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Equilibrium Path Bifurcation Due
to Strain-Softening Localization in
Ellipsoidal Region

A preceding study of the loss of stability of a homogeneous strain state in infinite
homogeneous solid due to localization of strain into an ellipsoidal region is com-
plemented by determining the condition of bifurcation of equilibrium path due to
ellipsoidal localization mode. The bifurcation occurs when the tangential moduli
matrix becomes singular, which coincides with Hill’s classical bifurcation condition
Sor localization into an infinite layer. The bifurcation is normally of Shanley type,
occurring in absence of neutral equilibrium while the controlled displacements at
infinity increase. During the loading process with displacement increase controlled
at infinity, this type of bifurcation precedes the loss of stability of equilibrium due
to an ellipsoidal localization mode, except when the tangential moduli change sud-
denly (which happens, e.g., when the slope of the stress-strain diagram is discon-

tinuous, or when temperature is increased).

Introduction

Strain softening due to distributed cracking may cause strain-
localization instabilities. For uniaxial behavior and for bend-
ing, the localization instabilities were analyzed in 1974 by
Bazant (1976). In multidimensional situations, the simplest
localization instabilities are the localization into a planar band
or into an ellipsoid, which were analyzed by Rudnicki and Rice
(1975), Rice (1976), and Rudnicki (1977). These pioneering
studies were limited to localizations in an infinite space and
to von Mises or Drucker-Prager plasticity. Recently, BaZant
(1988d) extended these classical works to ellipsoidal localiza-
tion in a material with an arbitrary constitutive law and, for
the cases of localizations into planar bands as well as circular
or spherical regions, to finite bodies. He also went beyond the
conditions of critical state and obtained the conditions of sta-
bility. A detailed study of the effects of various material pa-
rameters as well as body size on the critical states has been
presented by BaZant and Lin (1989). For a more detailed lit-
erature review, see Bazant (1988d) and BaZant and Lin (1989).

The interest in the solutions of localization in ellipsoidal
regions stems from the fact that, in contrast to the solutions
for infinite bands, they can be used as approximate solutions
of localization in finite bodies. If the body is finite, localization
into an infinite band cannot represent and exact solution be-
cause, for example, the fixed boundary conditions cannot be
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satisfied at the location where the localization band intersects
the boundary.

In particular, we will focus on localization into ellipsoidal
regions for which analytical solutions can be found. Except
for the special case of cylindrical and spherical localization
regions, these solutions are available only for an infinite solid,
and generally cannot satisfy the boundary conditions for a
finite body. However, in contrast to the infinite localization
band, they can at least satisfy the boundary conditions ap-
proximately, provided the body is sufficiently large compared
to the size of the localization ellipsoid. This is due to the fact
that the stresses, strains, and displacements in the analytical
solution for the ellipsoidal localization region in an infinite
solid decay rapidly with the distance from the ellipsoid, thus
becoming negligible at a certain sufficient distance from the
ellipsoid. If the boundary lies beyond that distance, the solution
is nearly vanishing at the boundary and can, therefore, be used
as an approximate solution for a finite body.

The previous studies of strain localization into ellipsoidal
regions have been restricted to instabilities, which occur at
constant load and represent a state of neutral equilibrium or
limit of stability. Localizations, however, can also occur in a
stable fashion as a bifurcation of equilibrium response path
at increasing load, similarly to Shanley-type instability of plas-
tic column. The objective of this paper is to extend the previous
general stability analysis of Bazant (1988b) and Bazant and
Lin (1989) to bifurcations of Shanley type, at which the ellip-
soidal localization region is stable and the loading increases
during bifurcation.

Eshelby’s Solution

We consider an ellipsoidal hole (Fig. 1(b)) in an infinite
homogeneous elastic space characterized by the elastic moduli
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Fig. 1 Strain increment distribution for localization during loading into

an ellipsoidal region, and stress-strain diagram (E, — D,,)

matrix D,. We imagine to fit and glue into this hole an ellip-
soidal plug made of the same material. To fit, the plug must
first be deformed by a uniform strain, €°, called the eigenstrain
(note that an ellipsoid can be transformed to any other ellipsoid
by uniform strain). The eigenstrain is then imagined unfrozen.
This causes the plug with ellipsoidal hole to undergo strain
increment, €%, in order to establish equilibrium with the sur-
rounding infinite space. According to the famous Eshelby’s
(1957) theorem, the strain ¢ in the plug is uniform and is
expressed as

