MICROPLANE MODEL FOR CycCLIC TRIAXIAL
BEHAVIOR OF CONCRETE

By Jodko Oibolt' and Zdenék P. Bazant,? Fellow, ASCE

AesTRACT: A recently proposed microplane model, which describes not only
cracking but also general nonlinear triaxial response, is extended to cyclic loading
and the rate effect, and is implemented in a three-dimensional finite element code.
The material properties are characterized separately on planes of various orien-
tations within the material, called the microplanes, on which no tensorial invariance
requirements need to be observed. The state of each microplane is described by
normal deviatoric and volumetric strains, and by shear strain. To avoid spurious
localization instabilities due to strain softening and the consequent mesh-sensitivity
problems, the concept of nonlocal continuum with local strain is adopted. The rate
effect is introduced by combining the damage model on each microplanc with the
Maxweli rheologic model. The results of finite element analysis of some basic cases
on the material level, as well as of plain concrete specimens loaded in bending and
compression, are demonstrated. The calculated responses yield hysteretic loops of
an approximately correct area and correct initial unloading slope. For shear, the
calculated loops exhibit the well-known pinched form.

INTRODUCTION

The microplane model, formulated for concrete in BaZant (1984) and
Bazant and Oh (1985), represents a constitutive model in which the material
is characterized by a relation between the stress and strain components on
planes of various orientations, which may be imagined to represent the
damage planes or weak planes in the microstructure, such as the contact
layers between aggregate pieces in concrete. The history of the general
approach underlying the microplane model (Taylor 1938; Batdorf and Bu-
dianski 1949; Zienkiewicz and Pande 1977) has been given in detail earlier
[e.g., BaZant and Oh (1985) and Bazant and Prat (1988)]. The latest version
of the microplane model, developed by BaZant and Prat (1988), was shown
capable of predicting the behavior of concrete in monotonic loading for a
broad range of stress and strain conditions using only a few material pa-
rameters.

The nonlocal continuum concept (Eringen 1965, 1966; Kroner 1968;
Krumhansi 1968; Eringen and Edelen 1972) whose adaptation in the form
of nonlocal damage (Pijaudier-Cabot and Bazant 1987; BaZzant and Pijau-
dier-Cabot 1988) has proven to provide an effective localization limiter,
prevent spurious mesh sensitivity, and allow correct modeling of the size
effect (Bazant and Lin 1988), has been combined with the microplane model
in Bazant and Ozbolt (1990b). This provided a general material model
capable of representing both nonlinear triaxial behavior and fracture. In
conjunction with the nonlocal concept, this model was implemented in a
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finite element code. Its capabilities of realistically predicting the structural
response were demonstrated in a number of numerical examples.

In the present work [based on a recent work by BaZant and Ozbolt
(1990a)], the microplane model from Bazant and Prat (1988) is improved
and is also extended to cyclic loading, as well as to the rate effect, which
1s important for cyclic loading. A kinematic constraint is used, i.e., the total
strain vector on each microplane is assumed to be the resolved component
of the macroscopic strain tensor. The microplane strains are split into vol-
umetric, deviatoric, and shear components. The shear strain vector is further
split into two orthogonal components. For each microplane strain compo-
nent at each integration point of each finite element, the main characteristics
of the load history are stored during the calculations. The numerical inte-
gration of the time step is based on the previously proposed exponential
algorithm. The new model is implemented in a three-dimensional finite
element code. [A similar but in some respects different version of a micro-
plane model for cyclic loading is being developed in a parallel project by
Hasegawa and Bazant (1991).]

To demonstrate the capability of the present generalization of the mi-
croplane model in simulating the cyclic and rate effects in plain concrete,
the results of several numerical studies are presented, including: cycling in
tension, cycling in compression, and cycling in shear, all calculated only for
a small material element. Moreover, cyclic finite element analysis including
the rate effect is performed for the cases of the three-point bending of a
beam and the uniaxial compression test. The results of these numerical
analyses are compared with test results.

