COMPRESSION FAILURE OF QUASIBRITTLE
MATERIAL: NONLOCAL MICROPLANE MODEL

By Zden¢k P. Bazant,' Fellow, ASCE, and Josko Ozbolt?

ABSTRACT: The previously presented constitutive model of microplane type for
nonlinear tnsxial behavior and fracture of concrete is used i nonlocal fimite element
analysis of compression faslure in plane strain rectangular specimens. For specimens
with shding ngid platens there 1s a bifurcation of the loading path at the beginning
of postpeak softening; a symmetric (primary) path cxsts but the actual (stable)
path is the nonsymmetric (secondary) path, involving an inclined shear-expansion
band that consists of axial splitting cracks and is charactenzed by transverse ex-
pansion. The secondary path is indicated by the first eigenvalue of the tangent
stiffness matrix but can be more easily obtained if a slight nonsymmetry is intro-
duced 1nto the finite element model. In specimens with bonded rigid platens there
is no bifurcation; they fail symmetrically, by two inclined shear-expansion bands
that consist ot axial sphitting cracks. The transverse expansion produces transverse
tension n the adjacent matenial, which serves as the drving force of propagation
of the axial sphtting cracks. Numenical calculations indicate no significant size effect
on the nominal stress at maximum load.

INTRODUCTION

Under uniaxial compression, quasibrittle materials exhibiting progressive
distributed damage, such as concrete, rocks, ceramics, and ice, fail by slip
on inclined shear bands or by axial splitting, or by a combination of both.
From experience, the axial splitting cracks appear to be an important part
of the compression failure mechanism in quasibrittle materials. However,
although various aspects of the microscopic fracture mechanism under
compression have been illustrated in previous works [e.g., Griffith (1924);
Kendall (1978); Miyamoto et al. (1977); Sammis and Ashby (1986); Shetty
et al. (1968); Ingraffea (1977); Glucklich (1963); Bazant (1967)], no realistic
comprehensive model for macroscopic compression failure process has been
presented. The reason is that a sufficiently realistic constitutive model ap-
plicable to cracking damage under general triaxial stress states, including
compressive stress states, has been unavailable, and a method to overcome
the spurious mesh sensitivity and localization problems due to triaxial strain
softening did not exist. Recently, both of these problems were overcome
with the nonlocal version (Bazant and Ozbolt 1990) of the microplane model
(Bazant and Prat 1988). The purpose of this paper is to apply this model
to study the compression failure.

Compression failure of uniaxial concrete test specimens was recently an-
alyzed by a nonlocal finite element code in Droz and BaZant (1988) [see
also Bazant (1989a)]. The analysis indicated a shear-band mode of failure,
but the axial splitting often seen in experiments could not be obtained.
However, the constitutive model used, namely Drucker-Prager plasticity
with a nonlocal degrading yield limit, was not sufficiently realistic for con-
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crete. A nonlocal finite element approach based on a more realistic con-
stitutive model for concrete was formulated in a preceding paper by BaZant
and Ozbolt (1990). The present paper will apply this model to the study of
compression failure. All the definitions and notations from the preceding
paper are retained and the basic mathematical formulation is not repeated.

AxiaL SPLUITTING FRACTURE

Axial splitting due to compression is a difficult problem in fracture me-
chanics, which has a lon, history. The difficulty arises principally due to
the fact that, in uniaxially compressed specimens whose macroscopic strain
field is uriform, calculation yields no release of stored elastic energy into
a propagating axial fracture, that is, the driving force of fracture propagation
is lacking. The reason is that, if a planar crack paralle! to the compression
direction is introduced into a uniaxial compressive stress field, there is no
change in stress since the stresses on the crack planes are zero to begin with.
Therefore, some mechanism that breaks the macroscopic uniformity of the
strain field must exist.

