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CRACKS INTERACTING WITH PARTICLES OR FIBERS
IN COMPOSITE MATERIALS

By Gilles Pijaudier-Cabot,' Associate Member, ASCE,
and Zden¢k P. Bazant,” Fellow, ASCE

ABSTRACT: Micromechanics analysis of damage in heterogeneous media and
composites cannot ignore the interactions among cracks as well as between cracks
and inclusions or voids. Previous investigators can to this conclusion upon finding
that states of distributed (diffuse) cracking (damage) cannot be mathematically rep-
resented merely as crack systems in a homogeneous medium, even though stable
states with distributed damage have been experimentally observed in heterogeneous
materials such as concrete. This paper presents a method for modeling interactions
between a crack and many inclusions. Based on the Duhamel-Neuman analogy,
the effect of the inclusions is equivalent to unbalanced forces acting on the contour
of each inclusion in an infinite homogeneous solid. The problem is solved by su-
perposition; it is decomposed into several standard problems of elasticity for which
well-known solutions are available. The problem is finally reduced to a system of
linear algebraic equations similar to those obtained by Kachanov for a system of
interacting cracks without inclusions. The calculated estimates of the stress inten-
sity factors differ from some known exact solutions by less than 10% provided the
cracks or the inclusions are not very close to each other. Approximately, the prob-
lem can be treated as crack propagation in an equivalent homogeneous macroscopic
continuum for which the apparent fracture toughness increases or decreases as a
function of the crack length. Such variations are calculated for staggered inclu-
sions. They are analogous to R-curves in nonlinear fracture mechanics. They de-
pend on the volume fraction of the inclusions, their spatial distribution and the
difference between the elastic properties of the inclusions and the matrix. Large
variations (of the order of 100%) are found depending on the location of the crack
and its propagation direction with respect to the inclusions.

INTRODUCTION

Most particulate or fiber-reinforced composites do not fail by propagation
of a single microcrack. Typically, these materials are capable of sustaining
significant loads while multiple microcracks propagate. In concrete loaded
in uniaxial tension or compression, acoustic emission analyses (Legendre
1984; Maji et al. 1990) and X-ray microscopic observations (Darwin and
Dewey 1989) show that distributed microcracks and damage localization ex-
ist in the material prior to failure. In these brittle heterogeneous composites,
cracks are often initiated at the interface between the matrix and the aggre-
gate pieces, and they propagate into the matrix eventually. Distributed crack-
ing is also observed in fiber composites, the behavior of which in the planes
normal to the fibers is similar to a two-dimensional particulate composite
(Highsmith and Reifsnider 1982).

The key problem in developing a theory explaining such observations is
how to take into account the effect of the heterogeneities. Pijaudier-Cabot
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and Dvorak (1990) recently proposed an approximation method for esti-
mating the variation of the stress intensity factor and the inherent toughening
effect at the tip of a crack that touches the interface between two elastic
materials. In the case of concretetlike materials, which are the main moti-
vation for this paper, most studies considered that the interactions among
cracks or between aggregate pieces and cracks could reasonably be ne-
glected, except in some special cases.

Zz.nitsev (1985) developed a rather comprehensive model in which the in-
clusion-crack interaction is neglected and each crack may interact only with
its cl.osest neighbor. However, the postpeak softening a response of concrete
specimens could not be obtained with this method. More recently, Huang
fmd L_1 (1989) and Hu et al. (1986) used similar ideas and proposed models
in which the toughening (i.e., crack arrest) effect of the inclusions was in-
corporated. Although the mechanical interaction effects were still lacking
crack deflection mechanisms were represented statistically (Faber et al. 1983;
Evans and Faber 1983). The effect of crack-inclusion interaction on dynamic
crack propagation was studied by Sih and Chen (1980).

The effect of crack interaction has recently been considered in the studies
of micromechanics of damage in concrete or ceramics (Horii et al. 1989;
Ortiz 1988; BaZant et al. 1989; Kazemi and Pijaudier-Cabot 1989), and sev-
eral approximation schemes for estimating crack-interaction effects have been
pro;_)osed [see e.g., Kachanov (1987); Horii and Nemat-Nasser (1985)]. In
pax.ucu.lar, the importance of crack interaction at the onset of damage lo-
calization has been proven to be a fundamental aspect that justifies partial
nonlocality of the constitutive relations at the macroscopic level, i.e., for
the homogenized damaged medium (Pijaudier-Cabot and Berthaud 1990).

