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ABSTRACT: Asymmetry of the shape, supports, or Joading of frames the
initiaf post critical behavior to exhibit asy ic bifurcation. Its is the

second-order axial shortening of columns due to lateral deflection, which induces
asymmetric shear forces and bending moments transmitted into the column from
the adjascemt beams. As an alicmative to Koiter, Roords, and Chilver’s solutions
based on the nonlinear differensial equations for deflections and perturbati thod
thepaperpmsenuasimpla'mdmougcna:lmcdmdcfmﬂysisdmusesdn
stiffness matrices and stability functions from linear stability theocy of frames. The
usual lincar matrix equilibrium equations ar¢ cnhanced by additional terms that are
quadratic in joint i with coeffici that depend on the derivatives of the
stability functions. The solution is accurate up to the sccond order in deflections.
As an exarple, Koiter and Roorda’s L-frame is analyzed and the results are shown
10 agree with the previous solutions as well as Roorda's experiments. It is con-
cluded that the decrease of the maximum iosd due to asymmetric bifurcation is
not insignificant and should be taken into acoount in design.

InTRODUCTION

Due to asymmetry of shape, supports, or loading, the initial postcritical
buckling behavior of many frames exhibits asymmetric bifurcation. As shown
by Koiter (1945) and others, this behavior causes strong sensitivity to im-
perfections. As confirmed by the present paper, this scasitivity can cause
the maximum load of an imperfect frame to be significantly lower than that
of the perfect frame.

The general analysis of postcritical behavior is rather complicated, since
it necessitates a geometrically nonlinear theory of bending. The initial post-
critical behavior, the knowledge of which is sufficient for most practical
purposes, can be obtained by power-series expansions of the nonlinear func-
tions involved, particularly the curvature-deflection relation and the equilib-
rium conditions for the deflected structure. The postcritical analysis of asym-
metric bifurcation based on power-series expansions has been demonstrated
by Koiter (1967) by means of an example of a simple L-shaped frame. Roorda
(1965a,b) conducted mode!l experiments, which confirmed Koiter's calcu-
lations, particularly the reduction of the maximum load as a function of the
initial imperfection in the form of load eccentricity. Koiter's analysis was
based on the potential energy expression for the structure, which provides
complete information for both equilibrium states and their stability. Roorda
and Chilver (1970) showed a somewhat simpler method of analysis, which
was based solcly on equilibrium equations and employed the perturbation
method with power-series expansions. Although this analysis does not deal
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with stability of equilibrium states, it yields all the information needed for
practical purposes, and was shown by Roorda and Chilver to agree with
Koaiter’s previous solution. . .

The previous solutions, however, still have certain shortcomings: (1) They
rely solely on mathematical manipulations and do not provide much insight
into the physical source and mechanism of the imperfection sensitivity; and
(2) they are relatively complicated, because the nonhglce-xr differential equa-
tions are integrated directly, without exploiting the existing powerful matrix

putposefm the presen show a relatively simple method

The of the t paper is to a refatively simp ,
which represents an adaptation of the stiffness matrix method t:or linear bucl.(-
ling analysis of frames. This new method directly inu:oduces into the matrix
equilibrium relations the physical source of bifurcation asymmetry, which
consists in postcritical change in the axial force of a member caused: _(l.) .By
the asymmetric incremental shear forces transmitted from the adjoining
members meeting at an angle; and (2) by the fact that the seoond-orde‘r axial
shortening of a member due to joint rotation to one side meets less resistance
than that due to joint rotation to the opposite side.

Another simplified method for nonlinear postcritical analysis of frames has
recently been presented by Kounadis (1985) and illustrated by the example
of the Koiter-Roorda L-frame. This method relies on dircct integration of
the differential equations for the deflection curves of members and is ap-
proximate since it achieves simplification by relaxing in a certain intuitive
manner the compatibility conditions at the joints. By contrast the preseat
solution does not require integration of differential equations, as it uses'the
stiffness matrices with stability functions, is asymptotically exact, and gives
information on the magnitude of the contributions to imperfection sensitivity
from various mechanisms. . .

