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ABSTRACT: An appealing approach to formulate constitutive models for charac-
terizing distributcd damage due to microcracks and voids is continuum damage
mechanics with the concepts of effective stress and strain equivalence. In that
approach, in which damage is imagined to characterize the reduction of the net
stress-transmitting cross-section arca of the material, the constitutive modcl is sep-
arated into two independent parts, onc for damage and the other for elastic and
inelastic behavior (rheology) other than damage, which, if combined appropriately,
give the overall constitutive behavior. However, the existing multidimensional for-
mulations for damage are quite complex, and practical implementatjons capable
of fitting experimental data are hard to obtain. The microplane modcls, by contrast,
provide conceptual simplicity and close fits of multiaxial test data for concrete,
soils, etc., although, as formulated in the past, various kinds of physical phenomena
were mixed in the definition of the microplanc stress-strain curves. In this work
the microplanc theory is reformulated in a manner that separates damage from
rheology and makes the formulation fit the basic framework of continuum damage
mechanics. Aside from a kinematic constraint between macrostrains and micro-
strains, the model satisfics a static constraint such that the effective microstresses
are the resolved components of the effectiveness macrostresses.

INTRODUCTION

Inelastic phenomena are of two kinds: (1) Those that reduce material
stiffness and cause strain-softening; and (2) those that do not. The former
represent damage caused by nucleation, growth, and coalescence of micro-
cracks and voids, and the latter consist of plastic slip, friction, creep, etc.
Modeling each of these phenomena is difficult enough, but the complexity
becomes formidable when both kinds of phenomena are combined, which
occurs in many materials. In this paper we seek to separate these two
phenomena to achieve simplification and clarity. We assume the microcracks
and voids to remain homogeneously distributed so that the material can be
microscopically treated as a continuum.

The real stress and strain fields at the microlevel are highly scattered and
nonsmooth. Therefore, the continuum strains and stresses must be taken
as the “average” values of these fields over a certain representative volume.
However, applicability of damage in terms of such stresses and strains must
be restricted to situations in which no localization phenomena take place,
i.e., no macrocracking or shear-banding occurs. If the damage and strains
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can localize, unrealistic results can be obtained with this approach unless
additional techniques such as crack band model, nonlocal models, or lo-
calization analysis are implemented in the context of the “‘smeared” ap-
proach to damage (Bazant and Cedolin 1979; Crisficld 1982; Pijaudier-Cabot
and Bazant 1987; de Borst 1987; Ortiz 1987; Ortiz and Quigley 1989: Carol
and Prat 1990). Alternatively, formulations can also be obtained by “dis-
crete” crack models based on fracture mechanics with softening cohesive
(crack-bridging) zone (Hillerborg et al. 1976; Hillerborg 1984).

The classical approach to distributed damage is the continuum damage
mechanics. As originated by Kachanov (1958) for one-dimensional prob-
lems, the basic concept of continuum damage mechanics looks simple: a
reduction of the net stress-carrying cross-section area fraction caused by the
growth of microcracks and voids in the material microstructure. This is a
purely geometric characteristic, reflecting the fact that the “effective™ (or
“true™’) stresses in the undamaged part of the cross section are higher than
the stresses in the macroscopic continuum (the apparent stresses). A law
can be postulated to predict the decrements of the current cross-sectional
area in terms of stress, strain, and damage, and simple but useful results
can be obtained for complex phenomena such as creep rupture of metals
(Kachanov 1958; Rabotnov 1969a,b; Leckie 1978; Lemaitre 1984) and, more
recently, the delayed failure of concrete under sustained uniaxial compres-
sion (Carol 1989).

The multiaxial generalization of continuum damage mechanics, however,
poses a formidable challenge that, to a large extent remains unsolved. The
net stress-carrying area fractions for the different directions in space cannot
be easily integrated to give a vectorial or tensorial damage measure that
would define the “effective’ or “true” stress tensor from the macroscopic
stress tensor and the apparent or reduced macroscopic stiffness tensor. A
review of the existing multiaxial generalizations presented in the section
headed “Existing Models for Distributed Damage™ shows a number of
possibilities, some of them rather complicated and not always very satis-
factory in terms of data-fitting capabilities, especially when the classical
macroscopic tensorial approach is pursued. This is the case when the con-
stitutive model is formulated phenomenologically without recourse to any
geometric concepts related to microstructure and the inelastic phenomena
are formulated as functions of stress and strain invariants. Nevertheless, as
will be shown in the section headed “Effective Stress and Damage Tensor
Uncoupled from Rheology™ some basic general structure for continuum
damage models based on the concepts of true, or effective, stress and macro-
micro strain compatibility can also be established in three dimensions. This
basic structure provides a suitable framework for separating the constitutive
model in two parts, one for damage and the other for rheology, each of
which can be formulated independently and then combined. This provides
a convenient flexibility for combining damage with various complex types
of inelastic material behavior.