Some investigations have led to a striking conclusion: according to ther-
modynamics and stability analyses, most regular crack systems such as par-
allel equidistant cracks, periodic arrays of cracks and some colinear crack
systems cannot be reached by a stable path under usual load or displacement
control conditions (BaZant 1989; BaZant and Cedolin 1991; BaZant 1987b;
BaZant and Tabbara 1989). Such models incorrectly predict that only a single
crack ought to propagate. Thus, stable states of diffuse damage consisting
of a system of tensile microcracks cannot exist according to these mathe-
matical models in the first place, although they have been observed experi-
mentally. Furthermore, the predicted shape of the softening postpeak load-
fhsplac;ment curve does not agree with experience and snap-back instability
is predlf:ted to occur earlier than seen in tests (Bazant 1987a). These dis-
crepancies suggest that the mechanical effect of inhomogeneities cannot be
!gnored in modeling the evolution of damage and its progressive localization
in concrete-like materials. This provided the motivation for the present study.

. Sol.utions for some cases of the interaction between a crack and an inclu-
sion in an elastic matrix exist [see e.g., Kunin and Gommerstadt (1985);
Erodqgan et al. (1974)]. They are based on a system of singular integral
equations, which, however, appears to be intractable in the cases where sev-
eral inclusions interact with the crack. Mura’s equivalent inclusion method
.(Furuhashi et al. 1981) poses similar problems as it requires computation of
integrals that may not converge absolutely when the inclusions are period-
ically distributed in an infinite medium.

In this paper [which is based on a conference paper by Pijaudier-Cabot et
al. (1990)], we present an approximation scheme for solving the problem of
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interaction between cracks and inclusions. The method can be viewed as an
extension of Kachanov’s superposition scheme (1987) for an interacting crack
system without inclusions. Similar extensions could be made using the method
of pseudotractions (Horii and Nemat-Nasser 1985).

The paper is organized as follows. First, the approximation method is
developed, considering the simple case of one crack interacting with an in-
clusion, and verified by comparisons with solutions available in the litera-
ture. Second, an extension of this technique to the situation in which one
crack interacts with several periodically distributed inclusions is carried out.
Finally, the effect of the inclusions on crack propagation is interpreted in
terms of an apparent fracture toughness of the homogenized composite. The
ultimate objective is to develop a realistic model for the fracture process
zone in composites.

The study is restricted to cases in which the bond between the matrix and
the inclusion is perfect. Partial debonding and interfacial cracking will not
be considered. This simplification is realistic especially for composites such
as high-strength concrete or light-weight concrete.

INTERACTION BETWEEN CRACK AND INCLUSION

Consider an infinite two-dimensional solid subjected to remote uniform
boundary tractions producing a uniform stress field o... The solid is made
of a linear elastic material of stiffness matrix D,,. It contains a crack of length
2¢ and an elastic circular inclusion (inhomogeneity) of radius R and stiffness
matrix D, [Fig. 1(a)]. The crack center is located at distance b from the
center of the inclusion. The crack orientation is arbitrary. For such a solid,
we seek an estimate of the stress intensity factors at the crack tips denoted
as points A and B. For the sake of simplicity, we restrict attention to the
case of circular inclusions, although the method we are going to develop is
general and can, in principle, be extended to inclusions of arbitrary (smooth)
shapes.

The stress and displacement fields for this problem can be solved by su-
perposing the solutions of two simpler problems [Fig. 1(a)]:

+ Subproblem I: The solution for the infinite solid without any crack con-
taining the given inclusion and loaded by the remote tractions correspond-
ing t0 0.

+ Subproblem II: The solution for the infinite cracked solid loaded by dis-
tributed normal and tangential forces p(x) on the crack faces I',, that cancel
the stresses on the crack line obtained in I.