It must, of course, be recognized that the complete postcritical behavior
of perfect frames as well as the complete nonlinear response of 1m_perfect
frames can be calculated by the existing gcometrically nonlinear finite ele-
ment programs for beam structures, using the technique of step-by-step load-
ing with iterations (e.g., BaZant and EINimeiri 1973). However, such pro-
grams are unnecessarily complicated when only the initial postcritical behavior
is of interest, as is the case for most design purposes. They do not provide
the designer the same insight as does a simpler, more direct solution, such
as the one to be attempted here. . .

The analysis that follows assumes perfectly elastic behavior and applica-
bility of the bending theory in which the bending moment is proportional to
the curvature of the beam.

L-Frame of KOITER anD ROORDA

As is well known (c.g., Home and Merchant 1965), the initial incvcmengal
stiffness matrix of a beam of uniform bending stiffness EJ, subjected to axial
force P, may be cxpressed as

M, s sc §ft 119
Ml o o fet M

v Elsi sposoef|a

in which [ = beam length; 0,, 8,, A = end rotation and relative transverse
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FAG. 1. Beam Element Subjected to End Forces and Moments

displacement of beam ends; M,, M,, and V = assogiated en.d moments and
shear force (Fig. 1); and s, ¢, §, and s* = stability functions defined as
follows:

. __Ysiny = ycosy)
for P > O (compression): s = 7~ 2cosy - ysin ‘y'

- Yy~ siny Qa)
siny — ycos ¥y

.............................................

forP=0: s=4, P SO 2b)

Yy cosh y — sinh )
2~ 2coshy + ysinh y'

for P < O (tension): s =

cm Y Y e o
y cosh y — sinh y

with § = s(1 + ¢), s* = 25 — wP/Ps, v = ®Vp, p = P/P;, and P =
Elw*/1* = Euler load. . .

As an example, consider the L-frame shown in Fig. 2. In their famous,
by now classic, papers Koiter (1967) used this examp!e to xllusu'az_e asym-
metric bifurcation and Roorda (1965a,b) coafirmed Koxtcr‘§ tho(.)rgn'c_al pre-
dictions by experiment. The bars have cqual uniform bending rigidities £/,
and the ratio of their lengths is B. The vertical load P is applicd at the comer
with a small eccentricity e. The deformation.of the frame is characterized
by rotations 0, 6,. and 8, [Fig. 2(a,b)]. The oolumr_l and beam are assumed
to be so slender that their first-order axial shortenings due to axial forces
are negligible. .

The deflections w produce second-order axial shortenings of the column
and the beam. They are second-order small in terms of w or 6 and cause
joint displacements «® downward and v to the right [Fig. 2(a,b))-

Due to these displacements, buckling of the column to (hc right [Fig. 2(b)]
produces an incremental shear force V* in the beam, which tends to make
the axial compression force P° in the column larger than the applied load
P. On the other hand, for buckling to the left, the shear fome V7 is of op-
posite sign and tends to make P°¢ less than P [Fig. 2(a)]. :I‘hls favors buckling
to the right. Secondly, buckling of the column to the right [Fig. 2(b)] pro-
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FIG. 2. Kolter-Roorda L-Frame: (a) Buckiing to Lett; (b) Buckiing to Right; (c)
Neutral Equilibrium at P = P, for Perfect Frame (and Small 6)

duces a smaller curvature of the beam than buckling to the left [Fig. 2(a)],
since for both cases the joint moves down and to the right. This, too, favors
column buckling to the right [Fig. 2(b)]. Thirdly, buckling of the column
to the right [Fig. 2(b)] produces an incremental shear force in the column,
which translates into a compressive force in the beam, lowering its stiffness,
while buckling to the left causes a tensile force in the beam, increasing its
stiffness. This again favors buckling to the right.

Soweseetlmtducmponsedoesnotexhibitdwsmsymmﬂyd\atis
found for centrically loaded perfect columns, which are equally likely to
buckle left or right. This asymmetry is manifested in the load-deflection
diagram of an imperfect column and has an important consequence: it causes
the maximum load to become fess than P_.. The writer analysis will dem-
onstrate it.

Taking 4™ and v into account but still considering small deflections, one
z)grains from Eq. 1 the following moment equilibrium condition of the joint

ig. 2):

El +@ EI «@
T 5.0 + 5.0, — 5 T + a 58 + 5,6,0, + 5, El_ =—Pe........ Q3)

where s, c.. and 5, = functions s, ¢, and § for the column, depending on
p° = P°/Pg (P° = axial compressive force in the column); and P5 = Eyler
load of the column; s, ¢,, and 5, = functions s, ¢, and § for the beam,
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depending on p* = P*/P% (P* = axial load of the beam and Pz = Euler
load of the beam).