Compared to multiaxial continuum damage model theories, much closer
fits of test data for concrete and considerable theoretical simplification (al-
beit at the expense of computer time requirements) is achieved by the
microplane models. In general terms, already suggested for plasticity in a
famous classical paper by G. 1. Taylor (1938), this approach characterizes
the material properties independently on planes of various orientation, which
were initially called the slip planes (Batdorf and Budiansky 1949) but re-
named microplanes when the concept was extended to materials incapable
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of plastic slip (Bazant 1984). The basic material behavior is defined on the
microplanes as a set of relations between the stresses and strains acting on
that plane. These relations include all the rheologic phenomena involved
in material behavior (elasticity, damage, plasticity) at the same time, in an
inseparable manner. The microplane behavior is constrained to the mac-
roscopic continuum behavior by a suitable macro-micro constraint having
the form of a variational equation based for example on the principle of
virtual work. In some studies (Bazant 1984; Bazant and Oh 1983, 1985:
Bazant and Gambarova 1984; Bazant and Prat 1988; Carol et al. 1990} the
micropiane concept, originally developed for metal plasticity, was extended
to materials exhibiting damage with strain softening. The resulting model,
briefly described in the section headed *“Kinematically Constrained Micro-
plane Model.” was shown to be capable of a very good description of the
existing test data on tensile strain-softening of concrete due to microcracking
as well as the nonlinear triaxial behavior of concrete, including strain-soft-
ening in compression and shear under different confining lateral stresses.

This paper [which was briefly summarized in a conference paper by Bazant
and Carol (1990)] reconciles both types of constitutive models (continuum
damage and microplane), and presents a new interpretation of the micro-
plane formulation as a continuum damage model. This leads to the for-
mulation of a fourth-order nonsymmetric geometric damage tensor. The
term “‘geometric” reflects the fact that this tensor is independent of any
particular rheologic model, and depends only on the reduction of the net
stress-carrying area fraction in various directions in the material, which are
geometric characteristics (the term “‘geometric,” of course, does not imply
that all the geometric characteristics, such as spatial crack and void config-
uration and statistical distributions, are taken into account). The proposed
geometric damage tensor achieves a three-dimensional generalization of
Kachanov's (1958) one-dimensional net stress-carrying arca fraction. It is
computed by integrating the geometric damage at each particular microplane
over all the spatial directions. As a continuum damage model, it gives the
relationship between the macroscopic and effective stress tensors and be-
tween the initial and current stiffness matrices, and can be combined with
any rheologic model (elasticity, plasticity, viscoelasticity). As a microplane
formulation, it also has the additional advantage of an a priori knowledge
that very good data fitting can be obtained in practical applications. The
derivation of the new damage tensor is presented in two different ways: In
the scction headed ““Derivation of Geometric Damage Tensor from Con-
crete Model™ it is derived from a version of the microplane model with
particular microplane laws used previously for concrete (Carol et al. 1990),
and in the section headed *“Rheology-Independent Derivation of Geometric
Damage Tensor” it is derived without recourse to any particular stress-strain
laws.

ExisTING MODELS FOR DISTRIBUTED DAMAGE

Consider first the example of a simple one-dimensional continuum dam-
age formulation. In this case damage such as microcracks or voids may be
regarded as geometric, representing a reduction in some ratio a of the net
stress-carrying area in the microstructure of the material [Fig. 1(a)]. For
uniaxial stress (macrostress) o, we may thus write

O = QT (1)
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FiG. 1. Effective Stress and Damage in One Dimension: (a) Interpretation of r and
o (b) Stress-strain Diagram

in which 7 is called the effective (or true) stress; and « varies from 1 to 0
when damage increases (alternatively, damage can also be represented by
w = 1 — o varying from 0 to 1); 7 represents the average stress in the
stress-carrying portion of the cross-sectional area in the microstructure.
Assuming a linear elastic relation, i.e., 1 = E%. where E, is the elastic
modulus of the undamaged material and ¢ the strain, one has

o=al% (2)
This equation may also be written as

O = E™6 (3a)
Esc = aE¥ (3b)

where £°°¢ = secant modulus [Fig. 1(h)]. Now, a damage evolution law can
be assumed for «. If it is defined in terms of € and introduced in (2) or (3),
an explicit one-dimensional stress-strain relation for damage ensues. As seen
in this simple example, the formulation of a continuum damage model
includes three steps.

1. Characterization of damage by means of a variable (« or w) or set of
variables.

2. Dependence of the effective stress or secant modulus on the damage var-
iable (1 = ofa or £ = aE")

3. Evolution laws for the damage variable; e.g. & = F(o, ¢, o -~ - (F =
function or functional).

In triaxial generalization, some early models included damage-related
concepts (e.g. stiffness degradation) that did not explicitly introduce a dam-
age variable as such, but instead derived the evolution laws from a “‘frac-
turing surface™ with attributes similar to the classical yield surface in plas-
ticity, defining this surface in terms of stress and strain invariants with
hardening-softening rules, internal variables, etc. (Dougill 1976; Bazant and
Kim 1979). That was a phenomenologic approach to the problem whose
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most sophisticated forms became impractical because of the high complexity
and the presence of too many parameters and empirical functions, giving
little insight into the physical processes actually occurring at the micros-
tructural level.

