
Engineering Fracture h4echanics Vol. 36, No. 3, pp. 523-525, 1990 0013-7944/90 s3.w + 0.00 
Printed in Great Britain. Pergamon Press pk. 

TECHNICAL NOTE 

JUSTIFICATION AND IMFROVEME~ OF KIENZLER AND 
HERRMA~S ESTIMATE OF STRESS INTENSITY FACTORS 

OF CRACKED BEAM 

ZDENEK P. BAZANT 

Center for Advanced Cement-Based Materials, Northwestern University, Tech 2410, 
Evanston, IL 60208, U.S.A. 

Abstract-Kienzler and Hernnan recently showed that good and remarkably simple approxi- 
mations of the stress intensity factors of cracks in beams can be obtained by bending theory 
estimations of the strain energy release as the crack is widened into a band of finite width. Their 
method has been based on equating this energy release to the energy release rate due to crack length 
extension, which has been postulated as a hypothesis. This note presents a justification of this 
hypothesis and further shows a possibility of improvement by introduction of an additional factor. 
The improvement is demonstrated by numerical comparison with the exact solution of a cracked 
beam. The afo~mention~ factor, however, can be dete~in~ only by optimum fitting of the exact 
solution. 

INTRODUCTION 

A REMARKABLY simple method for close approximation of stress intensity factor 4 in cracked or notched beams was recently 
discovered by Kienzler and Herrmann[l] (see also Herrmann and Sosa[2]). The method was derived from a certain 
postulated hypothesis regarding the energy release as the crack is widened into a fracture band. The purpose of this note 
is to present a justification of this hypothesis and also show a different derivation of this new method. This derivation is 
simpler and at the same time indicates that the hypothesis used by Kienzler and Herrmann is not exact but merely a good 
approximation. The present method avoids sophisticated elegant concepts, such as material forces, which were introduced 
by Kienxler and Hemnann, but are not used in the present derivation. They do not seem to be necessary for obtaining 
the result. 

KIENZLER AND HERRMANN’S METHOD 

We may illustrate this new method by considering a cracked beam that is subjected to bending moment M. The beam 
has bending stiffness EI,, and the notched cross-section has bending stiffness ,??I,, where I, = bH3/12 and I, = b(H - ~)~/12; 
I,, I2 = moments of inertia, H = beam depth, a = notch depth, b = beam thickness. Kienxler and Hemnann[l] consider the 
energy release AU of the beam as the notch thickness b is widened from zero to A/I. From the theory of bending one has 
AU = M2(1/EI, - l/El,) Ahb/2, and so 

au --.-i= 
dh 

where U = strain energy of the beam. To calculate the energy releases rate, and from that the stresses intensity factor, 
Herrmann and Kienxler write (for 6 = I): 

au au 
aa”2ah (2) 

where SJiaa = -bG, and G is the energy release rate of the beam per unit advance of the crack (and per unit length of 
the crack front edge). The stress intensity factor is K, = (EG)“‘. According to Kienxler and Herrmann’s[l] Figs 2-4, the 
values of K, calculated in this manner compare quite well with accurate solutions from handbooks. 

Equation (2) represents a crucial step. This step, aowever, has not been justified theoretically. It has been postulated 
as a hypothesis. 

JUSTIFICATION AND IMPROVEMENT 

Formation of a crack in an untracked body may be imagined to completely relieve the strain energy from the triangular 
areas 021 and 023 which are limited by the so-called “stress effusion lines” (see e.g. Knot#3]), as shown in Fig. l(a), (b). 
When the crack length a increases by Au, the additional energy release, therefore, comes from the strips 2683 and 2641 
of width a (Fig. Ia) from which a~/au, G and X;: can be calculated. For bodies with an initially homo~n~us stress field, 
this method gives correct formulas for X,, except that the value of the proper slope k can be determined only by comparison 
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(a) (b) 

Ah/2 
Ah/2 

Fig. 1 

with the exact solution of elasticity and is found to depend on the geometry of the body. Generally, the order of magnitude 
ofk is 1. 

Application of the foregoing method to beams would be more problematic since the stress field before formation of 
a crack is nonuniform and the transverse crack advances in the direction of nonuniformity of the stress field. This means 
that the average initial strain energy density in the aforementioned triangular zones changes, and so does the effective slope 
k. This problem, however, is circumvented by Kienzler and Herrmann’s idea; instead of crack extension (Fig. la), they 
consider crack widening (Fig. lb). The widening occurs in the direction of constant stress, and so it is not accompanied 
by a change of the size of the triangular zones. Therefore, the average strain energy density in the triangular zones remains 
approximately constant, and so does the effective slope k. 

The widening of the crack into a crack band of width Ah (Fig. 1 b) causes the stress relief zone to change from area 
1231 to area 45784 as shown by arrows in Fig. l(b). Since the triangular area 56725 in Fig. I(b) is second-order small if 
Au is small, the increments of the stress relief zones 123876541 and 1237541 in Fig. l(b), (c), (d) are identical provided that 
Ah /2 = k Au. Therefore 

au au 
-bG =da =2kdh. (3) 

The case k = 1 (eq. 2) is identical with the hypothesis (postulate) of Kienzler and Herrmann[l, p. 411. However, as 
the foregoing argument shows, there seems no reason to assume k = 1. Indeed, numerical results show that more accurate 
results can be obtained if the empirical constant k is allowed to differ from 1. 

NUMERICAL COMPARISONS 

Figure 2 shows the plot of the nondimensionalized stress intensity factor vs the relative crack length a/h for a 
single-edge-notched beam of depth h under uniform bending moment M. The exact solution of elasticity[4] is shown as 
the data points. The solid curve shows the approximate solution from Kienzler and Herrmann’s Fig. 4[1], based on eqs 
(1) and (2). The dashed curve shows the present adjustment, achieved by taking b = 1.32 as the optimum, instead of k = 1. 
The dashed curve is graphically obtained from the solid curve by vertically scaling the ordinates with the factor 
J&&2. 

Although Kienzler and Herrmann’s approximate solution in Fig. 2 may be quite adequate for most engineering 
purposes, the present adjustment represents an improvement with no loss in simplicity. Kienzler and Herrmann’s Fig. 2 
plots their formula for a center-cracked beam, and their Fig. 3 for a double-edge-cracked beam, both under bending 
moment. For the former case, optimum improvement is achieved with k z 1.17, and for the latter case with k z 0.91. Diverse 
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values of k achieve improvements of the results calculated by Hemnann and Sosa[2] for beams under axial force instead 
of bending moment. 

Overall, we see that the optimum values of k vary and cannot be obtained by elementary reasoning. 

CONCLUSIONS 

(1) Kienzler and Herrmann’s approximate method can be justified by adapting the method of “stress relief zone” to 
the widening of a crack into a band. 

(2) This justification indicates that an improvement can be achieved by introducing an additional factor k, and 
numerical results confirm that this indeed is the case. Factor k, however, can be determined only by optimum fitting of 
the exact solution of elasticity. 
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