Review oF MICROPLANE MODEL

Basic Hypotheses and Strain Components

Hypothesis 1

Each microplane resists both the normal and shear strains, which are
assumed to represent the resolved components of the macroscopic strain
tensor ¢,

This hypothesis represents a kinematic constraint and yields the relations
[see Bazant and Prat (1988)]:

ST (la)
EN T LB oot e (1b)
ED = MIUE; = €Y vttt (1c)
Er=guM+ K (2a)
Epp = MET = MUIES i i e (2b)
ex = Ker = ke, o (2¢c)

where latin lowercase subscripts refer to Cartesian coordinates x, (i = 1, 2,
3); € = the strain vector on a microplane whose unit normal is n;; ¢ =
magnitude of €; €, = the tangential vector component of €; m and k =
unit coordinate vectors defined in advance for each microplane [Fig. 1{a)};
£y and e, = in-plane components of vector € in the direction of vectors
m and k; and €5 = the vector of the normal strain component of € on the
microplane [Fig. 1(a)]. The normal strain vector is separated into volumetric
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FIG. 1, (a) Stress and Strain Components on Each Microplane; (b) Maxwell Rheo-
logical Model with Damage for Each Microplane Strain Component; (c) Kelvin Type
of Rheological Model; (d) Loading Cases Analyzed

strain £, = €,/3 and deviatoric strain e, = €5 — €,. In contrast to the
originally proposed model (BaZant and Prat 1988), the in-plane shear strain
vector €7 is split into two in-plane components (e, and &4). In Bazant and
Prat’s original version of the general microplane model, the shear compo-
nent €, has been characterized by its magnitude e, (which is always non-
negative) and the corresponding tangential stress vector ¢ has been con-
sidered to be always parallel to €. That simplifying assumption, which is
the simplest possible, seems adequate for the monotonic loading or nearly
monotonic loading, and in a crude manner perhaps also for the first un-
loading. But it is obviously inadequate for cyclic loading, one reason being
that always €, = 0 according to that assumption, and another that o, and
€7 can obviously become nonparallel. The choice of coordinate vector m
within the microplane is arbitrary (although, once chosen, vector m must
be kept fixed). The other coordinate vector k is then obtained as k = m
x n [Fig. 1(a)]. To minimize directional bias, the directions of microplane
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shear strain components are chosen as follows: for the first microplane, m
1 z, my = 0; for the second, m L x, m; = 0; for the third, m L y; m, =
0, etc. This achieves that various m-directions are represented nearly evenly,
as required by coordinate frame indifference. (Better, one could generate
the directions of m within each microplane randomly.)

Hypothesis 2 :

The response on each microplane is assumed to depend on the mean
lateral strain g, , which is approximately equivalent to assuming that it de-
pends on the volumetric strain e, = £,,/3 (aside from ey and £,). (This
feature was found to be necessary for modeling triaxial test data for very
high confining pressures, but not other data.)

Hypothesis 3

The stress-strain curves of each microplane are assumed to be path-in-
dependent as long as there is no unloading on this microplane. During
unloading and reloading, which is defined separately on each microplane,
the curve of stress difference versus strain difference from the state at the
start of unloading or reloading is also assumed to be path-independent.

Thus, all the macroscopic path-dependence is produced by various com-
binations of loading and unloading on various microplanes. It may be noted
that some microplanes may get unloaded even for macroscopically mono-
tonic or virgin loading, thus making the response path-dependent. The
number of possible macroscopic path directions is enormous (for 21 micro-
planes there are 2*! possible tantential stiffness matrices in each loading
step, due to all possible combinations of loading and unloading).

Hypothesis 4

The volumetric and deviatoric responses on each microplane are assumed
to be mutually independent. (This, of course, greatly simplifies data fitting
and was shown to suffice to fit each test data set considered.) However,
shear components are assumed to be dependent on volumetric strain in the
case of volumetric compression. This was introduced since otherwise the
response of concrete in the case of compression with high lateral confinement
would not be possible to predict.