Most of the existing theories dealing with three-dimensional stiffness deg-
radation incorporate some kind of damage variable in their definition and
can be satisfactorily described in terms of the foregoing three-step scheme.
The simplest possible characterization of three-dimensional damage is a
scalar variable, which can be thought of as the damage caused by a field of
spherical microvoids with the same stress-carrying area reduction in all spa-
tial directions (Leckie 1978; Lemaitre and Chaboche 1978; Mazars 1985;
Resende 1987; Frantziskonis and Desai 1987). To capture the anisotropic
nature of damage caused by microcracks with predominant orientation,
damage tensors of various orders have been proposed: vectors (Davidson
and Stevens 1973; Krajcinovic and Fonseka 1981: Suaris and Shah 1984;
Costin 1985; Costin and Stone 1987); second-order tensors (Vakulenko and
Kachanov 1971; Dragon and Mrdz 1979; Kachanov 1980; Murakami and
Ohno 1980; Betten 1983; Oda 1983; Murakami 1987; Suaris 1987); fourth-
order tensors (Chaboche 1979, 1981; Ortiz 1985; Sim¢ et al. 1987; Yazdani
and Schreyer 1988), or even eighth-order tensors (Chaboche 1978).

The influence of the damage variable on the secant stiffness or effective
stresses, along with the definition of the laws for damage evolution (steps
2 and 3). depend much on what kind of damage variable is adopted. Using
a scalar damage variable, these assumptions can be made analogous to the
one-dimensional case, but then no induced anisotropy can be accounted
for. Some authors use the secant stiffness itself (or a related quantity such
as the increment of compliance over the initial or elastic one) as a fourth-
order damage tensor (Ortiz 1985; Simé et al. 1987; Yazdani and Schreyer
1988). With this approach, the dependence in step 2 is defined implicitly,
but the stiffness tensor does not have a direct physical meaning as a damage
variable, and the corresponding evolution laws (step 3) have to be estab-
lished again, mainly on a phenomenologic basis.

In a certain sense the intermediate option of a second-order tensor as a
damage variable seems appealing in the face of other possibilities. Consider
for instance the “fabric tensor™ proposed by Oda (1983) for the analysis of
cracked rock masses, which was an improvement over other previous similar
proposals. This tensor is defined as an integral over all the possible crack
orientations and sizes of an expression including the crack density function.
It is a symmetric dimensionless tensor, and some of its invariants can be
interpreted in terms of the overall geometric effect caused by the field of
microcracks. The concept of a second-order damage tensor also seems to
be supported by theoretical considerations relative to frame invariance (Leckie
and Onat 1980), as well as by experimental microstructural measurements
of the corresponding “damage ellipsoid” in quite different materials (e.g.
measurements of cancellous bone structure and granular soil fabric; Cowin
1985). Unfortunately, the attractive concept of a second-order fabric tensor
contrasts with the absence of equally clear and direct relations for the deg-
radation of the macroscopic secant stiffness tensor and for the effective
stresses in the cracked medium. Cowin (1985) deduces the most general
dependence of the secant stiffness on the second-order fabric tensor per-
mitted by the condition of frame invariance, which turns out to be a complex
polynomial expression, with the somewhat disappointing peculiarity that at
least a quadratic (and likely even higher) dependence on the first invariant
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of the fabric tensor must be involved in the relation if orthotropic symmetry
is to be preserved in the cracked material. Some other authors, on the other
hand, handle the problem of reduction of the net stress-carrying arca due
to microcracks through simulation of a finite deformation field with the
equivalent effects of area reduction in various directions in space, or through
certain geometric and tensorial considerations. However, either they do not
use a second-order tensor as a damage variable [Krajcinovic and Fonscka
(1981), who used a vector], or they get an awkward nonsymmetric effective
stress tensor, which must further be symmetrized in some arbitrary way in
order to obtain a practical formulation (Murakami and Ohno 1980; Betten
1983).

A different approach is suggested by studies of a homogeneous medium
containing periodic arrays of inclusions or penny-shaped cracks. In such
studies, the overall elastic modulus is obtained by calculating the approxi-
mate stress fields in the solid, by the so-called self-consistent method or
other related techniques (Budiansky and O’Connell 1976; Nemat-Nasser et
al. 1982; Horii and Nemat-Nasser 1983; Attiogbe and Darwin 1986; Ka-
chanov 1987; Aboudi 1987). This approach can be useful when the overall
modulus of a continuum (e.g. rock, a composite material) containing an a
priori known field of cracks or inclusions needs to be computed. However,
in most of those theories the field of microcracks and the configuration of
inclusions must be known in some detail; in constitutive modeling a damage
variable characterizes these effects in a smeared way. Also. the relationships
obtained for step 2 are usually very complicated (and sometimes they even
do not have an explicit form but are a set of nonlinear equations to be
solved numerically for each practical case): they should be explicitly tract-
able expressions to be introduced as one component of the constitutive
model. As a result [although some authors did use this approach to derive
or support the choice of relations included in step 2; (Chaboche 1979; Oda
1983)], this approach in general seems to be only of limited usefulness for
the development of complete macroscopic constitutive relationships.