One hypothesis, which was explored in some detail, was that transverse
tensions are created due to three-dimensional buckling [e.g., Bazant (1967)).
From second-order three-dimensional buckling analysis with finite strains
(reviewed in BazZant and Cedolin (1991), section 11.7), however, it tran-
spired that three-dimensional buckling could have a significant effect only
if the axial normal compressive stress reached approximately the same order
of magnitude as the tangential transverse modulus (stiffness) or the tan-
gential shear modulus of the material. This is possible only for highly ani-
sotropic matertals such as fiber composites or laminates, for which the three-
dimensional buckling hypothesis had some success in explaining certain
experimentally observed features of the response (Bazant 1967). In con-
crete, however, the initial anisotropy is negligible, and even the stress-
induced anisotropy appears to be insufficient to permit explaining axial
splitting fractures in terms of three-dimensional buckling—at least not as
the imitial triggering mechanism (although after the axial splitting failure of
a concrete specimen is initiated, three-dimensional buckling might still play
a role in the failure process).

In this study, another idea is advanced. The uniformity-breaking mech-
anism may be provided by the formation and propagation of a damage
(cracking) band exhibiting strong volume dilatancy caused by growth of
axial sphtting microcracks that are paratlel to the direction of compression.
In such a band, one can expect an inelastic volume dilatancy to be produced
due to high deviatoric stresses. The volume dilatancy must induce transverse
tensile stresses in front of the splitting microcracks, which causes them to
grow. That does not mean, however, that the bands of axial splitting cracks
should grow in the direction of compression; rather these cracks form a
band propagating in the inclined direction.

This mechanism is quite different from the tensile fracture mechanism,
because generation of the transverse tensile stresses in front of the cracking
band by volume dilatancy in the band can be 4 purely local mechanism that
involves no significant stress and strain changes anywhere except rather near
the fracture band. Therefore, the basic properties of such fracture, especially
the size effect, could be quite different.

As is well known from the studies of nonlinear triaxial behavior of con-
crete as well as geomaterials, realistic predictions of inelastic volume dila-

541

tancy due to deviatoric stresses require u relatively sophisticated nonlinear
triaxial constitutive model, covering the postpeak strain softening. Most of
the constitutive models previously proposed for concrete work well only for
uniaxial and biaxial stresses but not after the peak. We select for the present
study the microplane model in which the normal microplane strains are split
into volumetric and deviatoric components, as introduced in BaZant and
Prat (1988). This model has been shown to represent quite well a very broad
range of experimentally observed behavior including various types of triaxial
tests, biaxial tests, biaxial and tniaxial failure envelopes, softening response,
etc. Furthermore, the nonlocal extension of this model has been shown to
work well for tensile fracture and represent the observed size effect. A
somewhat different type of extension of the previous microplane model,
which can also mode! compression failures, has been developed by Hase-
gawa and BaZant (internal report, Northwestern University, 1990).

There has been extensive research into micromechanics of compressive
failure of various materials (Brockenbrough and Suresh 1987, Ingraffea
1977; Kendall 1978; Miyamoto et al. 1977; Sammis and Ashby 1986; Shetty
et al. 1968). Mechanisms such as the propagation of axial cracks from voids
or the so-called wing-tip cracks were studied by many researchers. These
studies, however, illuminated only some microstructural mechanisms but
have not lead to a general macroscopic model capable of furnishing the
load-displacement curves and failures states of specimens or structures.

NUMERICAL MODELING OF COMPRESSION SPLITTING FRACTURE

We analyze a rectangular concrete specimen of size 300 x 300 x 540
mm [Figs. 1(a) and (b)] uniaxially compressed between perfectly rigid plat-
ens. The specimen may be imagined to represent the cross section of a wall
that is in a plane strain state. The finite element mesh is shown in Fig. 1.
The material parameters of the microplane model, as defined in the previous
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study by BazZant and Prat (1988), are taken according to that study as:
E, = 23,500 MPa (initial elastic modulus), and v = (.18 (Poisson ratio), a =
0.005, b = 0.043, p = 0.75, q = 2.00, ¢, = 0.00006, e, = 0.0015, e; =
0.0015, ¢, = 0., m = 1.0, n = 1.0, k = 1.0. Most of these parameters,
except e,, €,, €3, €,, can be considered to have the same value for all con-
cretes, as specified in Bazant and Prat (1988). Based on these parameter
values, calculations of the uniaxial stress-strain curve for a single material
point yield uniaxial compression strength 17.6 MPa and tensile strength 1.72
MPa. The maximum aggregate size is d, = 30 mm, and the characteristic
length is assumed as / = 3d,.