Microplane Stress-Strain Relations

In the case of virgin loading, the behavior for each microplane strain
component is described, according to the foregoing hypotheses, by path-
independent total stress-strain relations of the form:

Oy = Fu(ey) oo (3a)
Op = Fp(Ep) o e e (3b)
Or = Fo€a) oo e (3¢c)
Ok = Frlx) o e (3d)

For two reasons, namely representation of unloading and application of the
nonlocal damage concept, it is convenient to cast the total stress-strain
relations in the form of continuum damage mechanics:

' Oy = Cvev ................................................ (4a)



Opg = CMEM  «vvnvenn et (40)
Oox = Cxex v cvinenennnn, G (4d)
in which, except for volumetric compression

Cy = CYL — By) oiirniiiei e (5a)
Cp = CBH(1 = @p) tvvrvmeenere it (5b)
Ca = CU(1 = 0ar) oot (5¢)
Cr = CU1 — ®k)  coreii e (5d)

where C,, Cp, Cu, and Cy represent the secant moduli; C, = Fy(ev)/ey,
CD = FD(ED)/£D9 CM = FM(EM)IEM, CK = FK(EK)IEK; and C(‘)/, C%, Cg',
CY are the initial values of Cy, Cp, Cy, and Cx; and wy, 0p, @y, and wg
are the volumetric damage, deviatoric damage, and shear damage on the
microplane level. The secant shear moduli C, and C must be defined by
the same functions of the corresponding shear strain components. The inital
shear moduli for both shear components are equal for both directions,
CY = C%. Best fits of selected typical test data for concrete have been
obtained using the following approximation for virgin loading:

€ m
forey, =0:  w, =1~ exp [—(-e—;’) ] ...................... (6)

e m
fore, =0: wp=1-—exp (— ?’13 ) ..................... (7a)
€ n
fore, <0:  wop=1-exp (— ;2‘3 ) ...................... (7b)
, k
mM=1—exp(-%‘—') ................................... (8a)
5
k
mK=1—exp(— %’5 ) ................................... (8b)
5

in which e; = e;if 8, = 0, and &5 = €; — €,8y <0, where ¢,, &, €3, €5, &5,
m, n, and k are empirical material constants. The dependence of e; on the
volumetric strain &, reflects internal friction and represents an additional
kinematic constraint of scalar type.

" In the volumetric behavior, there is no damage (w, = 0) and the response
for virgin loading is described by:

Ey

—-p
)
a

fore, < 0: C, =C% [(1 +

where a, b, p, and q are empirical constants.
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GENERALIZATION TO UNLOADING, RELOADING, AND CycLIC LOADING

In the previous work (Bazant and Prat 1988), which was focused on
monotonic loading, the rule for unloading was very simple, but it was pos-
sible to represent only the first unloading, and even that was with consid-
erable errors compared to experiments. To model unloading, reloading, and
cycling loading in general, and do so even for arbitrary triaxial stress states,
more complex rules on the microplane level are needed. After much ex-
perimentation, the following unloading-reloading rules, which are different
for each microplane strain component, have been chosen and verified.

In contrast to virgin loading, the stress-strain relations must be written
in the incremental form:

Aoy = Cudey oot e e (10a)
dop = CpdEp oo (10b)
doy = Cudey, oo e e (10¢)
dog = Cudeg oo e (104)

where Cy,, Cp, Cy, and Cg represent unloading-reloading tangent moduli.
They are defined for each microplane component as follows (See Fig. 2):

g

C=Co% 4+ (1 = @)= i ettt (11a)
€ — 81

fore > e,e, = ¢, — EC% + B =€) i (11b)

for e < g,; (1 =0) e (11¢)

where o, and ¢, denote the positive or negative peak stress and the cor-
responding strain for each microplane component, taking values o, €
andg,, ¢, for the positive and negative peaks; and o and B are empiricialfy
chosen constants lying between 0 and 1. The unloading-reloading rules for
tension (positive) and compression (negative), given separately for each
microplane component, are defined graphically in Fig. 2. In contrast to the
theory of plasticity, such simple rules suffice because we deal with mutually
independent variables rather than tensors (as in plasticity or continuum
damage mechanics). At each microplane, the rules for &y, €, £, €1 are
independent of each other and also of the rules for the other microplanes
at the same material point.
The virgin loading for each microplane strain component e occurs if

eAe = 0and (e — €™%)(e — ™M) = 0 ..\ooeiiiiiit ., 12)

where £™** and £™" are the maximum and minimum values of ¢ that have
occurred so far; otherwise unloading or reloading takes place.