EFFecTive STRESS AND DAMAGE TENSOR UNCOUPLED FROM
RHEOLOGY

To define the effective stress in three dimensions the following tensorial
expression similar to (1) for one dimension has been introduced (Rabotnov
1969a,b; Chaboche 1979; Lemaitre and Chaboche 1985; Simo et al. 1987):

O = QjkomThm  + = o oo n e e e 4)

where the repetition of lower-case indices implies summation over 1, 2, 3;
o, and 1, = Cartesian components of the macroscopic and effective (or
true) stress tensors ¢ and 7; and a, = components of a fourth-order
dimensionless tensor a characterizing damage (which can also be expressed
asa = I — w, where / = fourth-order identity tensor; and w = alternative
damage tensor).

Symmetry is assumed for the macroscopic stresses o as well as for the
effective stress tensor r. Thus, the components «;,, must preserve the
interchangeability of index i with j and k and m, and can be grouped into
a £ x 6 matrix in the context of the six-component vectorial representation
of symmetric stress tensors. However, no interchangeability of indices i, j
with k, m is assumed, which means that no symmetry is required for the
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6 x 6 matrix. This nonsymmetry is needed so as not to exclude the possibility
of representing phenomena such as internal friction.

To establish more precisely the meaning and nature of the damage tensor
o and effective stresses 7, the hypothesis of strain equivalence is also assumed
(Chaboche 1979; Lemaitre and Chaboche 1985; Sim6 et al. 1987). According
to this hypothesis, the effective stresses 7 are defined as the stresses that
would exist in the undamaged material subjected to the same strains € as
those that produce the macroscopic stress o in the damaged material. With
this definition the components of the 6 x 6 damage tensor a can be geo-
metrically interpreted as a net (effective) stress-carrying area fraction in
every coordinate direction, with each stress component considered to act
independently on a plane of that direction.

In the relationship between 7 and &, any rheologic model can be used;
e.g., using linear elasticity (74, = Di'm,,,,e,,q) as the rheologic model, one
immediately obtains the expression for the secant or reduced elastic stiffness

_ !
DS, = 0Dy (5b)

These equations are the three-dimensional counterpart of (3).

In general, a nonlinear rheologic model may be used instead of linear
elasticity to compute the effective stresses  from prescribed strain e (which
can in general be done according to a step-by-step algorithm). Because the
value of a can be computed independently according to the damage laws,
the macroscopic stress o can then be obtained using (4). Thus, the overall
constitutive model can be decomposed in two independent parts, one for
damage and another for rheology. Different models can be used for each
part and then combined. Establishing the laws for the evolution of «, one
can get an entire new class of models from the combination of the « evolution
law with any rheologic model for 7. This opens new interesting possibilities
and presents the challenge of developing a satisfactory law for the evolution
of the damage tensor a, probably the weakest point at present and the main
goal of this paper.

It should be pointed out that the idea of combining damage and rheology
is not new, of course. For example Leckie (1978) and Lemaitre and Cha-
boche (1978) combined viscoplasticity and damage, and Bazant and Chern
(1985) combined concrete creep with damage due to smeared cracking. The
new idea is to combine damage and rheology by means of the microplane
model, which has the benefit of yielding the form of the damage tensor.

KiNEMATICALLY CONSTRAINED MiCROPLANE MODEL

As already mentioned, the new damage tensor proposed here was derived
by reformulating the latest version of the microplane model for concrete in
an explicit form (Carol et al. 1990). Therefore, only the basic hypotheses
and main features need to be given here.

The model is based on the concept of a microplane. A microplane is an
arbitrary plane on which the constitutive properties are defined. Instead of
defining them by means of a relation between tensors o; and e, these
properties are defined by means of a relation between the stress and strain
components on a microplane, which is conceptually much simpler because
there are fewer stress and strain components and the problems of tensorial
invariance do not arise on the microplane level. The macroscopic stress-
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strain relationship is then obtained by integrating under some suitable micro-
macro constraint over the microplanes of all spatial orientations n. This
integration guarantees the condition of tensorial invariance to be satisfied
automatically. There are two simple alternatives for the macro-micro con-
straint relating the behavior of all the microplanes to the macroscopic be-
havior: the static and kinematic constraints, both suggested by Taylor (1938).
In the static constraint, the microplane stresses represent the projections of
the macroscopic stress tensor on the plane considered; the kinematic con-
straint does the same for strains. Note that both types of constraints cannot
apply at the same time if general stress-strain laws are considered at the
microplane level. '

Although the static constraint was used exclusively in the works dealing
with metal plasticity (Batdorf and Budiansky 1949; Lin 1968), the kinematic
constraint was recognized to be necessary to ensure that the microplane
system be stable in strain-softening behavior (Bazant 1984: Bazant and Oh
1983, 1985). If the kinematic constraint is assumed, the normal and shear
strains €, and e, on the microplane with unit normal n, [Figs. 2(a and b)]
can be obtained as projections of the strain tensor ¢,. Previous studies
(Bazant and Prat 1988) revealed that in order to obtain any desired Poisson
ratiov(— 1 < v =0.5) as well as capture the effect of the hydrostatic pressure
on the incremental stiffness, the normal microplane strain e, needs to be
further split into its volumetric and deviatoric components &,. and &), 'I‘his
split, however, has no direct physical meaning; rather, the physical meaning
is that the microplane stress depends not only on £, but also on the lateral
normal stress €, along the directions lying within the microplane (the mean
value of g, can be easily expressed in terms of £, and €,,). The resulting
expressions for the microplane strains are