By superposition, the equilibrium condition for the crack surface may be
written as

onX +pE =0 on [ ¢))

in which & denotes the stress field solution of subproblem I calculated at
the imaginary crack surface I'. and n(x) is the outward normal to I', at a
point with cartesian coordinates x. 1deally, (1) should be satisfied exactly at
every point of I', and superposition would then yield an exact result. For
the sake of simplicity, we assume that (1) is satisfied only approximately,
in the average sense, that is
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FIG. 1. Crack Interacting with Inclusion: (a) Superposition Scheme; (b) Duhamel-
Neuman Analogy; (c) Superposition in Subproblem it

(O nX) + PX)) = 0ttt e @)

in which the brackets ( ) denote the averaging over I'.. This simplification
is inspired by Kachanov’s (1987) approximation scheme for interacting crack
systems in homogencous solids without inclusions, which has been showed
to be satisfactory in most situations. In Kachanov’s scheme as well as here,
the averaging is justified by the St. Venant principle: the errors represent a
self-equilibrated stress field that must be decaying very rapidly with the dis-
tance from the crack and is, therefore, negligible for a sufficient separation
of the crack and inclusion. Moreover, even if the crack tip is close, its K|
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value depends on the energy release rate from the entire structure rather than
just the stresses in the vicinity.

Subproblem I

For the sake of simplicity, attention is restricted to plane elasticity. The
perturbation stress due to the presence of one inclusion is given by the well-
known Eshelby’s solution [see e.g., Mura (1987)]. Since we intend to deal
with many inclusions as well as interacting cracks, it appears preferable to
devise a simpler, iterative, solution. From the stress field o, which is a
solution of subproblem I, we can calculate the unbalanced stress field Ao
inside the inclusion of contour I',:

AG = (D, — Doi€ et GBa)
with
€ =D O (3b)

while in the matrix outside I',, the stresses Ao vanish. The unbalanced stresses
Ao can be equilibrated by applying tractions A@. n, on interface I',. Since
these tractions do not exist in reality, the opposite unbalanced interface trac-
tions must act on the interface I, in the composite

p.=—Ac-n, onl, . ... . . . . ... @)

in which n, is the unit outward normal of the boundary curve [, of the
inclusion, and € and o are the strain and stress tensor inside the inclusion.
The stress field in subproblem I may be written as

=0 outside I .. ... i e (5a)
o=0*+To inside, ... .. ... i, (5b)

in which ¢* = an equilibrium stress field when stiffness D, of the inclusion
is changed to D,,, i.e., when the properties of the infinite solid are uniform.
Egs. (3)-(5) can also be obtained from the Duhamel-Neuman analogy [see
e.g., Lin (1968); Muhkelishvili (1953)], which is widely used in thermovis-
coelasticity and creep and is illustrated in Fig. 1(b). This analogy transforms
a problem of elasticity of a heterogeneous solid into an equivalent problem
of a homogeneous solid that can be decomposed into a superposition of stan-
dard problems for which analytical solutions (¢.g., complex potentials) exist.
Obviously, the unbalanced stress field Ao is the unknown in the equivalent
problem. Its determination calls for an iterative procedure.

1. The starting solution is ¢* = ¢, everywhere. It gives the first estimate of
P.. according to (4). The curve I, is subdivided into segments of length ds and
the tractions p, are replaced by concentrated forces p,(s) ds acting at the center
points of coordinate s of the segments. Then one may use the well-known two-
dimensional solution for a concentrated force p applied at point s of an infinite
homogeneous elastic space denoted as f[p(s)]; see e.g., Timoshenko and Goodier
(1970) or Mukhelishvili (1953). The normal and shear components of the stress
tensor f with respect to the rotated cartesian axes (x',y’) at a point of cartesian
coordinate (x,y) are

fi=pll —v—201 + v) sin’(8)] cos (B)(4wr)”" [Continued)
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fy=p[=3 — v =2(1 + v) sin*(8)] cos (8)@nr) "
fo=—pll = v+ 20 +v)cos’ @) sin @) dur) ™" ... ... ... ..., ©)

inwhich r = distance between points (x,y) and s: axis x' coincides with the
direction of p; and 6 = the angular deviation of the line connecting points (x,y)
and s from the direction of p. Superposition of these solutions yields the stress
@, caused by tractions p,(s) in an infinite homogeneous elastic space:

3 4
o, = f Pa®ds . ..o )
Te

Anew stress field o* inside I . is obtained as:
O = O, O oo %)

2 The new unbalanced pressures P, are then recalculated from (3)—(4). Eq.
(7) yields the new field o,.

3. Step 2 is iterated until the change p.'' — p. of the unbalanced interface
tractions from iteration becomes small enough. This is determined on the basis
of the norm [lp,(s)l| = . [pu(s)lds where |p,(s)| is the length of vector p.(s). The
convergence criterion is that

Iy
o)l

in which e = a given small tolerance; ¢ = 0.01 was used in computations and
usually less than five iterations were needed. The convergence is very fast, and
for small enough e this iterative procedure can approximate the exact solution
(for uniform p) as closely as desired. It can be shown that the iterates of P, form
a geometric progression.

Subproblem II

Consider now that there is a crack in the matrix near the inhomogeneity
and that the crack faces T, are loaded by a uniform pressure distribution
(p(x)). The boundary at infinity is stress free. Again, we can apply the Du-
hamel-Neuman analogy in order to compute the interaction stress field due
to the presence of the inclusion, and subsequently the distribution of internal
pressure on the crack faces. For this, we use the superposition scheme de-
pictzd in Fig. 1(c).

First, the body without the inclusion is loaded by an unknown average
pressure (p.(x)). This causes interface tractions —Ag, - n, on the imagined
contour of the inclusion as given by (4).

Next, we consider the uncracked heterogeneous body loaded by these un-
balanced pressures on I',. From subproblem I we can get the solution stress
ﬁf(ld) and the pressure distribution on the imagined contour of the crack
PX):

pi(x) = { j f[—A(rc-n,,(s)]ds} ‘m...... P (10)
Ta

Superposition yields
P =P +pAx) on T, ..o 63))

Note that this superposition method, with the average pressure approxi-
mation on the crack surface, is similar to Kachanov’s (1987) approximate
solution for interacting cracks except that instead of two cracks we deal with
one crack and one inclusion. In (11), the right-hand side terms are not con-
stant. If we restrict the present analysis to configurations in which the in-
teractions are small, the superposition equation may be approximated by:

P =PX)) + @IX) onl, ... (12)

Under these two assumptions, the superposition equation [(11)] has a single
vector unknown (p.(x)):

P =@+ AD PR e (13)
with
1
A p(x)) = — f {f f[—Aac-n,,(s)]ds} BAX e (14)
2¢ Jr. Ur.

in which 1 is the 2 X 2 identity matrix, and A, is a full 2 X 2 matrix which

couples the mode I crack opening and the mode II crack opening. It can be

regarded as a transmission factor that represents the average influence of the

inclusion on the crack. Note at this point that if ¢, is not computed from

the constant pressure distribution (p.(x)), the unknown in the problem would

need to be solved iteratively (as in subproblem I) as A, depends on p.(x).
Substitution of (13) into (2) yields:

PN = =@+ A) AT M) o (15)

The stress distribution on I’ is also computed using the right-hand side of
(11) and, for example, the stress intensity factors for mode I crack opening
are:

As an example, Fig. 2 shows the results for the mode I stress intensity
factors for a crack in an epoxy matrix located near a metallic inclusion. The
remote loading is uniaxial tension parallel to the crack faces and plane strain
is assumed. For simplicity, we analyze cases where (1) The crack is radial
to the inclusion [Fig. 2(a)]; and (2) the crack is tangential to the inclusion
[Fig. 2(b)]. In both situations the average tangential pressure distribution is
zero and (15) has a scalar unknown. The radius of the inclusion is such that
R/c = 2 and the material properties are E,/E,, = 23, v, = 0.3, v,, = 0.35
where E,, E,, and v,, v,, are the Young’s moduli and Poisson’s ratios of the
inclusion and matrix, respectively. In the figures, K; is normalized with re-
spect to the stress intensity factor K, for a crack in an infinite homogeneous
solid, which is K;, = 0., Vac. The approximation is compared to the an-
alytical solution of Erdogan et al. (1974). For a radial crack [Fig. 2(a)], the
approximation turns out to be very accurate. The error is only a few percent
except if the crack and the inclusion are very close. When the crack is tan-
gential to an inclusion [Fig. 2(b)] the present averaged superposition equa-
tions become rather inaccurate if the crack is close to the inclusion (a/c <
4). The reason is that the stress fields in subproblems I and II have a large
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FIG. 2. Stress Intensity Factor for Crack in Epoxy near Inclusion: (a) Radial Crack;
(b) Tangential Crack

variation over the imagined crack length.