Efj = Sijkmfgm 1)
in which S, are the components of a fourth-rank tensor which
depend only on the aspect ratios a,/a,, as/a, of the principal
axes of the ellipsoid, as well as on the elastic moduli; the latin
lower case subscripts refer to cartesian coordinates x; (i = 1,
2, 3), and repeated subscripts imply summation over 1, 2, 3.
Eshelby’s coefficients S, are generally calculated as elliptic
integrals (Mura, 1982). Always, Sjxm = Sjkm = Simi bUt in
general S;j,, # Sim;. For arbitrary anisotropic material prop-
erties, the expressions for coefficients Sy,,; were derived by
Kinoshita and Mura (1971) and Lin and Mura (1973). For
convenience we rewrite equation 1 in a matrix form:

€ =Q,¢ 2)
in which Q,is a (6 X 6) square matrix formed from coefficients
S,km (see Bazant, 1988d), and ¢’ and ¢ are (6 x 1) column
matrices of the eigenstrains and the equilibrium strains in the
ellipsoidal region.

According to Hooke’s law, the stress in the ellipsoidal plug,
o°, which is uniform, may be expressed as ¢ = D,(¢° — ).
From equation 2, & = Q; ‘¢, and so -

o =D,(1-Q, ) (3)
in which 1 = unit (6 X 6) matrix.

Review of Ellipsoidal Localization Instability

For the readers’ convenience, let us first briefly outline a
simplified version of the analysis from BaZant (1988d). We
consider an infinite strain-softening solid (without any hole)
which is initially in an initial equilibrium state of uniform initial
strain, €, and uniform initial stress, ¢, balanced by loads applied
at infinity. We seek the condition under which the initial state
loses stability in a mode in which the strain localizes into an
ellipsoidal region (Fig. 1(a)) without changing the prescribed
stresses (or the prescribed displacements) at infinity. If these
variations can happen while maintaining equilibrium, we have
a state of neutral equilibrium which represents the limit of
stability, i.e., the critical state.
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Due to localization, the strain and stress in the infinite con-
tinuum outside the ellipsoidal region becomes nonuniform;
while according to Eshelby’s theorem, the stress and strain
inside the ellipsoidal region will remain uniform (Fig. 1(b)).
The strains can become discontinuous across the ellipsoidal
interface. On the other hand, the normal and shear stress
components acting on this surface must remain continuous in
order to maintain equilibrium.

It must now be recognized that a material in a strain-soft-
ening state can deform not only according to the matrix of
tangential moduli for further loading (i.e., strain-softening),
which is indefinite, but also according to the matrix of elastic
moduli for unloading, which is positive definite. Because the
stresses inside the ellipsoidal region decrease if there is strain
softening at further loading, and because the stress components
on the ellipsoidal interface must be continuous across the in-
terface, the stresses immediately outside the ellipsoidal region
must decrease if the stresses or displacements at infinity are
fixed. So, immediately outside the ellipsoidal region, there can
be unloading, i.e., the material can behave elastically. In fact,
there must be unloading at least somewhere outside the ellip-
soidal region, for if there were none, the strain variations would
be non-negative everywhere along any straight line through
the ellipsoid, and positive inside the ellipsoid; their integral
from — oo to o along such a line would be nonzero and thus
incompatible with the boundary condition of constant dis-
placements at infinity. The same must be true for the boundary
condition of constant stresses at all infinitely remote points
because integration of strains along any closed infinitely remote
contour indicates that this boundary condition implies constant
displacement at infinity. (Later, we will see that in the bifur-
cation problem, the situation is different: There need not be
any unloading since bifurcation can occur while the displace-
ments at infinity increase.)