The response curves shown later in the figure provide justification of the
foregoing rules.

INCREMENTAL MACROSCOPIC STRESS-STRAIN RELATIONS

Incremental loading analysis requires the total stress-strain relations [(3)]
to be diﬁerentiated; do'y = CVdEV + eVdCV) dO’D = CDdED + EDdCD,
ch = CMdEM + EMdCM, and dO'K = CKdGK + SKdCK. For iterative
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FIG. 2. Cyclic Rules tor Microplane Strain Components: (a) Volumetric Tension-
Compression; (b) Volumetric Compression-Tension

solution, it may be convenient to introduce incremental moduli ¢, ¢ s Cars
and Cy, which may be equal or larger than C,, C,, Cy, and Cy. Then the
incremental stress-strain relation has the form:

Aoy = Coley — AGY oo (13q)
Bop = Cplep — ATl o (13b)
Doy = Culey — AGu oo (13¢)
Aok = Crlex — AGk oo (13d)
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FIG. 2. Cyclic Rules for Microplane Strain Components: (c) Deviatoric; (d) Shear
in which ‘
Ao, = =g AC, + (Cy — CAEY oo (14a)
A6 = —epACp, + (Cp = Cp)Aep ovveiniaiiii (14b)
Ad, = —e,ACy + (Cyy — Ca)AEpr oo (14¢)
Aol = —e,ACKk + (Cx = CR)AEk v oeieeiinii i (14d)
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Ady, Ao, Adly, and Ao’ are formally treated as inelastic stress increments
in a step-by-step iterative solution.

The same as shown in previous work (Bazant and Ozbolt 1990), equilib-
rium of stresses between the micro- and macrolevels may be approximately
enforced by the virtual work equation:

%’EAU,'I'SEH =2 L (AUNSGN + AO'MSEM + AO'KSSK)F(n) as ....... (15)

where n = the unit vectors normal to the microplanes; and &¢;, dey, deyy,
and 8¢, = the small variations on the macro- and microlevels. The left-
hand side of (15) represents the macroscopic work done in a unit sphere of
the material, while the right-hand side represents the microscopic work done
over the surface of the same sphere. The factor 2 is due to the fact that the
integral needs to extend only over a hemisphere surface, S. F(n) is a weight
function of the normal directions n that can introduce anisotropy of the
material in its initial state. For concrete we assume F(n) = 1, which implies
initial isotropy. Substituting (1), (2), (6)—(8), and (12), one can get from
(15) the incremental macroscopic stress-strain relation:

Aoy = Gy, — AGY o (16)
in which
Cijrs = %f [n,-njn,nsco + ‘;’n,‘njakm(c‘/ - CD) + %(m,m, + m,-n;)

< (m,n, + mn,)Cy, + %(k,n,- + k;n;)(kn, + k,n,)CK] F(n)ds ....(17)

Aoy = 37‘" L [n,-n,-(Ac"’, + Aop) + % (mn; + m;n;) Ao’y
+ %(k,n, + k) Aa’k] Fm)dS .......... BT (18)

C;s = the macroscopic incremental material stiffness tensor, and Acj; =
the associated macroscopic inelastic stress increments. .

. Tensor C;,, can have different values depending on the choice of ¢y, Cp,
Cy, and Cy. There are three basic choices:

1. Setting C, = C,, ¢y, = Cp, €y = Cyy, and Gy = Ci for all integration
points, the resulting C,;, represent the secant stiffness tensor.

2. Setting C,, = CY, Cp = CY, Cyy = C%y, and Cx = C%, tensor C;,,,, must
be equal to the isotropic tensor C,,, = (K — 2G/3) §;8,,, + G(8,8;, + 8,,8x)
where K, G = initial elastic bulk and shear moduli; and K = E/3(1 — 2v)
where E = Young’s modulus and v = Poisson’s ratio.

3. with &, = ¢, €, = €y, €, = C4, and Cx = C%, where Ci, C5,
C', and C¥ represent microplane tangent stiffness moduli, and C;, represent
the tangent stiffness tensor.

