation rate to be nonlocal (e.g., nonlocal
plastic-strain path in plasticity with softening vield limit
Bazant, et al., 1987), the energy dissipation is prevented to
localize inio a vanishing volume.

Differential Equation of Equilibrium and Boundary
Conditiouns

In the original formulation of the nonlocal continuum for
strain-softening in which nonlocal strains ¢, are used (Bazant,
et al., 1984), the virtual work expression for a body of volume
V, and surface S, must involve §¢, rather than e,

SW= \‘*'b (0,6¢, —f6u;)dV - ij p,6u,dS (10)
in which u, =displacement components in Cartesian coor-
dinates x; (/=1,2,3), and f,, p, =distributed volume and sur-
face forces. The fact that &¢; involves the spaual averaging
operator defined by equation (2) complicates the derivation of
the differential equation of equilibrium and boundary condi-
tions and yieids a nonstandard form of these equations
(Bazant, 1984).

For the present nonlocal theory, ¢; is local and so 44; in
equation (10) must be replaced by d¢,;. But then the variational
derivation of the differential equation of equilibrium and the
boundary conditions is the same as usual (Bazant and
Pijaudier-Caboz, 1987). This shows that, as long as the strains
are defined as local, the differential equations of equilibrium,
as well as the boundary conditions or the interface conditions,
will have the standard form. This further means that the
finite-element discretization can be of the same type as for the
usual, local continuum. Therefore we may conclude that the
key simplifying feature of a continuum modei for damage is
the use of a nonlocal continuum in which the strains are local.
In other words, the continuum should not be fully, burt only
partially nonlocal. It is also clear that if the strain is (ocai then
the elastic behavior, including the behavior at urioading and
reloading, will be local.

One-Dimensional Strain-Localization Iustability

Consider for the sake of simplicity the one-dimensional
problem of a bar loaded through two springs of spring cons-
tant C (Fig. 1). This problem was used by Bazant (1976) to
demonstrate the localization instability due to strain-softening
and was recently solved exactly with a fully nonlocal theory
(Bazant and Zubelewicz, 1986). The length coordinate is x, the
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Fig. 1 Strain (a) and damage (b) localization profiles in the bar center
and at the boundary, calculated for a one-dimensional bar; criticat and
postcritical strain and damage localization profiles (c, d)
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bar length is L, and the bar ends are x=0 and x= L. Thebar s
initially in a state of uniform strain ¢, and stress a,, with
uniform damage 2, =w,. The initial state is in the strain-
softening range and satisfies the relation g, =(1 - 2y)Ee,. If
the constitutive relation for damage is given in the form of
equation (8), we have wy=1~[1 +b(AEe5~Y,)] ™ .

We now consider a small deviation from the initial state
caused by incremental variation of the load at the bar ends.
Let e (x) =7 (x) =incremental strain and é¢ = r = incremental
stress. To maintain equilibrium, it is necessary that r=con-
stant along the bar. The compatibility condition for fixed sup-
ports requires that

\'L 27

(x)dx+—=0. 11
T C (11
Taking the one-dimensional form of the constitutive law in
equation (1) with the averaging according to equation (2) and
the loading criterion according to equation (9), we find

‘L
For 50 a(s—x)n(s)ds>0: Gy + 7

1 ot
_— - S . 2
_[1 oo jo als X)w(s)da}E(eo+1;(x)), (12)

Otherwise: 7= (1 —wq)En(x)

in which /’ (x) =[{a (s —x)dx=effective averaging length for
point x. For infinitely small increments n(x), the equations
can be simplified by incremental linearization. To this end, we
may introduce the linear approximation w{Xx) =w,+w,n(x),
with w, =dw/de for w=uw,. Substituting into equation (12),
neglecting the quadratric term n(x)7(s), and subtracting the
equation g, = E(1 - Q,)e,, we can reduce equation (12) to the
form

L
<50 als=x)n(s)yds>  (13)

1" (x)
with &k =Feyw,. The symbol < >, which introduces the
loading criterion, is defined as <x> =x if x>0 and other-
wise <x> =0. For the special damage constitutive law in
equation (8), we may evaluate w, =Feywy, wWith w,=
bn[ViEes — Y, 1" I =b(Y=Y )] ™.