The moment equilibrium conditions at hinges 2 and 3 read 5.0, + s.c.9
— 502/l = 0 and 5,05 + 5,¢,8 + 54™/Bl = 0. Expressing 8, and 8, from
these conditions and substituting them into Eq. 3, one obtains

2 2)
5y v Sp U Pel
- +=2Q-Alo+s(E-D—+=-U0-)—=—-—... @4
[SJ ¢y + 8 a c‘.)]ﬁ se(c: ) T B ( h) Bl i @

The horizontal and vertical equilibrium conditions for the joint (Fig. 2)

can be written as

P =V = sl = €0 e e 6))
and
El
P =P~ L i { B3 P
Vi, v e sl — )0 ©

where V¢ and V® = the shear forces in the column and the beam (Fig. 2).
In the calculation of V° and V*, higher-order terms have been omitted since
the validity of the present theory is limited to small displacements.

Let us now determine «® and v®. Small deflections of the members of
the frame may be expressed as w = 8£.(x) for the column and w = 8f,(x)
for the beam, where x is the axial coordinate of the column or beam mea-
sured from the joint; f,(x) = A, sin kx + B, cos kx + Cx + D k = v/1;
and fy(x) = A,x* + B,x> + Cpx + D,. The expression adopted for f,(x) is
a cubic polynomial, which is exact for P* = 0, and is always a sufficient
approximation since P* (unlike P°) is small (this will be confirmed later).
The constants A_, B, ..., D, are determined from the conditions w = 0 and
w =1forx=0;and w =0, w" = 0 forx = [ or x = Bl, where the primes
denote derivatives (here with respect to x). This yields A, = #/(sin vy — ¥
cos y); C. = —(A /D) siny; B. =D, = 0; A, = =G,/ C, = 1/2, B, =
D, = 0. Since the beam axis may be considered to be inextensible during
buckling (as the axial force is negligible), we have «® or v = f(1 — cos
wdx = J{1 = (1 — w?/2))dx = f1/2 w'’dx. Consequently, for small 6

']
P =k8, k= [ %[ §72063) o - 2R (7a)
Q

8!

1

v = k0%, k= f E[f,',(x)]’dx PSPPI (7b)
o

where coefficients k, and k. are positive. Their values are found to be k, =

0.1B! and k. = AX2y* + v sin 2y — 4 sin’y)/8/. Substituting Egs. 7a, b

into Eq. 4, one gets

k, k.
[:,(1 -+ -’6* a- c%)]o + [s,(c% S Dy s ) ;;z“,]"2
e ®
El

a) b)
LY £
Pt 0.0 Pecd
1.0 —== — .0
0001 - -
’I
0.8 1 0.8
~—— Second~Order Approx.
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FIG. 3. (a,b) Curves of Load versus Rotation; (c) Curve for Load versus Loed-
Point Displacement; (d) Imperfection Sensitivity Diagram

It is clear that if we would correct the deflection shapes f.(x) and f,(x) by
taking ¥®, v into account, we would introduce into Eq. 8 only terms,
whose order is higher than 0? but would not change the terms with 0 and
0”. Also note that since P* = 0 for 8 0, the consideration of P* # 0 in the
expression of f,(x) would add a term proportional to 8 in the expression of
k, (Eq. 7b), which would translate into a higher-order term in Eq. 8.

_Eds. 5, 6, and 8 represent a system of five equations relating 8, P, P*,
P, V°, and V<. If P%, P, V%, and V° are eliminated, onc gets the relation
of P to 6. For a convenient calculation of the curve P(8), onc may choose
a series of closely spaced increasing values of P¢. For each P*, one evaluates
sc and c.. Then, using as an approximation the previous rather than current
val!xe of 8 in Eq. S, one solves from it P* and then evaluates s, and c,, upon
which one solves two values from Eq. 8 (a quadratic equation), giving dif-
ferent portions of the P(8) curve. Accuracy could be improved by iterating
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the procedure with the latest value of 8 used in Eq. 5, but this is not nec-
essary if the chosen P° values are very closely spaced.