FIG. 2. Stress and Strain Components on Microplane
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where 8, = Kronecker delta; and n, = direction cosines of the unit vector
n normal to the microplane. Note that ¢, and €,, can also be obtained as
the normal and shear components of the projection of the deviatoric strain
tensor ¢; = g, — &8, on the microplane, but that the deviatoric part of
the strain projection, which is &;, = e,n, — euyn,, differs from (6). Eq. (6)
for e, is obtained as the symmetric part of this tensor (the asymmetric part
has no effect on stresses).

In view of the kinematic constraint imposed. the microplane stresses in
general do not and cannot represent the resolved components of the (mac-
roscopic) stress tensor. Equilibrium must nevertheless be imposed in an
approximate overall sense. For this purpose, application of the principle of
virtual work was proposed by Bazant (1984). This principle yields the fol-
lowing condition of static equivalence of the stress (macrostress) tensor gy
with the normal (oy = o, + 0,) and shear stresses (o7), on the micro-
planes:

4
—33 ode, = 2 ﬁ (oaden + o de () A . (7)
]

The left-hand side represents the virtual work of the macrostresses in an
elementary unit sphere; and the right-hand side represents the virtual work
of the microplane stresses on the microplane strains on all the elementary
facets on this sphere. representing the microplanes. The integration needs
to be carried out only over the area of a unit hemisphere, Q, because the
stresses and strains at its diametrically opposite points are equal. Function
f(n) may be used to introduce initial material anisotropy. For isotropic
materials, f(n) = 1.

Substituting microplane strain variations according to (1) and (2). and
setting o = ¢ + o, where oy, 0y, and o, are the normal, volumetric,
and deviatoric stress components on the microplanes, we obtain

U .
{J;![(UV + opnn, + 77 (nd,; + nd, — 2nnn, }f(n) dQ

- 2?17 (r,-,} de

This is a variational equation that must be true for any variation de,;. This
occurs if and only if the expression within braces, { }, vanishes. Noting also
that [onn, d) = 2md,;, one obtains the expression

o, = ad, + fx oo, dQ + f‘ 1 ‘—’zi (nd,; + nd, — 2npn) dQ ... )

Notice that, in fact, not all the components of 8¢, in (8) can have independent
variations, since ¢ is a symmetric tensor. In principle, this would complicate
somewhat the elimination of this term from both sides of the equation (Carol
et al. 1990). However, thanks to the symmetry (between i and J) in the
expressions used [(6)]. the resulting expression between brackets, [ |, in (8)
is also symmetric with respect to the interchange of indices i and J. which
makes this simplification possible (the same remark also applies to other
similar simplifications of tensorial variables from other expressions with
similar structure later in the paper).

The formulation needs to be supplemented by particular microplane stress-
strain laws for oy, op, and o4, as functions of ey, ¢,, and £,,. As shown by
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Bazant and Prat (1988), these can be assumed to be algebraic explicit re-
lations (rather than differential equations) separate for each component,
i.e. (for loading)

Oy = FUlE0) oo (10a)

P N - B (10b)

P M e (10¢)

O o LUy
Y

where v = Vereq, (the response, however, is in general path-dependent
because various combinations of loading and unloading on various micro-
planes arise, even for macroscopically monotonic loading). A further sim-
plifying hypothesis, that the shear stress g, is parallel to the shear strain
€4, is also made. In that case it suffices to specify the constitutive relation
for the magnitude o, = Vo0, rather than all the components o,,. In
previous works (Bazant and Prat 1988; Carol et al. 1990) the simplified
relations in (10) did not prevent achieving good fits of a wide range of test
data for concrete.

The computation of a prescribed-strain macroscopic load step can be
performed explicitly: the microplane strain increments are computed from
the macroscopic strain increment using (6). Then the new microplane stresses
are obtained using the microplane laws, (10) (for each microplane one must
know whether unloading started and, if so, which unloading path it is fol-
lowing). And, finally, the microplane stresses are integrated according to
(9) to obtain the new macroscopic stresses.