According to equation (3), the stress variations inside the
ellipsoidal region that correspond to Eshelby’s solution for the
outside are 6¢° = D, (1 — Q, ")d¢ in which D, represents the
matrix of the elastic moduli for unloading from the current
state characterized by initial strain e. This matrix is positive
definite, and it is also isotropic if the material is isotropic. The
vector of surface tractions that must be transmitted from the
ellipsoidal region to the outside in order to provide the correct
boundary conditions for the Eshelby’s solution for the outside
is 5p° = —&¢*n, where n is the unit vector of the normals to
the ellipsoidal surface, pointed outward from the ellipsoid.
Therefore,

&p°= - D,0-Q, Héen. €

At the same time, the stress variations inside the ellipsoidal
region may be expressed as 6¢° = D,d¢, in which D, is the (6
x 6) matrix of tangential moduli for further loading from the
current state of strain e. This matrix is not positive definite if
the initial state is in the strain-softening range, and, in general,
is anisotropic (as a manifestation of stress-induced anisotropy).
Based on the stress variations inside the ellipsoidal region, the
vector of surface tractions acting on the surface of the ellipsoid
must be (DS¢) n, and the vector of surface tractions applied
from the ellipsoidal region on the outside must be

op°= —Den. (5)

Substituting equation (5) into equation (4), one obtains for
the strain variations 8¢ in the ellipsoidal localization region
the condition:

X n=0, with 6X =2 ¢, ®)

in which
Z=D1_Du(l_'Qu_ l)’ (7)

where Z is a (6 x 6) matrix depending only on the loading
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and unloading stiffness matrices of the material in its current
state.

Vector 8X is the same for all the points of the ellipsoidal
surface because the strain 8¢’ in the ellipsoidal region is ho-
mogeneous, both according to Eshelby’s solution for the out-
side and the assumed strain-softening deformation inside.
Equation (6) represents a system of three homogeneous linear
algebraic equations for the three components of n. These equa-
tions must be satisfied not just for one vector, n, but for
infinitely many vectors of all the normals, n, of the ellipsoidal
surface. This is possible if and only if X = 0. Therefore.

Zoe¢e =0, ®)

This is a system of six homogeneous linear algebraic equations
for the six components of column matrix 6¢°. Thus, a locali-
zation instability is possible if and only if the determinant of
this equation system vanishes, i.e.,

det Z=0. %)

This condition, representing a condition of neutral equilib-
rium, was obtained in Bazant (1988d) by analyzing the positive
definiteness of the second-order work in the infinite solid,
which showed that the states in the loading process preceding
the attainment of this condition are stable, and the subsequent
states are unstable. The special case of equation (9) for Drucker-
Prager plasticity was obtained by Rudnicki (1977).

Using the thermodynamic stability condition from Bazant
(1988a, b), Bazant (1988d) further showed that the initial state
of uniform strain e is unstable if matrix Z is not positive
definite, and is stable (with regard to the ellipsoidal localization
mode) if matrix Z is positive definite.

The critical state condition in equation (8) ignores second-
order nonlinear geometric effects. As is well known from var-
ious three-dimensional stability problems (Biot, 1965; Bazant
1971), the nonlinear geometric effects can have influence on
three-dimensional instabilities only if they occur at stresses that
are of the same order of magnitude as the tangential moduli.
For a material with a stress-strain diagram that lacks a pro-
longed plastic plateau (Fig. 1(c)), this situation arises only if
the instability occurs very near the peak of the stress-strain
diagram. Since Eshelby’s theorem is limited to small-strain
elasticity, we must exclude this case from our analysis (as done
by Rudnicki, 1977). Our solution will be applicable only to
postpeak states at which the tangential modulus E, (Fig. 1(c))
is of a higher order of magnitude than the stresses. Thus, if
we find the bifurcation to occur at the peak stress, it means
that according to finite strain theory it should occur near the
peak stress.

Bifurcation Analysis

For inelastic structures, the condition of stable equilibrium
does not necessarily indicate which equilibrium path will be
followed by the structure under a given loading process. It can
happen that, after a bifurcation of the equilibrium path, the
states on all the equilibrium branches emanating from the
bifurcation point are stable, yet only one of them can be fol-
lowed by the structure. Which one is followed is decided by
the condition of stable path (BaZant 1988a,b), which differs
from the condition of stable equilibrium if the structure is
inelastic. (An example of such behavior is Shanley’s bifurcation
at the tangent modulus load of an elastoplastic column.) We
will now show that, for ellipsoidal localizations, the bifurcation
of equilibrium path happens earlier and can take place during
a succession of stable equilibrium states at increasing load,
i.e., in absence of neutral equilibrium.