Compared to the previous microplane model, however, a minor modi-
fication has been made; while previously the microplane shear stress and
strain vectors were assumed to always be coaxial, presently they are allowed
to be noncoaxial. These vectors are split in two components with respect
to the rectangular in-plane coordinate axes, whose directions are chosen
randomly on each microplane. (This randomness introduces a slight non-
symmetry into the model with respect to the plane of symmetry of the
specimen.) The relation between the shear stress and strain components for
each component direction is assumed to be the same as that between the
shear stress and shear strain in the previous model.
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The compression specimens are loaded through perfectly rigid platens
and anlayzed both for perfectly stiding (frictionless) platens [Fig. 1(a)], and
for bonded (nonsliding) i)la!ens |Fig. 1(b)]. The specimen is loaded in small
steps by prescribing axial displacement increments of the top platen in each
loading step. To initiate a softening damage band in the direction of
compression, there must be some small initial random inhomogeneity, from
which the band starts. Therefore we assume that there is a weak zone in
the center of the specimen; see the shaded area in Fig. 1. The elastic modulus
in the weaker zone is assumed to be 5% less than in the rest of the specimen.
Isoparametric four-node quadrilaterals with four integration points are used
in the calculations. All the elements are identical and their size is equal to
1/3 of the characteristic length /. For a completely symmetric situation, one
may expect symmetry-breaking bifurcations of the response. As we will see,
numerical results indicate that this indeed occurs for the case of the sliding
boundary (but, curiously, not for the case of the boundary with perfect bond
to the rigid platens, called the bonded boundary).

To determine bifurcations and stability, the tangential stiffness matrix
K, is calculated at various states by imposing ¢, = 1, with all other g, = 0;
¢, are all the displacements of the structure (1 = 1,2, . . . n). Matrix K, is
usually nonsymmetric. Because of various possible combinations of loading
and unloading at various integration points and at various microplanes at
each point, there are great many matrices K, at cach stage of loading; each
of them corresponding to a different sector of the space of all gq,. However,
in similarity to Hill's method of linear comparison solid (Hill 1961, 1962),
known from plasticity, the first bifurcation of the loading path can be de-
termined by considering only the K, matrix for the same unloading-loading
combinations as for the previous loading steps. For the first bifurcation,
this means considering matrix K, = K/ that is calculated under the as-
sum%tion that loading occurs for allg, . Matrix K, is in %eneral nonsymmetric.
Let K, be its symmetric part, i.e., K, = (K, + K/ )/2, and let A and A, be
the first (i.e., minimum) eigenvalues of matrices K, and K,. Before the first
bifurcation, A, > 0. At the first bifurcation A, = 0, and after the first
bifurcation, A, < 0. Stable states are characterized by A; > 0, the limit of
stability of the structure is characterized by A, = 0, and unstable states are
characterized by A, < 0. The stable path is characterized by A, > 0, where
A, is calculated from K, for the precise loading-unloading combination for
that path. According to Bromwich’s theorem known from linear algebra,
always A, = X\, i.e., the first bifurcation occurs at or before the onset of
instability [for detailed explanations, see section 10.4 in BaZzant and Cedolin
(1991)}.

The mathematical analysis of bifurcation states and postbifurcation paths
can be avoided if one introduces small imperfections into the system, pro-
vided of course that these imperfections are chosen such that they excite
the secondary postbifurcation path. Thus, A, and A, have been calculated
only for some states of the perfect system, while generally the imperfection
approach has been followed, making the finite element meshes for both
types of the boundary conditions slightly asymmetric. This has been done
by slightly displacing four interior nodes necar the center of the specimen in
the lateral direction.