Fig. 3 shows the results for a crack in an epoxy matrix located near a
void. The same two configurations as in Fig. 2 are considered and the ma-
terial stiffness of epoxy is equal to that in Fig. 2. Again, the quality of the
approximation is quite acceptable unless crack and void become very close.
Compared to the results in Fig. 2, the variation of stress intensity factors is
the opposite. When the crack tip A approaches the void {Fig. 3(a)], the stress
intensity factor K; increases and tends to infinity, but when the tip ap-
proaches a stiffer inclusion, K; decreases. The same remark holds when the
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FIG. 3. Stress Intensity Factor for Crack in Epoxy near Void: (a) Radial Crack;
(b) Tangential Crack

crack is tangential to the void or inclusion, although the stress intensity fac-
tors remain finite.

INTERACTION BETWEEN CRACK AND SEVERAL INCLUSIONS

We look now at an elastic solid that contains N elastic inclusions and one
crack. The inclusions are arbitrarily distributed in the matrix. The inclusion
contours are denoted as T'; (/ = 1, ..., N) and for the sake of simplicity all
the inclusions are assumed to be made of the same material of stiffness D,.
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FIG. 4. Crack Interacting with Periodic Array of Inclusions: Superposition Scheme

The superposition method is now applied as follows (see Fig. 4).

First in subproblem I, we solve again for the stress field in the composite
without the crack loaded by tractions corresponding to .. Then, in sub-
problem II, the composite is free from the remote boundary tractions and it
is loaded by an unknown internal pressure p(x) on the crack contour I'.. The
superposition equation [(2)] is again applied in the average sense.

Subproblem I

When the uncracked composite contains several inclusions, the interac-
tions are an important factor in the evaluation of the local stress and strain
fields. As we will see, the Duhamel-Neuman analogy is also easy to im-
plement.
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Since the problem remains elastic, the effect of each inclusion can be
superposed as a first approximation neglecting the interactions. The follow-
ing iterative procedure, similar to that described before, yields the effect of
the interactions on the local stress field in the matrix.

1. The initial stress field is
N
ot =0, + 2 O e a7
i=1

in which the o; = the stress due to the presence of inclusion / alone in the matrix
(Eshelby’s solution). The unbalanced pressures p; on the contour I'; of each in-
clusion i are calculated from a* according to (4)—(5). The stress o, due to p; is
then calculated as if each inclusion i were alone in the infinite solid, i.e.

o; = f DS )As . . oo (18)
Ti

A new total stress field is computed from (17) using superposition.

2. From o (5), the unbalanced pressures p; on each contour I'; are recalculated
using (4). Then again the stress o; due to p; is calculated from (18) as if the
inclusions were alone, and by superposing @;, the new total stress field obtained
from (17).

3. Step 2 is iterated until the unbalanced tractions pf» (i =1, ...N) resulting
from o in iteration number / differ negligibly from those at iteration number /
— 1. This is determined according to the convergence criterion in (9).

The foregoing algorithm converges quite rapidly. Normally, convergence
is reached in less than five iterations provided the inclusions are not too stiff
compared to the matrix (E,/E, < 7) (but for perfectly rigid inclusions the
present iterative method does not work). When the inclusions are periodi-
cally distributed, the unbalanced pressures p, should be identical on each
contour I'; (i = 1, ..., N), and in that case the convergence criterion does
not need to be applied for each inclusion.