The curves P(0) are plotted in Fig. 3(a) for various values of relative
eccentricity e/l. As expected, for ¢ > O the rotation 8 is negative. A crucial
fact to note is that, for e > 0, the curve P(0) has a maximum, while the
curves that are obtained upon neglecting «® and v™ [dashed line in Fig.
3(a)] do not. As a limit case for ¢ = 0, we obtain the initial post-critical
response of the perfect system.

Secono-Orper SOLUTION OF L-FRAME

As has already been shown, the foregoing solution has only second-order
(quadratic) accuracy in 8. Therefore, any simplifications that preserve the
second-order accuracy are admissible and cause no error. To this end, we
expand all the variables in Eq. 8 into a power series with respect to 8 about
the critical state (¢ = 0). Then we discard all the terms of powers higher
than 0%, i.e., solve Eq. 8 with second-order accuracy in 8. Since we are
expanding all the variable coefficients about the critical state, we evaluate
the expansion coefficients for the critical state (onset of buckling, 8 = 0).
At that state, u® = v = 0; P = P, = P, and V* and V¢ = 0. Using
power-series expansions for functions s and ¢ (see Dean and Ugarte 1968),
the second-order approximations for s, and c, near the critical state are

20 P* 1 37 p
Sp=>=4 15 PL Sy 3 + BI5 P e (£)]
because P* = 0 at the critical state.

The approximation for P* as a function of 8 can be obtained from Eq. S,
but it can be more directly reasoned from the existence of neutral equilibrium
at the onset of buckling [Fig. 2(c)}. Therefore, the moment acting on the
column must be equal to the moment acting on the beam, which equals 3£1/
B! because initially P* = 0. Then, using Eq. 5, one may calculate the shear
force in the column:

From this it appears that P* > 0 (compression) if § < 0. So we conclude
that the change of beam stiffness also contributes to the initial downward
slope for 8 < 0.

Substituting p* from Eq. 10 into Eq. 9 and then s, and ¢, into Eq. 8, and
neglecting terms that contain powers higher than 67, we obtain

where x = s.(1 — ) + 3/B and £ = s.(c? — Dk/I + 3k /Bl + 3B/5.
Coefficient x depends on p° = P°/Pg. For P close to P,

X=Xee T (P — P, withy =

512

Now x = 0 for P = P,,, and so X, = 0. (The reason is that at the onset of
buckling all the second-order terms in Eq. 8 or Eq. 11 disappear.) This
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condition also gives the critical load of the perfect frame: P, = ol P%, in
which p,, = 1.407 for B = 1. The value of X' = (dx/dp")/P; is evaluated
at p* = P_./Pg, and it may be noted that x’ < 0. In view of Eq. 6 we have
X = X'(P — V* — P.). Taking into account Eq. 9 and neglecting third-order
terms in 6, E. 11 becomes

P=P Al +a0) ..t 13)
in which
s _3E
a=a tata, a= ®OP.
3B £,
a=—, Ay S e ettt iat et 14
PUSxWS T (~xP. 44

Note that in writing Eq. 13 we neglected the increment A8 = (P — P_)¢'
because (P — P,) is a small quantity that would be multiplied by 8* when
substituted in Eq. 11, and thus it would yield a third-order small term. In
Fig. 3(b), Eq. 13 is represented by a straight line of slope a, which is very
close to the solution previously obtained from the full equation system for
e = 0, and is asymptotically (i.e., for 6 — 0) the same.

There are three terms that contribute to the slope dP/d9: (1) The stiffness
change of the column caused by its axial force change due to the vertical
shear force transmitted to it from the beam (term a,); (2) the stiffness change
of the beam caused by its axial force change duc to the horizontal shear
force transmitted to it from the column (term q;); and (3) the displacement
of the comer due to axial shortcnings of the beam and column caused by
their deflections (term a,;). Note that in a symmetric frame the shear forces
represented by a, as well as a, would be cancelled by the shear force from
the opposite member, and term a, would vanish also if the joint displacement
were precluded by symmetry.

The diagram of load versus load-point displacement u(u = «®) at e = 0
(Fig. 2) is obtained, according to Eq. 7a, by substituting 8 = +=Vu/k. (with
k. evaluated for P* = P,), i.c.

a
P=pP, (lx—Vu). . ..o
(%) a

Eq. 15 is plotted in Fig. 3(c).