RESULTS OF NUMERICAL ANALYSIS

The results of analysis for the case of sliding boundaries are shown in
Figs. 2—-8. The calculated load-displacement curves for perfectly symmetric
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and slightly asymmetric finite element meshes [Fig. 2(a)] are visually un-
distinguishable up to a point that lies slightly beyond the peak-load point.
For the perfectly symmetric mesh, a bifurcation occurs at this point, which
is revealed by singularity of the tangential stiffness matrix. The bifurcation
is caused by a breakdown of symmetry in the specimen response and is a
consequence of strain softening of the matenal. As shown in BaZzant (1989a),
and Bazant and Cedolin (1991, Chapter 10), for the conditions of displace-
ment control, the path that occurs after the bifurcation point must minimize
the second-order work 3W = 8fdu/2; where 8u is the prescribed displace-
ment increment, and 8f is the force reaction increment at the top of the
specimen. As expected, smaller value of 8°W is obtained for the secondary
bifurcated path that yields an asymmetric response mode. Consequently,
the path that actually occurs must be the symmetry-breaking secondary path.
The fact that the primary path is not the actual path is also confirmed by
negativeness of the smallest eigenvalue of the tangent stiffness matrix after
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FIG. 4. Same as Fig. 3 but Symmetric Deformation Entorced (Not Actual Path),
at Prepeak State (0.2F,,,,), Peak Load (F,..), and Postpeak State (0.69F,.,..)
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the first bifurcation point, while for the states on the secondary path the
smaliest eigenvalue remains positive.

Fig. (2b) shows the profiles of the transverse normal stress along the
specimen axis. Figs. 3(a) and (b) and 4(a) and (b) show the magnitudes and
directions of the fields of the maximum principal tensile strains and stresses
over the deformed specimen at various load levels, for both symmetric and
asymmetric response paths. At each integration point at which the maximum
principal strain or stress is positive (tension), a solid rectangle is plotted to
characterize its magnitude and direction. The size (length) of each rectangle
Is proportional to the magnitude, and the direction of its longer side shows
the principal strain or stress direction. The zones of axial splitting cracks
are those in which the maximum principal stresses are negative or small
positive [blank zone in Figs. 3(b) and 4(b)] while at the same time the
maximum principal strains are large and positive [zone of large rectangles
of Figs. 3(a) and 4(a)]. As we see, the symmetric path represents pure
splitting compression failure while the inclined failure band that develops
in the asymmetric path represents a combination of axial splitting with a
shear band (it may also be described as a shear band that consists of axial
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splitting cracks). Both modes in Figs. 3(a) and 4(a) clearly indicate a tend-
ency toward large transverse expansions, which cause vertical (splitting)
cracks. We also see that the zone of transverse expansion propagates for
the symmetric mode vertically [Fig. 4(a)], and for the nonsymmetric mode
in an inclined direction [Fig. 3(a)]. The driving force of the propagation
appears to be the transverse expansion of the crack band front that is caused
by deviatoric strains (well captured by the microplane model). Clearly this
expansion must produce transverse tensile stresses ahead of the expansion
zone and compressive stresses within this zone [Fig. 2(b)], causing the split-
ting cracks to close.

In a smeared, continuum representation, cracking is characterized by
the smeared cracking strain &{. The inelastic strain e in general consists of
the cracking strain and the plastic strain €. In the direction of the maximum
principal inelastic strain €7, nearly all of it may be assumed to be due to
cracking strain €, with a negligible contribution from plasticity. Thus, we
will assume that € = ;. The inelastic strains are calculated as €], =
e — (04 — von ~ voy)/E, €5 = £ — (0 — voy — voyn)/E, and
€1, = €, — 0,,/2G, where subscripts 1 and 2 refer to the coordinates x,
and x, in the horizontal and vertical directions in Fig. 1; E = Young’s elastic
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modulus, v = Poisson ratio, and G = E/2(1 + v) = elastic shear modulus.
The values of €, have been calculated from €7,, €3;, and €}, for all the
integration points of all the elements. The distributions of €; for the non-
symmetric and symmetric deformation mode of a specimen with sliding
platens are shown in Figs. 5(a) and (b), where the size of the rectangles is
proportional to the magnitude of ¢}, while the direction of their longer side
1s in this case normal (rather than parallel) to the maximum principal di-
rection and indicates the direction of cracking. From Fig. 5(a) we see that
cracking is essentially vertical everywhere, as expected, and that the zone
of major cracking spreads in an inclined direction, thus representing a shear
band. Visible cracks occur only in the areas of large €7, while at locations
of small €7 there is only invisible microcracking.

At the peak load [Figs. 4(a) and (b), the cracking front (white area)
reaches roughly to the upper and lower quarter of the specimen length.
Subsequently, during postpeak softening, the cracking front (white area)
propagates still further towards the loading platens. The progress of the
cracking front toward the platens is also apparent from Fig. 2(b), which
shows the distribution of the transverse normal stresses (average value for
each finite element) along the specimen axis at various load stages.