Fig. 5 gives an example of the calculated stress distribution of stress in a
two-dimensional composite with periodically spaced circular inclusions of
radius R. The remote loading is a unit uniaxial tension in the y-direction.
The inclusion centers are located on a square grid of spacing b, = b, = 3R.
The material properties are E,/E, < 3 and v, = v, = 0.2. Plane stress is
assumed and the central inclusion is assumed to interact only with its 48
closest neighbors. The stresses o,, and oy, are computed along the axis of
symmetry of two adjacent inclusions, and obviously o, = 0. Convergence
was achieved in 3 iterations, with tolerance ¢ = 0.01. The results are graph-
ically undistinguishable from those obtained by the equivalent inclusion method
(Furuhashi et al. 1981).

Subproblem I1
The crack is loaded by a uniform internal pressure p(x) on its contour I'..
From superposition,

N
PX) =P+ D P onl. . (19)

k=1
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FIG. 5. Local Stress Field in Composite with Periodically Distributed Inclusions

In this equation, which is similar to (11), p. = the distribution of the internal
pressure applied on I',, and pf, (k = 1, ..., N) = the interaction terms due
to the presence of the inclusions. pj, is computed at the imagined location
of the crack as if the composite were uncracked. Again, there are two types
of contributing terms in pf,.

The first type of contribution arises from the effect of the loading p. on
the inclusion & which is assumed to be alone in the matrix with the crack
(same as in the previous section of the paper). This term denoted as py is
computed according to (10):

pi = { f f[-Ao.- nk(s)]ds} o P (20)
Tk

in which o, = the stress field due to the crack loaded by p.(x), calculated
for the infinite solid without inclusions; Ao, = the unbalanced stresses com-
puted on the imagined contour I'; of the inclusion &; and n, = the outward
unit normal vector of I';.

The second type of contribution is the interaction between the inclusion
J(j # k) and inclusion &, and its influence on the crack faces. Each inclusion
in the composite is subjected to the stress &,. The value of p} can be com-
puted in the same manner as in subproblem I but the stress fields @ is
substituted to the remote field o.. From (17) and (18) we obtain:

pix) = { J f[-Ao;- nk(s)]ds} P (#3))
Tk

in which Ag; = the stress field due to the unbalanced pressure p; acting on
contour I'; of normal vector n;:

g; = J- fI—AG -0(S)Ids .. ... (22)
I

7

Superposition yields:
N

PhiX) = D PR oo (23)
j=1

and after substitution into (19),

N N .
PO = PX) + D, D XD o (24)

k=1 j=1

We assume again that (24) needs to be satisfied only in the average sense:

N

p(x) = [1 + >y A}] PR e (25)

k=1 j=1

in which A} = the transmission factor due to inclusion & considered to be
alone with the crack; and Aj = the transmission factor due to interaction
between inclusion k and inclusion j.

If o, is the stress field due to the crack alone subjected to the uniform
internal pressure (p.(x)), (25) is linear in (p.(x)) and has a single vector
unknown. According to this assumption, the transmission factors do not de-
pend on the shape of the distribution of p.(x). This simplifying assumption
is acceptable if the distances between any two inclusions are not too small,
as we will see next in comparisons with the results from the literature.

Fig. 6 shows an example of the calculated variation of the mode I stress
intensity factor K; at the tip of a crack located between two circular voids
as a function of the crack length and of the spacing between the voids. The
remote loading is uniaxial tension perpendicular to the crack. The center of
the crack is equidistant from the centers of the adjacent voids. The results
are compared with the known analytical solution given in Tada et al. (1985).

If the distance between the voids is large compared to their radius, the
approximation is seen to be adequate (error less than 10%). However, when
the crack length increases, the effect of the voids becomes localized in a
small segment of the crack surface I'. and the agreement with the analytical
solution is less than satisfactory. This discrepancy is mainly due to the two
successive averagings of the distributions of internal pressures on the crack
faces [averaging of p(x) first and of p.(x) second]. Another limitation is that
the approximation loses its accuracy when the voids get too close to each
other.

