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Abstract. A recent formulation of the smeared-tip superposition method presented by BaZant [1], which itself was
a generalization and modification of an integral equation formulation with an asymptotic series solution derived by
Planas and Elices [2], is further improved, generalized and adapted to an efficient finite difference solution scheme.
A crack with bridging stresses is modeled as a superposition of infinitely many LEFM cracks with continuously
distributed (smeared) tips having infinitely small intensity factors. Knowledge of the stress intensity factor as a
function of the location of the crack tip along the crack path is all that is needed to obtain the load-displacement
relation. The solution is reduced to a singular integral equation for a function describing the components of applied
load associated with crack tips at various locations. The integral equation is complemented by an arbitrary relation
between the bridging stress and the crack opening displacement, which can be rate-independent or rate-dependent.
Furthermore, using the creep operator method, the equation is extended to aging linearly viscoelastic behavior in
the bulk of the specimen. The previously presented finite difference solution is improved and generalized in a form
that leads to a system of nonlinear algebraic equations, which can be solved by an optimization method. Application
of the smeared-tip method to the analysis of recent measurements of the size effect in three-point-bend fracture
specimens of different sizes is presented and a crack opening law that yields the main qualitative characteristics of
the test results, particularly an increase of brittleness with a decreasing loading rate, is presented.

1. Introduction

If the entire structure behaves linearly except for nonlinear behavior at the crack line, the load-
displacement relation can be calculated solely on the basis of knowing the stress intensity
factor as a function of the crack length. In recognition of this fact, a new method for nonlinear
fracture behavior with bridging stresses as well as the rate effect and creep was proposed in (1],
as an extension of an ingenious integral equation previously presented by Planas and Elices [2,
3]. This method can be applied to arbitrary nonlinear material behavior in the crack bridging
zone and to time-dependent behavior in this zone coupled with aging linearly viscoelastic
behavior in the rest of the structure.

In this method, the solution for a cohesive crack (crack with bridging stresses) is expressed
as a superposition of the exact solutions of linear elastic fracture mechanics (LEFM) for crack
tips at various locations along the crack line. The tips of these LEFM cracks are continuously
distributed (smeared) along the crack line. Their stress intensity factors are infinitely small
but their superposition yields a finite density of the stress intensity factor along the crack
line. While Planas and Elices [2, 3] used an asymptotic series expansion to solve the integral
equation resulting from the superposition of infinitely many LEFM cracks, a method of solving
more general integro-differential equations by means of the finite differences was presented
by BaZant [1]. Numerical applications though, have not been demonstrated.

The purpose of this paper is to present an improved version of the smeared-tip method and
demonstrate its application to rate-dependent fracture of concrete specimens exhibiting creep.
The improvement of the method will consist of

(1) using a different function for characterizing the density of LEFM cracks in a manner that
removes singularity at the initial crack (notch) tip, and
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(2) developing a more effective and more general finite difference formulation in which
the resulting system of nonlinear algebraic equations can be solved by an optimization
technique.

2. Linear ¢lastic fracture mechanics relations for a single crack

We need to begin by a brief exposition of the smeared-tip method from [1]. The basic relation
is the following well-known expression for the stress intensity factor K for a crack of length
s in a two-dimensional elastic structure (e.g. Broek {4])

_ Pk(n)
W’

P = applied load, L = length of the crack ligament, b = structure thickness, and k(n) =
nondimensional function of nondimensional coordinate 7 = s/L where s = coordinate of
the crack tip (Fig. 1a). We will restrict attention to mode I (opening mode) fracture, although
the present method could equally well be applied to mode II or III (shear) fracture. The
load-point displacement » may generally be calculated as (e.g. BaZant and Cedolin [5])
u = CoP + Py(n)/E'bor

K ey

_ Px(n)
u= E,b s (2)
with
S ) 1 K 2 4./
x(n) = Co+ 0(m), o) =2 [ k()P a, 3)

where Cy = CoE’'b, Cy = compliance when there is no crack; x(7) is a nondimensional
function, which can also be obtained by LEFM (linear elastic fracture mechanics), for example
by optimum fitting of the strain energy values obtained for different crack lengths with a linear
elastic finite element program; and E' = E = Young’s modulus, for the case of plane stress,
or E' = E/(1 — v)?, for the case of plane strain.

When the crack tip is at s, the LEFM solutions for the normal stress o across the crack
plane and the opening displacements v of points on the crack surfaces (representing half of
the crack width) have the general form

F
for n<E<l o=—5(E n), 4)
for 0<E<m v= 2V n) s
or — —lr] U—E,b (5,771 )

where £ = 2/L and z is the coordinate along the crack line (Fig. 1). The following approxi-
mations can be used for sufficiently small | £ — 7 |:

Vg, )= \/gk(n)\/n -, Q)

(6)
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Fig. 1. (a) LEFM stress and displacement distributions for a crack tip at = s; (b) Superposition of crack opening
profiles of many LEFM cracks of different lengths; and (c) Superposition of crack opening displacement and stress
distributions for two cracks.