Equation (13) has the form of a linear integral equation of
the second kind. However, the problem is not simply that of
solving an integral equation, because equation (13) is an in-
tegral equation only for those x for which loading takes place.
Outside the loading region, equation (12) reduces to the usual
linear elastic differential equation for displacements and the
behavior is then local, elastic, and unaffected by the strain-
localization in another segment of the bar. If we find one solu-
tion such that there exist elastic segments of finite length at
both ends of the bar, then we can obtain another solution
simply by shifting the softening segment along with the soften-
ing solution profile as a rigid body. This shift is arbitrary pro-
vided the entire original length of the softening region, along
with a small neighborhood of points located just outside the
softening zone, remains within the bar. Due to this fact, we
can calculate the length of the softening region and the solu-
tion profile through it by analyzing any bar of a shorter
length, provided the bar length exceeds the length of the
softening region. The actual boundary conditions and the
compatibility condition may be disregarded in such analysis
and satisfied afterward. Obviously, one can have infinitely
many solutions. Arbitrary shifts of the softening region,
however, do not affect the overall response of the bar. The
length of the softening region and the solution profile through
it is nevertheless unique. The localization profiles terminating
at the boundary points are different from the interior one and
require a special analysis. For real materials, the actual loca-

7= (1 ~wo)En (x) ~
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tion of the strain-softening segment that does not reach the
boundary is decided by inevitable random fluctuations of
material strength along the bar.

Now consider the alternative formulation previously pro-
posed by Pijaudier-Cabot and Bazant (1986), in which the
averaged variable is Y rather than w. For small strain in-
crements, equation (2) can be approximated as
Q(x) =wy +Qy[Y(x) = Y,], with @, =[3Q/8Y],, =wy in which
Yy, Qy and ¢, are the values of ¥, Q and ¢ in the initial state.
Linearization for small increments is then accomplished by
writing .
oL

1
Yix)=—— a(s—x) —-ZE— (ed +27(5)) €ods. (14)

" (x) Jo
Substituting this into the basic relation r=(1 - Q)En(x), one
obtains for n{x) an equation identical to equation (13), in
which £=27,Q,. An equation of the same form would be ob-
tained for various other possible types of averaging. For
problems with nonuniform initial strain, however, different
types of averaging do not yield the same field equations.

Equation (13) can be easily solved numerically. If we sub-
divide the bar length into N equal elements of length
Ax=L/N, use for integration the trapezoidal rule, express 7
from equation (11) and substitute it into equation (13), we
may approximate the resulting equation as follows

v
3 Kyn, =0 with

=i

. kAx C .
K,J=(l*wo)EO,/—T 1,&(.Yj—.Y,)+T. (1:)
Subscripts i, / refer to ceatroids of elements number { or /, and

c=1if [fa(x,—s)n(s)ds = La(x; —x;)n,ax = 0; otherwise
I;=0. Eguation (15) represents a system of homogeneous
linear algebraic equations for n;. The critical state occurs at
such ¢, for which det(K,)=0. The loading segment,
characterized by [, =1, is of course unknown in advance, and
so it must be determined iteratively. To search for the critical
state wich the smallest ¢, the values of ¢, were incremenied in
small lcading steps and, for each ¢, the following algorithm
was used:

1 In the first iteration, we assume that only one element /
undergoes loading (the central element). In the subsequent
iterations, we increase the number of elements that undergo
loading by one (either on the left or on the right), unless the
number of loading elements already equals N, in which case
we start a new loading step with a larger ¢;.
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Fig. 2(a, b) Comparison of localization profiles of strain and damage
for the damage and energy release rate averaging; (c, d) influence of
the characteristic length / on the damage localization profiles, and the
size of the softening zone
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