The example in Fig. 7 shows the variation of K; for a crack propagating
in a composite containing a square array of identical circular inclusions (b,
= b,). The center of the crack is at equal distances from two neighbor in-
clusions along the y-axis and the crack propagates in the x-direction due to
tensile stress o,, (see Fig. 5). Plane stress is considered, with v, = v,, = 0.2
and E,/E, = 3. The spacings between the inclusions are equal, b, = b,.
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FIG. 6. Stress Intensity Factor for Crack Interacting with Two Circular Voids
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FIG. 7. Stress Intensity Factor at Tip of Crack Propagating in Composite with
Square Array of Inclusions for Two Different Volume Fractions of Inclusions
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Two volume fractions V; of inclusions are chosen: V, = 0.195: b./R = 4,
and V; = 0.35: b,/R = 3. Denoting K, = stress intensity factor if there were
no inclusions, we see that the effect of the inclusions is to cause the ratio
K/K,, 10 decrease with the crack length ¢, except when the spacing b, is
too small. This means that the apparent stress intensity factor increases dur-
ing crack propagation. So the composite behaves as if the crack followed
an R-curve. Furthermore, the stress intensity factor increases with the vol-
ume fraction of inclusions. According to this result, cracks in a densely packed
composite must occur earlier than in a loosely packed composite. Finally,
we can see that even for a low-volume fraction of inclusions, the amplifi-
cation of the stress intensity factor compared to Kj, is quite important.

The present approximate method could no doubt be combined with Ka-
chanov’s method (1987) and thus be generalized for a system of cracks in
a composite. However, programming the computation of the various trans-
mission coefficients seems to be too tedious.

APPARENT FRACTURE TOUGHNESS OF COMPOSITE

As we have observed from Fig. 7, inclusions may cause the composite to
behave as a homogeneous solid with a rising R-curve. The knowledge of
such an apparent R-curve would permit a much simpler calculation of frac-
ture in composites. In such an approach, the interaction between cracks is
uncoupled from the interaction between the cracks and the inclusions. Sim-
ilar assumptions have been made by Mori et al. (1988) and Gao and Rice
(1988), who used a perturbation method to analyze fiber-reinforced com-
posites in which the values of the elastic moduli of the matrix and the in-
clusions are sufficiently close. More precisely let K, be the fracture tough-
ness of the matrix. According to Griffith’s criterion, crack propagation occurs
when K; = K,,. For a crack length ¢ in a macrohomogeneous composite
loaded with tensile stress ¢.., we may write K; = K, F(c) where Kj, = 0.
\/:E, and where F(c) is a certain amplification function that is computed
from the crack-inclusions interaction. The estimation of K; yields the ap-
parent fracture toughness K, of the composite

In most studies [see e.g., Zaitsev (1985) and Zaitsev et al. (1986)]. F(c)
was assumed to remain constant or to change only when the crack touches
an inclusion (Huang and Li 1989). Fig. 8 presents the approximate variation
of fracture toughness for a crack propagating symmetrically in a composite
made of regular staggered circular inclusions embedded in an elastic matrix.
The radii of the inclusions are equal and denoted as R (R = 1). The volume
fraction of inhomogeneities is V, = 0.7. Plane stress is assumed with E,/E,,
= 3 and v, = v,, = 0.2. The remote boundary traction is uniaxial tension
perpendicular to the crack faces (mode I crack opening).

Three configurations have been analyzed [Fig. 8(a)]. In configuration 1,
the crack propagates toward the centers of two inclusions. In configuration
3, the center of the crack is at equal distances from two rows of inclusions.
Configuration 2 is intermediate between configurations 1 and 3.

Fig. 8(b) shows the variation of the apparent fracture toughness with the
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FIG. 8. Apparent Fracture Toughness of Composite with Staggered inclusions:
(a) Configurations Analyzed; (b) Fracture Toughness versus Crack Length

crack length according to (26). We see that these variations may be radically
different depending on the configurations analyzed. Configurations 1 and 3
give the highest and lowest values of the apparent mode I fracture toughness,
respectively. The more drastic variation is obtained when the crack propa-
gates toward an inclusion; this corresponds to the maximum possible tough-
ening.

These variations of apparent fracture toughness have a great influence on
stability of interactive crack systems. As we see, the mechanical effect of
the inclusions cannot be neglected in crack propagation studies as the frac-
ture toughness of the equivalent medium may vary by as much as 100%. It
should be stressed that these curves are valid only if the crack does not touch
the inclusions. Otherwise, the singular stress field at the tips of the crack
would need to be modified.