Figs. 6(a) and (b) and (7a) and (b) further show the field of minimum
principal (compressive) strains and stresses, which exists in the region that
is blank in Figs. (3b) and 4(b) and corresponds to the field of maximum
principal (tensile) strains shown in Figs. (34) and 4(a) (the rectangles are
not plotted only for the zones of negative strains or stresses).

Fig. 8 shows the maximum shear strain for the nonsymmetric failure mode.
This figure clearly indicates that the inclined bands are really shear bands.

The results of the analysis for the case of nonsliding boundaries are shown
in Figs. 5(c), and 9Y-11. The load-displacement curve [Fig. 9(a)] exhibits a
slightly higher peak load than that in the case of sliding boundaries, while
the descending branch is steeper. It is interesting that in this case the re-
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sponse of a symmetric specimen exhibits no bifurcation. This is verified by
introducing a slight nonsymmetry into the computational model. The load-

displacement curve remains nearly the same, and so does the failure mode
for this specimen.

Fig. 5(c) shows the distribution of maximum principal cracking strain €”
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1
[in the same manner as Fig. 5(a) and (b)]. The cracking starts to propagate
vertically from the assumed weak zone at the center of the specimen, moving
first towards the loading platens. Then, however, already before reaching
the peak-load state, the band of vertical splitting cracks starts to propagate
sideways, in two inclined directions. This happens for the present p-value
while the cracking front reaches roughly to the top and bottom quarters of
the specimen height. The magnitudes and directions of the fields of the
maximum and minimum principal stresses and strains at various load levels
are shown in Figs. 9-11. Figs. 9(b) and 9(c) show the distribution of the
lateral stresses and strains along the vertical axis at various load stages.
To investigate the size effect, the aforementioned calculations for the case
of a perfectly symmetric mesh have been repeated for geometrically similar
specimens of three different sizes in the ratio 1:2:4, the smallest specimen
having the height h = 61 = 540 mm. It is highly interesting, although
perhaps not surprising with respect to the knowledge from experiments,

that no significant size effect has been detected from the calculated results.
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that no significant size effect has been detected from the calculated results.
[In compression there is, however, the size effect of specimen length on
the postpeak softening slope, as shown experimentally by van Mier (1984)
and modeled by Bazant (1989b); see also Bazant and Cedolin (1991)
section 13.2) ’

The lack of size effect means that compression fracture cannot be driven
by the stored elastic energy that is refeased globally from the entire speci-
men. Rather, it must be driven by a local mechanism in a region of a fixed
size (depending on / but not on the specimen size) near the fracture front.
This mechanism must be approximately independent of the specimen shape
and boundaries, and thus involves no significant stress changes farther away
from the crack band front. The length of the zone of significant transverse
normal stress in Fig. 2(b) is approximately constant, independent of the
specimen size.

It may also be noted from Fig. 3(«) and (b) that the tendency toward
development of two symmetric inclined failure bands exists at the beginning
of the analysis of the perfectly symmetric specimen with sliding boundaries
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but is later overridden by the development of an asymmetric shear band.
In the specimen with nonsliding (bonded) boundaries, on the other hand,
symmetric inclined failure bands (shear bands) tend to deyelop a.lso, ex-
tending toward the specimen corners. The fact that the specimen v.vnh' non-
sliding boundaries does not exhibit any tendency to nonsymmetric fdlllure
bands is interesting and contradicts some previous views; this fact is probably
due to large transverse normal strains in the middle of the specimen. Thf(:jy
apparently override the tendency to nonsymmetric inclined failure bands
nforce symmetric response. )
angigs. 12(a)z(c) show thgo distribution of the relative volume_change ZV
(ev = €,/3) at the postpeak state (for both sliding and nonsliding bqund—
aries). The circular dots are plotted only for negative ey and their magnitude
is proportional to €,. It is interesting that, despite large transverse expan-
sions, the volumetric strains are negative almost everywhere, except in the
case of the nonsliding boundaries in which only slight positive volumetnc
strains are detected at the middle of the vertical sides. .
Figs. 12(d)~(f) show the distribution of the inclastic volume change (di-
latancy), defined as ¢}, = &, — o,/3K where oy = 0,/3 = mean stress
and K = elastic bulk modulus. In contrast to Figs. 12(a)-(c), the dc’)lts are
now plotted only for positive €} and their size is proportional to ey. V\l/(e
clearly see the dilatancy to dominate in the zones of axial splitting cracks
or within the shear bands. Thus, the term shear-dilatancy bands appears to
ropriate. _
beFarF())‘r)n tFl)xe calculated strain and stress fields, the cracking pattern of the
specimens with sliding and nonsliding boundaries can be reconstructed ba§e|d
on the analysis results shown in Figs. 5(a) and (c). The spacing of the densely
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distributed cracks cannot be obtained from the constitutive model. No doubt
it is governed mainly by the size of the dominant inhomogeneities in the
material.