DERIVATION OF GEOMETRIC DAMAGE TENSOR FROM CONCRETE MODEL

The microplane constitutive laws from (10) can be rewritten in the form
of elastic-damage laws with secant moduli E5f¢, £, and E5¢

Oy = By e (11a)
Op = B o (11b)
O = EF e, (11c)

where E$¢ = f(g,), etc. (fy, = function). Introducing (11) and the expres-
sions of microplane strains from (6) in the right-hand side of (9), replac-
ing the macroscopic stress in the left term by its elastic-damage expression
with secant stiffness tensor from (5) for o;, and eliminating ¢, from both
sides of the resulting equation one obtains the macroscopic secant stiffness
tensor expressed as an integral of the secant stiffness at microplane level
over the unit hemisphere

Ege 3 Bpq
g = 3 OkmOpg + o fn Escnen,, | npn, — Y dQ
3 Ese
+ 7 Ja 4 (nn8,, + mnd,, + n,nd,,

+ By, — dngnnon) d€ Lo (12)
Now the following substitutions may be introduced: (1) The secant stiffness
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at macroscopic level is replaced by the product of the initial elastic stiffness

and the damage tensor [(5) for Die . (2) similar replacements are made

for the microplane secant moduli:

ESc = o BN (13a)
ESC = apkyy o (13b)
O (13¢)

where ay, a,, and a; = microplane damage variables reflecting the net
stress-carrying area fraction at microplane level; and EV, £}, and EY =
initial clastic moduli; (3) the initial moduli E}., E}), and EY are replaced
by their expressions in terms of the macroscopic elastic parameters E and
v and the additional parameter m, (Bazant and Prat 1988)

I3
0
EY = TR T (14a)
By = moEY (14b)
11501 - 2v)
) — [
=3 [ —— Zn‘,] Ly (14¢)
and (4) the elastic stiffness matrix is replaced by its expression:
. vl E
Difupy = e BBy + e BB (15)

(1 + v)(1 - 2v)

Once all these expressions are introduced into (12) and simplified, an
gxpression for Qs is obtained in terms of ay,, a,,, and a,. Now an interesting
idea comes to mind: parameters £, v, and v, can vanish from the expression
for oy, when the following assumption is made:

1 - 2v
Mo — m ............................................... (]6)

(L + )

As we will see later, this hypothesis appears to be acceptable for practical
purposes, and onc gets

=2

3 B
_ v o )¢ &
Rijpg = _3— 81/61r11 + E J” Aph <II,,”,, B él da

3

o
+ Ejsz vy (nnyd, + nnd, + n;i,,,

q-mw

toand, —dnanon Y d oo a7

The fact that this tensor is purely geometric, i.c.. does not involve £ and
v, is the main contribution of this paper. We thus gain a new form of the
microplane model in which the basic material behavior is not defined as a
set of laws for microplane stresses [(10)] but as a set of laws for the evolution
of the microplane damage variables a, ., a,,. and a,. Then, the macroscopic
damage tensor «,, is obtained by integration of the microplane damage
variables over the hemisphere using (17).
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RHEOLOGY-INDEPENDENT DERIVATION OF GEOMETRIC DAMAGE TENSOR

The foregoing derivation of the damage tensor started from a particular
version of the microplane model. At least, the following assumptions were
implicitly present in the derivation: (1) The microplane laws are of the form
o = aF’ [(11) and (13)]; (2) the macroscopic stress-strain _re.latlonshxp
is of the same type [(5)]. involving linear elasticity in its definition [(19)}:
(3) the initial moduli at microplane level are related to the elastic parameters
E. v, [by (14) and (16)]; and (4) the shear stresses and strains on a .mlcropl‘an'e
are parallel [(10)]. No references to these hypotheses remain in the flr}a!
expression in (17), which depends on gepmetrlc.dxmensxonlcss quantities
only. Thus, from a practical point of view it is obvious that (17) can be used
as a damage model in combination with any rheologic model in the general
context described in the section headed “Effective Stress and Damage Ten-
sor Uncoupled from Rheology.” However, from a theoretical viewpoint the
question remains whether the damage tensor .denved under these restrictive
assumptions could also have been derived using any alternative companion
rheologic model or the derivation is exclusive for this case. '

Let us start a rheology-free derivation of _(x,,k,,,_from the assume(_l basic
micro-macro kinematic and equilibrium relations in (6) and (9), which are
both rheology independent. On the microplane level we may define the
effective (true) stresses, T, 5, and 74, such that

T S T R R R R R ERR (18a)
O = QUpTry ot et e (18b)
7, = O, oo oo e (18¢)

This may be also regarded as a rheology-free definition of damage at mi-
croplane level, alternative to (13). _ ' . duced
Having assumed the kinematic micro-macro constraint and introduce
general microplane stress-strain laws, the microplane stresses canngt (except
by chance) represent the resolved components of any stress (macrostress)
tensor. The microplane effective stresses in general need not represent the
resolved components of any effective stress tensor. i.e., no such tensor needs
to exist. However, for a certain special form of the damage ratio tensor,
this could occur. Such a property would bring about considerable simpli-
fication. To explore it let us introduce the hypothcsmlthat the microplane
effective stress components are in fact such resolved components of an
effective stress tensor at the macroscopic level, 7,. This means that, in

analogy to (6) for strains, we can write

8 n
1y = Tg* A (19a)
dem
T = <r1kn,,, - —%) S (19b)
Tr, = %(Biknm F Byl = 2R Thgy « oo e (19¢)

Let us now substitute (18) and (19) into the right-hand side of (9). and (4)
into the left-hand side. After some rearrangements we can factor out 7.,
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3 S, 3
{u—:‘v 8;8,, + 7 L a,,n,n,(n,,n,, - ~§J> dQ + — % (n;n,5, +

nnd, + and, + nnd, — dnnnn,) dQ - (x,,,,q}"r,,q =0 ...... (20)