To exemplify the influence of the spatial distribution of the inclusions at
a constant volume fraction, Fig. 9 shows the variation of apparent toughness
for a regular (b, = b, = 3R) staggered distribution of inclusions and a non-

1626

Regular staggered inclusions

/
1.8 1 \/
/
/

Configuration 1

51.6 1 e
> _—
M

1.4 1
1.2 T . . !
Non-regular staggered inclusions |
(0 — — .
0.0 0.2 0.4

FIG. 9. Influence of Spatial Distribution of Inclusions on Apparent Toughness of
Composite

Re/gular staggered inclusions
2 .8 1 R/c=2 J
(/"
2.4 - /)
o /
5] /
] Configuration 1 i
£2.0- Y
Mu d
1.6 1
1.2 1 /" Configuration 3
S T <
0.8 ) . .
1 4

FIG. 10. Influence of Relative Elastic Young’s Modulus of Inclusions on Appar-
ent Toughness of Composite

1627



regular staggered distribution of inclusions (b, = 4R, b, = 2.25R). The in-
clusion spacings are such that the volume fraction is the same, V, = 0.7.
Configuration 1 is chosen with the same material properties as in Fig. 8.
Again, there is a large difference’ between the two cases. The nonregular
staggered distribution (dashed curve) provides the lowest apparent fracture
toughness. This suggests that inclusions that are radial to the crack have the
largest influence since b, has been increased. The toughening effect, which
is important for the regular distribution, is delayed as the tips of the crack
are more distant from the inclusions.

The effect of the variation of the ratio E,/E,, of the elastic moduli of the
inclusion and the matrix is shown in Fig. 10. The apparent fracture tough-
ness of the composite has been computed for the crack length 2¢ = R, with
v, = v, = 0.2. The composite contains a regular staggered distribution of
inclusions with V; = 0.7. The solid line corresponds to configuration I and
the dashed line corresponds to configuration 3 [see Fig. 8(a)]. We obtain
the upper and lower bounds of variation of toughness for a crack opened
under mode I as a function of the ratio E,/E,,. For configuration 1 this curve
is certainly not linear. It should be pointed out that for large values of E,/
E,,, convergence could not be reached in subproblem I (E,/E,, > 7). The
range of variation of E,/FE,, showed in Fig. 10 corresponds to the usual val-
ues for concrete.

From the present analysis one might get the impression that the length of
crack extension needed to reach the asymptotic value of an R-curve is about
as long as the inclusion spacing. No doubt this can be true only for periodic
inclusion arrays. For random arrays, this length could be much longer.

CONCLUSIONS

1. The interaction between a crack and several inclusions can be analyzed by
superposing known solutions of standard problems of elasticity. The method uses
first Duhamel-Neuman analogy in order to transform the problem into a problem
of elasticity of a homogeneous body in which the inclusions are replaced by the
matrix and the boundary conditions are modified. A superposition scheme is
proposed, similar to Kachanov’s method for interacting cracks. The solution of
the problem of interaction of one crack with many inclusions is reduced to the
solution of a linear algebraic equation with transmission factors characterizing
the interactions of the crack with each inclusion and of any two inclusions. Com-
parisons with exact results from the literature show that in most cases the method
is sufficiently accurate for practical purposes (with an error better than 10%)
when the inclusions and the crack are not too close to each other.

2. The variation of the apparent fracture toughness of the equivalent homo-
geneous medium (representing the inverse of the calculated variation of the mode
I stress intensity factor at the tip of a crack propagating in the composite) is
analogous to the R-curve in nonlinear fracture mechanics. Calculations show that
the apparent fracture toughness depends on the volume fraction of the inclusions,
on their spatial distribution, and finally on the elastic properties of the constit-
uents of the- composite. The largest (mode I) toughness is obtained when the
crack propagates toward an inclusion and the lowest toughness corresponds to a
crack propagating between two inclusions. The difference between these two
cases can be of the order of 100%.

3. Finally, the results show that, for a given composite and for a fixed crack
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configuration, the mechanical effect of the interaction between the crack and the
inclusions is not negligible. This effect is important for explaining stability of
simultaneous propagation of many interacting cracks in a heterogeneous me-
dium, as well as for determining the conditions under which stable states of
diffuse damage can exist.
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