For small valucs of e and 0, and for values of P° not too different from
P, introduction of the approximations in Eqgs. 9, 10, and 12 into Eq. 8 and
elimination of higher-order terms in 0 provides

1+ a0 le e
P=pP, : itha s ———=——< ... . ...
- (a) YRS T T a1 (9
P . &’

whct.e a represents a nondimensional imperfection. Fig. 3(b) compares the
solution of the full second-order nonlinear system of Egs. 58 with the sim-
plified se&_:ond—ordcr solution (Eq. 16). We may observe that for very small
imperfections (e/! = 0.0001, e/l = 0.001) these two second-order solutions
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agree closely. For stronger imperfections this is not so, mainly because P
is no longer close to P,,.

IMPERFECTION SENSITIVITY

In Eq. 16 we may now introduce the expansion 1/(1 — o/8) = 1 + (a/
0) + (a/6)’ + ... and assume that 6 >> o at maximum load. Then, ne-
glecting in the resulting expression all higher-than-linear terms in 0, we get

1+ %4 a0+ a 17
P"— e a( L 3 an

Seting dP/df = 0, the value of 6 at maximum P is obtained as 0, =
—Va/a (only the negative root is of interest because we know the column
deflects to the right). Substituting this into Eq. 17, we obtain P, /P., = |
- 2Vaa - aa, and for small imperfections a we have

P TP AL = 2Va0) . oo 18)

Eq. 18 is plotted in Fig. 3(d).

It is important to note that after reaching the critical state the load declines
with increasing deflections; i.e., the structure exhibits softening. The dia-
gram of load P versus rotation (~6) begins to descend at a finite slope P,a
[Fig. 3(a)]. On the other hand, the diagram of the load versus the associated
displacement (i.e., the axial load-point displacement u) begins to descend
with a vertical slope [Fig. 3(c)].

The postcritical behavior just illustrated is generally called asymmetric bi-
furcation, since the equilibrium path P(6) or P(x) at the critical point bifur-
cates in an asymmetric manner (symmetry would require a horizontal slope
at P,). An important consequence is that the imperfect column has a max-
imum load P,,, that is less than P... The larger the imperfection, the smaller
P,.. is [Fig. 3(d)]. [Note that the American Concrete Institute (ACI) requires
the columns to be designed for approximately e > 0.01/ even if the load is
supposed to be centric.] Applied loads in buildings can often cause e to be
a large as 0.3/ or more.

The validity of Eq. 18 where a is the initial slope, and especially the fact
that P, declines in proportion to Va (x = imperfection), is not limited to
this cxample. It represents the well-known half-power faw of Koiter (1945),
which applies generally to all asymmetric bifurcations. This law implies a
rather severe sensitivity of the maximum load to the magnitude of imper-
fection, the severity being manifested by the fact that the curves in Figs.
3(c.d) start to descend with a vertical tangent (for imperfection-sensitive
structures for which the bifurcation is symmetric, Koiter derived a 2/3-power
law, P, — P ~ o, which is less severe than a'/?),

The frame analyzed here was tested by Roorda (1965). Fig. 4 shows his
test results for two different eccentricities e, which are above and below the
value ¢, that offsets the geometrical imperfections of the model (adjustment
of the theoretical curve by horizontal shift in Fig. 4(b) is necessary due to
inevitable imperfections of the experiment). Using a perturbation technique,
Roorda and Chilver (1970) analyzed this frame, which had previously been
studied by means of an energy approach (Koiter 1967). They found the ini-
tial slope of the load-rotation curve to be (dP/d8)/P., = 0.381 (at 6 = 0),
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Adjusted
Curve

FIG. 4. Experimentat Results of Roorda (1965a,b)

which agreed with Roorda’s experimental results (see Fig. 4). The present
calculation gives a = 0.379, which might be more accurate, since the present
method is more direct.

If for example e = 0.01/, then a = 0.00871, and Eq. 18 with a = 0.379
yields P,,, = 0.885P,; i.e., P drops by about 12% below P.,. Calculation
of this kind of drop in P,,, has not been the practice in the design of frames.

GENERALIZATIONS ANO IMPLICATIONS

To generalize the foregoing procedure to arbitrary frames one needs to
consider second-order joint displacements due to lateral deflections, and the
seoond-order changes of the stiffness cocfficients due to second-order changes
of the axial forces in members. The solution may be expected to lead in
general to a system of quadratic equations.