This equation should hold for any tensor 7,,. This is possible if and only if
the expression within braces, { }. vanishes. From this condition we obtain
the expression for «,,, already given in (17). Furthermore. if (19) were
violated, it would not be possible to factor out T,, 10 (20), and (17) would
not result. Therefore. the static constraint in (19‘) 1s not only sufficient but
also necessary to achicve uncoupling of damage from rheology. the latter
being defined by the dependence of 1, 7;,, and 7, on the microplane strains.
It must be emphasized that this second derivation was not made with re-
course to any particular rheologic model. but only on the basis of geometric,
kinematic, and equilibrium considerations. This demonstrates from a the-
oretical viewpoint the general validity of the proposed gecometric damage
tensor.

Note also that the model represented by the new damage tensor [(17)]
coupled with a particular rheologic model is equivalent to a microplane
formulation in which there is not only a kinematic constraint for strains but
also a static constraint for a certain kind of stresses, namely. the effective
stresses. This is a more appealing formulation than that in which there is
only a kinematic constraint. The kinematic constraint is reminiscent of par-
allel coupling of elements in a rheologic model; the static constraint is
reminiscent of series coupling. From the modeling of composite materials
it is known that the parallel coupling models give the stiffest possible re-
sponse; whereas the series coupling models give the softest possible response
(an example for elastic composites are the Voigt and Reuss bounds). The
real behavior can usually be best described by some combination of both
types of coupling. It thus appears satisfactory that the foregoing formulation
combines both kinematic and static constraints.

NUMERICAL IMPLEMENTATION AND DEMONSTRATION FOR CONCRETE

Previous studics (Bazant and Prat 1988; Carol et al. 1990) showed that a
good and remarkably broad description of the existing test data on the
constitutive properties of concrete, encompassing multidirectional tensile
strain-softening due to cracking as well as nonlinear triaxial response in the
hardening and strain-softening ranges. could be achieved by the microplane
model. In those studies all the micromechanics phenomena involved in the
microplane laws for o, ,,, and o, were mixed. By contrast, in the new
model a clear separation has been established between damage effects,
represented through the new damage tensor, and rheology, represented by
a companion model that can be simple since it does not represent damage
(or strain-softening). In this new scheme a separation of tasks can be es-
tablished between both parts of the modcl, each characterizing different
aspects of the material behavior observed in tests.

In the first stage of development presented here, attention is focused on
the new microplane damage tensor, and the companion rheologic model is
chosen as the simplest possible, i.e. linear elasticity. Choosing a more so-
phisticated rheologic model, e.g.. elastoplasic, would no doubt broaden the
possibilities of representing complex material behavior.
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The evolution laws for microplane damage variables were established on
the basis of the laws used for @, op, and o, by Carol et al. (1990); they
were of the form o(e) = a(e)E . Eliminating from these expressions the
factor E'e, we obtain the equation o = exp[ — (e/a)’], which gives [or « a
smooth variation from 1 to 0 when the strain increases monotonicaily; see
Fig. 3 for the effect of different values of p.

Fig. 4 depicts the general laws for ay, op, and a;. In the case of ay, as
seen in this figure, the basic behavior just described is used only for tension
(positive €,), with parameters a, and p, and state parameter eP", which
depends on the history. No damage is assumed to occur in hydrostatic
compression, where we always have ay = 1. This is because the volumetric
behavior observed in compression tests shows no stress peak and exhibits
unloading-reloading branches with almost the initial slope [see Bazant and
Prat (1988)], which seems to be modeled by the companion rheologic model
of plasticity type better than by the damage tensor itself. If unloading-
reloading occurs in tension, the curve given by (2) acts as an envelope, and
the maximum strain reached so far is the state parameter depending on
history. A jump is assumed for a, if €, becomes positive after some damage
occurred in tension or vice versa. This kind of jump (and the same kind of
jump occuring for a,) can represent in some way the effect of a strain-
controlled microcrack opening and closing at microplane level.

In the case of a,,, two independent sets of material parameters and state
parameters depending on history are used for tension and compression: a,,
p, (both the same as used for ay), e for tension; and a,, p,, ep** for
compression. A jump can also occur for a, when crossing from tensile to
compressive parts of the diagram. Finally, as, p;, and y™** are used for the
tangential (shear) law, which only shows the positive side since ‘y is the
magnitude of the tangential (shear) strain vector. In contrast to Bazant and
Prat (1988) and Carol et al. (1990), no dependence of the tangential behavior
on any volumetric variable is assumed. This is an aspect of behavior directly
caused by internal friction rather than by damage itself, and therefore might
be better handled by the companion rheologic model.