The loss of stability due to strain localization is considered
to occur while the remote displacements, strains, and stresses
are constant (Fig. 1(b)). Bifurcation of the equilibrium path,
on the other hand, can occur while the remote displacements,
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strains, and stresses increase (Fig. 1(c)). In this manner, it can
happen that the strains increase everywhere, but the increase
inside the ellipsoidal region is larger than outside, so that the
strain localizes simultaneously with the progress of loading;
see Fig. 1(a). For the mode of instability (Fig. 1), matrix D,
of the moduli for loading applies for the interior of the el-
lipsoid, and matrix D, of the moduli for unloading applies for
the exterior. But in the bifurcation mode (Fig. 14), matrix D,
applies for both the interior and the exterior of the ellipsoid.

As shown in BaZant (1988d, equation 12), the second-order
work for an arbitrary deviation from the initial uniform equi-
librium state with loading inside and unloading outside the
ellipsoid is 82W = (1/2) 8¢” Z 8¢ V, where V = volume of the
ellipsoidal region and 8¢ is the (6 x 1) column matrix of
arbitrary homogeneous strain increments inside the ellipsoid.
According to the derivation of equation (1), one can check
that the second-order work done along the equilibrium path
when loading takes place both inside and outside the ellipsoid
is82W = (1/2) 6¢” Z,6¢ V where Z, is obtained from Z (equation
(7) by replacing D, with D,. Therefore, Z, = D, (1 + Q; ' —
) or

Z:=DIQF', (10)

where Q, is the matrix of Eshelby’s coefficients based on D,.

Assuming D, to vary during the loading process continu-
ously, the first bifurcation of the equilibrium path is obtained
when 82W = 1/2 8¢” Z, 6¢ V = 0 for some nonzero vector de.
This case occurs when the matrix equation

Z3e=0 an

admits a nonzero solution de. This means that matrix Z, given
by equation (10) is singular.

Matrix Q, relates the equilibrium strain of an elastic plug of
moduli, D,, in an infinite space of moduli, D,, to the eigen-
strain, 8¢%, by which the plug must be deformed to fit it into
an ellipsoidal hole in the infinite space; 8¢ = Q8¢°. From this
physical meaning it is clear that if D, is positive definite, then
a finite de¢ can be produced only by a finite 8¢°, and if D, is
nearly singular (a state near the peak of the stress-strain dia-
gram), then a finite e can occur even for a vanishingly small
8¢€%. Therefore, if D, is positive definite, so must be Q; !, and
if D, is singular, so must be Q; !. Hence, in view of equation
(10), singularity of matrix Z, implies the tangential moduli
matrix D, to be singular, i.e.,

det D,=0. (12)

This is equivalent to the well-known bifurcation condition for
an infinite localization band in an infinite solid (Rudnicki and
Rice, 1975). Equation (11) is satisfied at the peak point of the
stress-strain diagram and represents the condition which sep-
arates the strain-hardening regime of material (D, positive def-
inite) from the strain-softening regime (D, indefinite).

So we must conclude that, during a loading process in which
the displacements are continuously increased at infinity, lo-
calization of homogeneous strain into an ellipsoidal region
must begin as soon as D, loses positive definiteness, i.e., as
soon as strain softening begins, same as localization into an
infinite band.

Let us now discuss the type of bifurcation. In view of equa-
tion (10), equation (11) for eigenvector d¢* of matrix Z may
be written as

Dx* =0, (13)
in which x* = Q; ! é¢* or
de* =Qx*, (14)
and x* is the eigenvector of matrix D, corresponding to zero
eigenvalue. . .
Two cases may now be distinguished: (1) Either the eigen-

vector d6¢* lies in the sector of loading, or (2) it does not.
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If it does, then the bifurcation state would be a state of
neutral equilibrium, which represents the limit of stability. In
previous work (Bazant 1988d, Bazant and Lin 1989), however,
it was found that, except for the limit case of an infinite layer
(which is equivalent to an ellipsoid for which the two ratios
of its axes tend to infinity), the limit of stability does not occur
when det D, = O but only later, when matrix D, becomes
indefinite (i.e., at a certain finite distance after the peak of
the stress-strain diagram).