Note that the gower-seri& expansion of beam curvature, which reads 1/
p=wi(l + whH? = Wil — 3/2w? + (15/4w' — ...], lacks the
second-order term w"w'. The first term beyond the linear term w” is the term
w"w?, which is of the third order, and so it affects in the joint equilibrium
condition only terms of order 6° but not of order 8. It is for this reason that
the second-order axial shortening can be calculated from the first-order de-
flection solution based on the lincar curvature expression 1/p = w" and the
linear stability functions s and c. For the same reason, functions s and ¢
(linear stiffness) are insufficient to determine initial postcritical behavior in
symmetric bifurcations, for which third-order accuracy is required. Thus the
symmeuicbiﬁnmﬁouishaxdatoamlymmmeasymnwicom.Ahigtm-
order accuracy is needed.

Since the bifurcation in columns is symmetric, the postbuckling solution
for columns must involve at least a third-order approximation in w (c.g.,
Thompson and Hunt 1973). Due to symmetry of the column buckling prob-
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FG. 5. (ab) Asymmetric Frames; (c) Symmetric Frame; (d,e) Asymmetric Frames

lem, the second-order terms in w cancel out. For the preseat L-frame, they
do not cancel out, duc to nonsymmetry; consequently the third-order terms
in w are not needed for the initial postcritical behavior. For this reason the
present solution method (based on the s and ¢ functions) could not be applied
to posteritical behavior of a column.

In some frames, such as the symmetric portal frame in Fig. 5(c). the axial
shortening meets with no resistance and the incremental shear force in the
horizontal beam has no effect on the sum of vertical loads. Therefore, the
bifurcation is symmetric, and neutral equilibrium exists at the critical state
(for small deflections) just as it does for columns and also, obviously, for
continuous beams. However, if portal frame columns have different lengths
or different stiffnesses (Fig. 5(d,¢)], or different axial loads, their axial short-
;nings u, and u; are different and cannot be freely accommodated, and the
incremental shear force in the horizontal beam affects the sum of the loads.
Then the bifurcation is asymmetric. For frames the symmetric bifurcation is
in fact an exception rather than 2 rule.

The redundancy of the frame per se is not the source of asymmetric bi-
furcation. For example, the two-bar frame in Fig. 5(a.b). which is statically
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determinate and is obtained from our previous frame by replacing the upper
hinge support with a simple support, must also exhibit asymmetric bifur-
cation. Indeed, the buckling of the column to the left {Fig. 5(a)] in this frame
also meets with less resistance than buckling to the right [Fig. 5(b)). The
reason is that it produces less curvature in the horizontal beam, because the
vertical column shortens in proportion to 6”.

Asymmetric bifurcation is also exhibited by a single simply supported col-
umn if the sliding plane of one support is misaligned with the beam axis.
Since very small misalignments are inevitable, a small bifurcation asym-
metry must always be present.

CONCLUSIONS

1. The source of bifurcation asymmetry in nonsymmetric rectangular frames
consists of: (1) The incremental shear forces transmitted to the columns from
the adjacent beams as well as to the beams from the adjacent columns; and (2)
the joint displacement caused by second-order axial shortenings of members due
to their deflections.

2. A considerable simplification of the analysis is achicved by using the stiff-
ness matrices that are known from the lincar buckling analysis of frames and
are based on the stability functions s and c. The analysis necessitates calculation
of certain second-order terms that involve derivatives of the stability functions
with respect to the axial forces in members evaluated at the critical state of the
perfect frame.

3. The present analysis agrees with Koiter's half-power law for the decrease
of the maximum load at asymmetric bifurcation as a function of the imperfection,
such as load eccentricity.

4. The example of the Koiter-Roorda L-frame shows that the present method
of analysis closcly agrees with the previous calculations of Koiter, and Roorda
and Chilver, as well as with Roorda’s experiments.

S. The reduction of the maximum load duc to imperfections in frames exhib-
iting asymmetric bifurcation can be quite severe. In the preseat cxample, a load
eccentricity of 1% of the column length causes a 12% drop in the maximum
Joad, compared with the elastic critical toad of a perfect frame.

6. Neglect of asymmetric bifurcation causes the safety factor in the frames
exhibiting this type of behavior to be systematically less than in those that do
not exhibit asymmetric bifurcation. Therefore, in the interest of uniform safety,
the imperfection scnsitivity due to asymmetric bifurcation ought to be taken into
account in the design of frames.
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