The model was implemented in a computer code in the manner described
by Carol et al. (1990), with 28 spatial orientations of microplanes (Bazant
and Oh 1985) for which history is recorded and damage evaluated. The

X o = (/P

1 _
p

p>1

— e ——

T _

I

! >
a &
FIG. 3. Basic Exponential Curve for Damage Evolution
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(a)
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513 ‘y

FIG. 4. Microplane Damage Laws: (a) Volumetric Damage a,; (b) Normal Devia-
toric Damage «,,; (c) Tangential (shear) Damage o,

stresses are computed explicitly from specified strain increments of finite
size, and subroutines co-opted from a “‘single-point” or “full-finitc element
(FE)” computer program are also used. In fact, no major differences with
regard to the previous version of microplane model exist from this viewpont
except that the laws are established in terms of microplane damage variables
instead of microplane stresses and that, after the damage tensor has been
obtained, additional steps are needed to obtain the new values of 1, and to
evaluate the corresponding tensorial product in (4) that gives the new gy

There are six material parameters of the model for the microplane damaée
tensor: a,, p,, a,, p,, a;, and p;. However, the values p, = 0.5, p, = 1.5;
and p; = 1.5 can be assigned for maost of practical cases, thus redlfcing the
number of material parameters to be determined from test results to only
three. The number of history-dependent state variables for 28 microplane
directions is 85 (one for the volumetric curve, same for all microplanes; two
for the deviatoric curve; and one for the shear curve on each microplane).
Furthermore, the material parameters of the rheologic model (£ and v in

this case) and possibly its internal variables (none in this case) may also be
counted.
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As an example, a uniaxial test reported by van Mier in 1984, in which
both longitudinal stress and transverse strains were measured, is reproduced
with the model. The parameters used to fit these data are: £ = 2,406 M}"a;
v = 0.18; a, = 0.0004; a, = 0.006; and a; = 0.0018. The remaining
parameters have their general values already given. The results are repre-
sented in Fig. 5 by solid lines. The dots are the experimental data and the
dashed lines are the results obtained with the previous version of microplane
model for the same example. It can be observed that both curves are very
similar in each diagram, which should not be surprising since both models
are almost equivalent in this example, in which no volumetric dependence
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FIG. 5. Comparison with Uniaxial Test by van Mier (1984)
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was assumed for o, in the computations with the previous microplane model
(Carol et al. 1990). The only difference arises from the parameter m,, which
existed in the old model but now has disappeared from the formulation. In
the section headed “Derivation of Geometric Damage Tensor from Con-
crete Model™ it was shown that the full equivalence between both models
occurs for i, = (1 — 2v)/(1 + v)in the old model. For v = (.18 this means
about m, = 0.54; the value taken in the previous computations for this
example was 0.85. Due to that difference, the models are not completely
equivalent, and the parameters a,, a,, and a, cannot have the same values.
It is clearly shown in the example, however, that the restriction over the
value of 7, does not prevent the model from yielding a very good fit of
experimental data. This is not surprising, since Bazant and Prat (1988) found
the effect of m, in the closeness of fit to be minor and that the optimized
m,-values were mostly quite close to those from (16). Finally we must em-
phasize that Fig. 5 does not represent an experimental verification of the
present model. Rather, this verification rests on the fact that: (1) The Pre-
dictions of the present and previous models are quite close; while (2) the
experimental verification of the previous model was extensive.

CONCLUSIONS AND BROADER IMPLICATIONS

For the general microplane model characterized by a kinematic micro-
macro constraint it is possible to formulate a fourth-order damage tensor
in a form that is uncoupted from the rheologic constitutive properties of the
material. In this formulation the damage is solely of geometric origin, being
due to the reductions of the net stress-carrying cross-sectional area fractions
for various orientations in the microstructure. The damage tensor charac-
terizes the values of these area fractions for all spatial directions, and permits
them to have any values. The damage tensor formulated in this manner fits
well the framework of continuum damage mechanics.

Despite the assumed kinematic constraint between macrostrains and mi-
crostrains, it is possible to satisfy at the same time and additional static
constraint such that the cffective microstresses on the microplanes are the
resolved components of the effective macrostresses.

The fact that the constitutive model is composed of two independent parts
(one for damage, another for rheology) allows better insight, facilitates the
fitting of test data, and increases versatility.

A recent microplane model for tensile and compressive strain softening
and general nonlinear triaxial behavior of concrete, which has been amply
verified by test data, can be easily adapted to the geometric damage form
without any appreciable detriment to the closeness of test data fits.

The possibility of uncoupling geometric damage from constitutive (rheo-
logic) properties is attractive for development of more general constitutive
models combining damage with creep and rate effects, with compliex un-
loading and reloading paths, and with cyclic loading. It might be possible
to model such behavior adequately using some existing plastic, viscoelastic,
viscoplastic, or nonlinear cyclic material model without damage, and then
incorporating into it the geometric damage tensor deduced here (17)]. By
separating damage, the constitutive (rheologic) model, which relates here
the effective (microscopic, true) stress tensor (instead of the macroscopic
stress tensor) to the strain tensor, can probably be much simpler than it
would have to be if the damage were mixed with nondamage constitutive
properties. By virtue of the gecometric damage concept constitutive modeling
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can be restricted to the material between the microcracks and voids in the
microstructure, leaving the overall effect of the growth of the microcracks
and voids as the only behavior to be described by the geometric damage
tensor.
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