The compression failure was previously investigated by a rather different
constitutive model, which was not very realistic for triaxial stress states: a
nonlocal version of the Drucker-Prager plasticity model with a degrading
yield limit (Droz and BaZant 1988). Like in the present study, it was found
that the response path of a perfectly symmetric specimen bifurcates, after
which either two crossing inclined shear bands may grow (path 1) or only
one band may grow while the other unloads (path 7). The asymmetric path
(path 2) was found to be the actual path, for both sliding and nonsliding
boundaries, and (in contrast to the present results), the difference between
the symmetric and nonsymmetric responses was found more pronounced
for the case of bonded platens. Due to a different (and more realistic)
constitutive model, which gives a much better representation of inelastic
volume dilatancy, the present analysis indicates the nonsymmetric compo-
nent of the failure mode to occur only for specimens with sliding boundaries.

CONCLUSIONS

1. The previously developed nonlocal microplane model with normal micro-
plane strains that are split into deviatoric and volumetric components appears
to be capable of modeling axial splitting cracks and shear band failure of quasi-
brittle materials in compression.

2. The most important characteristic of compression failures in quasibrittle
materials may be described in the continuum sense as tensile strain softening
in the transverse direction (increase of transverse strain at decreasing transverse
stress). In reality, this strain softening is manifested as damage by densely
distributed axial splitting cracks. According to the present results, the axial
splitting cracks appear to be caused by transverse expansion in the fracture
process zone, which puts the region in front of the ¢xpansion zone into transverse
tension. The axial splitting cracks organize themselves into inclined shear band
propagating sideways, rather than in the direction of the cracks.

3. For specimens with perfectly sliding platens, the primary path that cor-
responds to symmetric deformation bifurcates, and the actual path that occurs
corresponds to asymmetric deformation with one dominant inclined failure band.
Bifurcation analysis can be skipped and the asymmetric deformation obtained
directly if a slight asymmetry is introduced into the computational model. With-
out such artificial asymmetry the bifurcation is indicated by the vanishing of the
smallest eigenvalue of the tangential stiffness matrix of the structure. The post-
bifurcation states are stable because the smallest eigenvalue of the symmetric
part of the tangential stiffness matrix of the structure remains positive (under
displacement-controlled loading).

4. For specimens bonded to rigid loading platens, no bifurcation is found and
the failure mode involves two symmetric inclined shear bands that consist of
smeared axial splitting cracks (transverse expansion with strain softening).

5. Despite large transverse expansion, the relative volume change for all the
analyzed cases is negative, except for 4 small zone at the middle of the vertical
sides in a specimen with bonded rigid platens. On the other hand, the inelastic
part of the volume change (i.e., dilatancy) is positive over a large part of the
specimen. The shear bands represent zoues of large inelastic dilatancy, and not

554



only large shear strains; thus they might be more aptly called “‘shear-dilatancy™
bands (or *‘shear-expansion’’ bands).

6. It is most interesting that the present model reveals no appreciable size
effect on the nominal stress at maximum load when geometrically similar spec-
imens of different sizes (with the same characteristic length I) are compared.
This means that (1) The mechanism that drives the axial splitting must be local,
coupled to the width of the shear band, which is about the same for different
specimen sizes; and (2) no significant release of stored energy from the specimen
as a whole into the cracking front takes place.

7. In contrast to tensile fracture, a successtul modeling of compression failures
apparently necessitates a constitutive model that gives not only correct shear
deformations but also correct transverse expansions and volume dilatancy under
complex triaxial stress states. The microplane model appears to satisfy this
requirement.
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