Computational efficiency is usually the highest for the second choice, for
the following reasons: (1) Tensor C,;, is always the same, and so the struc-
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tural stiffness matrix need not be to recalculated at each iteration of each
loading step; (2) all the inelastic effects are represented by Aoy, a tensor
of fewer components than C;,, (the iterative procedure in this case coincides
with the well-known initial stiffness method); and (3) due to the fact that
tensor Cj,, is nonsymmetric, the use of the first or third approach would
require a nonsymmetric equation system solver, which is rather demanding
for computer time [it has been suggested that the use of a symmetric equation
solver may be rendered possible by replacing in (16) C;,,Ae,, with C;,Ae,,
where Cj,, = (Cj, + C,;)/2 is the symmetric part of Cy,,, and including
the term (C;,, — Cj,;)Ae, in the expression for the Agj, but this usually
leads to poor convergence].

The integrals in (15), (17), and (18) are evaluated numerically and the
same integration scheme is used as described by BaZant and OzZbolt (1990b).

The material parameter values used in the calculations are the same as
described by Bazant and Prat (1988), except parameter e,, which is here a
function of the volumetric strain rather than volumetric stress, and two
additional constants a and B for each microplane component. Approxi-
mately optimal values of « and 8 have been obtained by fitting the set of
cyclic test data. Computational experience using the present microplane
model indicates that one may consider a and B to be constant for all concrete

types.

RATE EFFECT

From experimental evidence it is well known that concrete stiffness, strength,
and ductility are sensitive to the deformation rate. This is known as the rate
effect. This effect is no doubt caused by creep in the bulk test specimen as
well as time-dependent rupture of bonds in the fracture process zone, which
both cause stress relaxation. The simplest model for relaxation is the Max-
well’s spring dashpot model, which we adopt for each of the microplane
strain components e, €5, €4, and e, (Fig. 1b). Dropping for the moment
the subscripts V, D, M, and K, the stress-strain relation for each microplane
component may be written as

where € = the total microplane strain including the flow strain (viscous or
creep), the superimposed dots denote time derivatives, C, = the tangent
modulus for the microplane component, and p = a material parameter
representing the relaxation time, whose value is assumed to be constant and
the same for all microplane components (and of course for all microplane
directions). Since the microplane stress-strain relations [(4)] are in a secant
form, it is convenient to rewrite (19) also in the secant form:

o

o O 20
6 = C¢ N (20)
in which the following notations are introduced:
1 1 AC ¢
N = ‘—) — € A_E '(;_ .......................................... (21(1)
C = (C + & —A—£> ........................................ (21b)

Ae



. Ao . £
G =7 e VIR R R L TR LR TR LR R ERRRER (21¢c)
Here A = an apparent relaxation time and C = the secant modulus for the
microplane strain component. *

The present case of a simple Maxwell unit with a single relaxation time
p is no doubt a simplification. We must expect that in reality the response
is characterized by the Maxwell chain in which each unit has a different
relaxation time and is described by an equation similar to (19). But such a
more sophisticated model would be needed only if several orders of mag-
nitude of the deformation rates were considered, which is not the case here.

Another possibility is to introduce a rheological model consisting of an
elastic spring coupled in parallel with the damage and viscous units [Fig.
1(c)]. According to the current studies (Northwestern and Stuttgart univer-
sities) this model seems to be capable of predicting the behavior of the
material over a very broad range of the loading rates. However, further
work is needed in order to clarify whether this rheological model, coupled
together with the microplane constitutive law, is really able to cover the
broad range of loading rates.

EXPONENTIAL ALGORITHM FOR LOAD OR TIME STEP

Based on the kinematic constraint [(1)], the known macrostrains €, and
their known increments Ae,,, can be used in every iteration of load or time
step number r to calculate the strains and strain increments on each micro-
plane. Then, the known values of ey = €y + €p, £y, €, Aey = Agy +
Aep, Agy,, and Aey, are used to calculate the stresses on each microplane
by solving (13) or (20) with (21). Each of these equations could be solved
by using a forward difference approximation or central difference approx-
imation. However, such an approximation is often unstable when the stress-
strain relation has a negative slope (strain softening), and, even if it remains
stable, a large error is usually accumulated, with the result that the stress-
strain curve obtained does not end at very large strain exactly at zero stress.