It follows that the eigenvector d¢* must lie outside the loading
sector. So the actual increment 8¢ along the equilibrium path
cannot coincide with de* because it would imply unloading,
which we have ruled out. Therefore, the actual 8¢% musts lie
at the boundary of the loading sector and must differ from
the eigenvector de*. Hence, Z, 8¢’ # 0 and, furthermore, D,
X% # 0 where x® = Q, ! ¢°. This means that the increment
8¢ along the equilibrium path must be happening at increasing
boundary displacements (or increasing strains) at infinity, i.e.,
neutral equilibrium does not exist. This is obviously the Shanley
type of bifurcation, in which the bifurcation state and all the
immediate postbifurcation states are stable (Bazant 1988a, b).

For an infinite localization band in an infinite solid, by
contrast, the first bifurcation is not of Shanley type. It occurs
at neutral equilibrium and represents the onset of instability.

Comments

As shown by Rudnicki (1977) for Drucker-Prager plasticity
and by BaZant (1988d) and Bazant and Lin (1989) for general
material properties, the loss of stable equilibrium with local-
ization into an ellipsoidal region can occur only when matrix
D, becomes indefinite, i.e., when the material enters a strain-
softening state. This occurs at a finite distance after the peak
point of the stress-strain diagram, at which the tangential mod-
ulus is nonzero and negative. We now find, however, that
along the equilibrium path the localization into an ellipsoidal
region occurs already when matrix D, becomes semi-definite,
i.e., at the peak-stress state, which always precedes the state
of stability loss.

The classical bifurcation condition of Hill (1962), which
serves as the basis of the method of linear comparison solid,
also indicates that singularity of matrix D, is the condition of
first bifurcation; see also Rudnicki and Rice (1975), Rice (1976),
Leroy and Ortiz (1988), and de Borst (1988). Hill’s bifurcation
condition, however, has been proven only for localization into
an infinite planar band in an infinite space. The boundary
conditions of such a localization mode cannot be accommo-
dated for finite bodies. The present analysis proves that Hill’s
bifurcation condition (i.e., det D, = 0) is also correct for
localization into ellipsoidal regions, aithough the mode of lo-
calization is different.

Note that Hill’s case of localization into an infinite layer is
obtained as the limiting case of ellipsoidal localization when
two axes of the ellipsoid tend to infinity. The fact that this
limiting case agrees with Hill’s case was numerically verified
in Bazant (1988d) and BaZzant and Lin (1989).

The foregoing analysis, which led to the bifurcation con-
dition det D, = 0, shows only when localization can occur.
To show that it must occur, BaZant’s (1988a,b) path-stability
criterion requires it to prove that, for the conditions of pre-
scribed displacements at infinity, the value of & W is smaller
for the localizing path than for the nonlocalized path (in which
the strain field remains uniform). The calculation of §2W along
the equilibrium path can be done numerically and will not be
illustrated in the present paper.

The preceding analysis shows that the case of stability loss
with localization into an ellipsoidal domain can never occur
in a continuous loading process in which the displacement at
infinity are controlled. Localization along the equilibrium path,
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without any loss of stability, always precedes such instability.
So, can the solution of stability loss have, in this case, any
practical application? It can—either if the tangential moduli
matrix D, changes suddenly during the loading process (which
happens, e.g., for bilinear stress-strain diagrams), or if the
uniform strain state in the strain-softening range at incipient
instability is reached by some other type of process. Examples
are processes in which some displacements inside the body are
controlled, or processes in which a finite sudden change of D,
is caused by a change of temperature, change in moisture
content or pore pressure, crystallographic conversion, chemical
conversion, irradiation, etc., or processes in which D, is changed
due to hysteretic cycles.

Conclusion

A bifurcation of equilibrium path characterized by locali-
zation of initially homogeneous strain into an ellipsoidal region
takes place when the matrix of incremental moduli becomes
singular. This coincides with Hill’s classical bifurcation con-
dition for localization of strain into an infinite layer, which
represents a condition of neutral equilibrium and stability limit.
By contrast, the ellipsoidal bifurcation is of Shanley type,
occurring in a stable manner while the controlled displacements
at infinity increase. If the incremental material moduli vary
continuously during the loading process, this bifurcation al-
ways precedes the loss of stability of equilibrium in the ellip-
soidal localization mode. Such a loss of stability of an initially
uniform strain field can nevertheless occur simultaneously with
the first bifurcation if the matrix of incremental moduli changes
suddently.
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