These drawbacks can be eliminated by the so-called exponential algo-
rithm, initially developed for aging creep of concrete (Bazant 1971; BaZant
and Wu 1974) and later extended to creep with strain softening (Bazant and
Chern 1985; BaZant and OZbolt 1990b). Here we extend the exponential
algorithm to the microplane mode! with the rate effect. The basic principle
that endows the exponential algorithm with high accuracy is that the inte-
gration formula is the exact solution of the differential equation [(20)] for
the loading step under the assumption that the material properties, the loads,
and the prescribed rates are constant in time.

For the rth time step, At, = t,,, — ¢, (20) can be rewritten in the form:

¢+l;=Cs .............................................. (22)

where C = (C, + C,.,)/2 is considered to be constant during the step. A
is also considered to be constant during the step, and for best accuracy is
evaluated from the average values of € and o in the step.

With constant A and C, we can integrate (22) exactly from time ¢, to time
t, ., using the same procedure as BaZzant and Ozbolt (1990b) [(20)-(25)]
did for the time-independent case. The exact solution of (20) is o(f) = Ae~*
+ C\é where A = an integration constant and £ = (¢ — ¢,)/\. From the
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initial condition ¢ = o, at ¢ = ¢, it follows that o(t) = o,e7¢
nitial , - =0e*+ (1~
e~ ¥)CMAc. For the end of the time step,t=t,, =1 + At, we thus( get

_ Ae
1 = O, + = Az - p—AZ _
[0 Y o Ao ag,e + (1 e-4 )C .................. (23)

in which we denote Az = A¢/\ = Atlp — AC/C. Eq. (23) can be rewritte
i A . Eq. n
in the form of a pseudoelastic stress-strain relation on )the level of each
microplane stress component

Ao = DAe — A0 ... (24)
where
_C(1 — e
D = Rr Tt (25a)
Ad” = DA” . (25b)
"o —Az g,
Ae —(l—eA)-b- ....................................... (25¢)

DAe = Ao,;; and Ac,, and Ao” = the elastic and inelastic stress increments.
Note that in the sp;cial case when there is no rate effect, p — o, (24) is
the same as for the time-independent microplane model (Bazant and Ozbolt
1990b). With subscylpts V, D, M, and K attached, the foregoing formulas
are used to determine the stress increments on each microplane, for both
normal and tangential directions.

Note that in evaluating the secant moduli and damage [(3)-(11)], one
must replace ¢, at time ¢, with the instantaneous (i.e., time-independent)
part of the total strain, i.e., with

r—1
ginst = g — 2}1 e (26)

where Ae{™P = the time-dependent (viscous) parts of the microplane strain
increments in the previous steps (s = 1,2, ... ,r — 1). Based directly on
(19), one could here use Aeg™e? = (0/p)At, with o and p taken as the average
values in the step At.. But it is more accurate to express Aei™*P according
to the exponential algorithm modified by deleting the instantaneous part
from (19)-(24). Thus, in analogy with (24)-(25)

creep . - ) A
Aeseer = (1 — ¢ Ae)% (Ag = F’) ........................ @7)

The values of the secant moduli and damage are then best calculated from
(3)-(11) by replacing « in the rth time step with (eirst + ginst)/2,

The reason the foregoing algorithm is called exponential is that its formula
characteristically involves an exponential function.

Another possible algorithm may be based on the total stress-strain relation
[(4)]. In that case, the actual relaxation time p is used instead of X in (21)—
(24), and the inelastic stress increments then are Ao” = (1-e2)g, +
F(e™) ~ (eim/e™) F(e™) and D = C(1 ~ e-%€)/A¢. ’

On the macrolevel, the stress tensor increments are determined by nu-
merical integration over the unit hemisphere (using 21-point numerical in-
tegration formula, in the present work), as already described.
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FIG. 3. Calculated Concrete Response under: (a) Monotonic Uniaxial Tension
with Ditferent Strain; (b) Monotonic Uniaxial Compression with Different Rates

NoNLOCAL GENERALIZATION OF MICROPLANE MODEL

In the classical, local continuum analysis by finite element methpd, strain
localization leads to problems of instability, inobjectivity, and spurious mesh
sensitivity (BaZant 1976; BaZant and Pijaudier-Cabot 1987). These problems
can be circumvented by adopting the nonlocal continuum approach. An
effective nonlocal concept is that recently proposed by BaZant and Pijaudier-
Cabot (1987) in which only the variables associated with damage are non-
local. This concept is implemented in the present cyclic microplane model.
The method of implementation is basically the same as that already described
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FIG. 4. Calculated Concrete Behavior in Uniaxial Cyclic Tension with Three Di-
ferent Rates

by Bazant and Ozbolt (1990) for the case without rate effect. That paper
also describes an effective numerical iterative algorithm for the loading
steps, which has been used again in the present study. The basic principle
is that the elastic part of stress increments is calculated from the local strains
and the remaining (inelastic) part of the stress increments is calculated from
the nonlocal (spatially averaged) strains.

It should be noted that the present nonlocal cyclic microplane model
yields nonsymmetric tangent stiffness matrix. Symmetrizing this matrix usu-
ally results in poor and uncertain convergence. Using constant stiffness
method, one deals only with the elastic stiffness matrix, which is symmetric.
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FIG. 5. Calculated Concrete Behavior in Uniaxial Cyclic Compression with Two
Different Rates

The convergence then becomes reliable, but often rather slow. To improve
the numerical effectiveness, the use of some nonsymmetric equation system
solver might be useful.

Another point that calls for further study is the implementation of the
distinction between local response (elastic stress increments) and nonlocal
response (inelastic stress decrements). Due to the fact that the relative
proportion of these two components changes, after many cycles it may
happen that the middle flat portion of a pinched loop in shear loading
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becomes displaced vertically from the strain axis, which is nonrealistic. Some
refined rule would have to be introduced to prevent this.

NUMERICAL EXAMPLES

To demonstrate the capability of the present cyclic microplane model in
predicting the cyclic behavior of concrete including the rate effect, numerical
simulations for different stress-strain histories and different rates are carried
out. The behavior of the model is first demonstrated on the material level,
using only one uniformly strained finite element, loaded in three different
ways as shown in Fig. 1(d). Cyclic behavior of the three-point-bend and
compression specimens in plane stress is also simulated. It should be noted
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FIG. 7. Comparison between Test Data and Calculated Results for Cyclic Uniaxial
Compression

that the plane stress state is a relatively more difficult state to simulate with
the microplane model; the microplane model is a fully three-dimensional
model and for the case of plane-stress finite elements the lateral strains
(out-of-plane strains) need to be calculated from the condition that the
lateral stresses are zero.

The basic material parameters used are: initial Young’s modulus E° =
20,000.MPa, Poisson’s ratio v = 0.18, and relaxation time p = 0.01 sec.
The microplane material parameters are chosen as follows: a = 0.005, b
= 0.043,p = 0.75, ¢ = 2.00, ¢, = 0.00007, e, = 0.0020, e, = 0.0020, ¢,
= 9., m = 0.85,n = 2.25, and k = 2.25. These values are the same as in
Bazant and Prat (1988), except m, n, and k (which have been adjusted such
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that the descending stress-strain curves would become steeper and would
match the test results). The load was introduced by prescribing the dis-
placement increases corresponding to different chosen strain rates in the
finite element; ¢ — o, ¢ = 0.05s~%, and ¢ = 0.025 s~

Fig. 3 shows the stress-strain curves obtained for the cases of uniaxial
monotonic tension and compression, with different prescribed strain rates.
Similar calculations, using again different strain rates, are carried out for
the case of cyclic tension (Fig. 4), cyclic compression (Fig. 5), and cyclic
shear (Fig. 6). Fig. 7 shows the comparison between the uniaxial cyclic test
results of Sinha et al. (1964) and the present calculations.

The present results roughly agree with the general picture known from
tests. This indicates that the present cyclic microplane model may be ex-
pected to realistically describe the cyclic behavior of concrete in diverse
situations (van Mier 1984; Reinhardt and Cornelissen 1984), using the same
material parameters for all situations.

Furthermore, the results indicate that the strain rate has a significant
influence on the shape of the stress-strain curves. If the rate of loading
decreases, the peak stress also decreases while the postpeak descending
stress-strain curve becomes less steep. The present model can predict the
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drop of stresses after repeated unloading-reloading cycles in postpeak strain
softening. As will be demonstrated later, this effect is significant when
simulating the structural behavior.

To demonstrate finite element applications, the behavior of unnotched
bending [Fig. 8(a)] and compression [Fig. 8(b)] specimens is analyzed. Four-
node isoparametric quadrilateral plane-stress finite elements with four in-
tegration points are used. In both cases, symmetric response is assumed
(Fig. 8). The material parameters are the same as in the previous examples,
except that ¢, = 0.00004 and m = 0.5 in the case of the notched three-
point bend specimen (due to reduced tensile strength). )

Fig. 9(a) shows the load-displacement curve obtained for the bending
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specimen. The specimen is loaded prescribing displacement increments at
the loaded node (see Fig. 8). The displacement rate is & = 0.0625 mm s-!.
One cycle is performed prior to the peak load, and the next cycle late in
the softening range. After the second cycle strength decreases, i.e., the
material becomes damaged, and after repeated loading a significant decrease
of strength is observed.

In the subsequent calculations of the same specimen, one finite element
at the bottom of the specimen is assumed to be weaker, having a tensile
strength limit 10% lower than the other elements (the shaded element in
Fig. 8). The specimen is loaded repeatedly up to 94% of the peak load
obtained for monotonic loading. This is followed by cyclic loading between
0 and 94% of this peak load. The loading consists of prescribing force F at
the specimen top with the rate of increase dF/dt = 5.0 kNs-!. The results
indicate [Fig. 9(b)] a significant increase of the displacements due to material
damage. Material damage due to cycling causes failure to occur already
after the third cycle, just before reaching the monotonic descending branch
[see Fig. 9(b)].

Fig. 10 shows the load-displacement cyclic response of a cubic compres-
sion specimen, subjected to controlled displacement u at the top of the
specimen increasing at the rate ¥ = 0.025 mm s-!. To simulate bonded
(nonsliding) rigid platens at the top and bottom of the specimen, the hor-
izontal displacements of the top nodes in the finite element mesh are fixed
as zero. The calculated load-displacement curve indicates large residual
stresses and strains, and a significant decrease of the concrete strength after
reloading. These effects are stronger than those obtained by using only one
finite element. .

Generally, the calculated hysteretic loops in the preceding figures are
wider when the rate effect is taken into account, and have approximately
the correct area (as observed in tests of this type). In agreement with lab-
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oratory observations, the unloading diagram begins with a steep slope that
can even be steeper than the initial elastic slope (this is due to stress relax-
ation). For shear cycling, the calculated hysteretic loops exhibit the char-
acteristic pinched form with an almost zero slope near the crossing of the
strain axis, also known from experiments.

The aim of the present examples was to demonstrate that the present
model is able to qualitatively predict the behavior of concrete at different
rates of loading and for different stress-strain situations. Further work is
needed in order to quantitatively verify the model by fitting a number of
tests known from the literature.

CoONCLUSIONS

1. The present, fully three-dimensional cyclic microplane model appears ca-
pable of realistically describing the behavior of plain concrete under a broad
range of strain states and histories using the same material parameters. Together

with the nonlocal strain concept, the model may be expected to provide effective -

finite element description of the failure process in concrete structures under
rather general loading types and histories.

2. The rate effect can be implemented in the microplane model by combining
damage with the Maxwell rheologic model. The model is able to give an ap-
proximately correct hysteretic loop area and a steep initial unloading slope. For
shear, it exhibits the pinched form of hysteretic loops. Generally, increasing the
rate increases the concrete strength and the postpeak descending branch of the
stress-strain curve becomes steeper.

3. The examples indicate that the cyclic microplane model, together with
rate effect, predicts material damage due to repeated unloading-reloading cycles
quite realistically.
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