(Fig. 1). When | £ — 7 | is not small, one has (for £ < 1) the asymptotic expansions

k(n)

—_— J— — 2 PECEY
S(é‘a 77) = [bO + 51(77)(5 77) + bZ(n)(’f 77) + ]\/F_—TI ) (8)
V(& 1) =lcot+ a(n)(n— &)+ ean)(n=&*+ - Jk(n)vn -, €)]
where by = 1/v/27, ¢g = /8/x7; bi(n), c1(n), b2(n) ,..., are nondimensional smooth

continuous functions which can be determined from LEFM (for example by optimum fitting
of (8) and (9) to finite element results).

3. Superposition of the fields of smeared crack tips

Let us now turn attention to nonlinear fracture mechanics of a cohesive line crack with a
nonlinear fracture process zone of nonzero length. The solid is still assumed to be elastic,
and the nonlinearity arises only from the relation between the crack bridging stress o and
the crack opening displacements v (the width of the opened crack is denoted as 2v). Now
the basic idea is that the opening profile v(z) of such a crack can be obtained as a sum of
the opening profiles of infinitely many LEFM cracks with tips at s that have infinitely small
stress intensity factors dK (s) = k(17)dP(s)/bv/L (where 7 = s/L). The tips of these cracks
(located at coordinates s) are continuously distributed (smeared) along the crack line (z is
also the crack length coordinate); see Fig. 1b, c.

Let P(n) = p(n)bL be the load corresponding to one LEFM crack whose crack tip has the
coordinate 7 = s/ L; p(n) represents the density of the loads with respect to the relative crack
tip coordinate » = s/L. Now a singularity of function p(7) needs to be taken into account
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in a manner that does not impair accuracy of numerical solutions. The solutions p(7n) must
evidently yicld K values that agree with the crack propagation criterion. Thus the value of
K is nearly constant for a sufficiently small interval near the tip of the notch in the initial
traction-free crack. For constant K, (1) indicates that P ~ 1/k(n). For very small 5 (near the
notch tip), k(n) ~ 7n'/2 (as LEFM solutions for various geometries confirm). Consequently,
we must have p(n) ~ 1~ 1/2 near the notch tip. So there is a singularity at n = 0 which cannot
be accurately captured in a finite difference scheme. Therefore, we set p(n) = f(n)//7 where
f(n) is an unknown function that is nonsingular, and then

f(m)
V1
The load contribution due to the crack tip located within an infinitesimal segment dn with a

center at coordinate 7 is dP = bLn~'/2f (n) dn (keep in mind that all these load contributions
d P are applied at the same point as the actual applied load P). By superposition,

P(n) =bL (10)

13
o(€) = /0 S(&, nyn~\/2f(n) dn, (11)

1
v(€) = %/& V€, mn~ "2 f(n) dn. (12)

To satisfy equilibrium, the sum of all the load components dP corresponding to all the
segments ds must be equal to the applied load P, i.e.

P=0bL / i 121 () dy (13)
| .

The load-point displacement corresponding to the crack tips located within segment ds cen-
tered at s is du = x(n)n~/2f(n)L/E'. Superposition of all these displacement contributions
(which all occur at the load application point) yields

L 1
u=g | Xt an, (14)

The meaning of (11-13) is basically equivalent to the equations presented by Planas and
Elices ([2] Eqns. (11-13)).

The foregoing formulation can be combined with an arbitrary nonlinear and time-dependent
relation between the crack bridging stress ¢ and the opening displacement v. The stress-
displacement law for the fracture process zone (Fig. 2) can be written in the following form:

o = F(v, ©). (15)

The superior dot denotes a partial derivative with respect to time ¢, and [’ is a given function
that characterizes the material and describes both the instantaneous nonlinear response and
the rate effect on fracture. Substitution of (11-12) into (15) now yields

¢ f(77’t) ;
/0»5’(5-, n)—ﬁ dn

P A O (U W A L ()|
-F[E, L vienEisan g [vie ntlan. 16)
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Fig. 2. Crack bridging stresses (cohesive stresses) and stress displacement relation.

This is a singular integro-differential equation for function f(7, t). If o(£) and v(£) were
known, then the unknown function f(¢, t) could be solved from this equation. But o(£) and
v(£) are unknown, and so (16), (14), (11) and (12) are coupled.

4. Method of solution by finite differences

Let us now consider a finite difference solution. Time ¢ is subdivided by discrete times
t, (r=1, 2,...)into small time steps At = t, — ¢,_1. The spatial coordinate £ is subdivided
by points §; = (¢ — 1)A¢ (i =1, 2,..., N + 1) into N small intervals A{ = 1/N (Fig. 3).
The second-order finite difference approximations for the stresses and displacements written
for the center points &4 (1/2) = & + %Af of intervals A¢ = &4 — & and for the middle of
time step At = ¢, — ¢,_; are:

_ 1 = )
Gl(1/2) = Ek(€1+(1/4))f1+(1/4) for i=1, (17

Fir(iy2) = 2VAES(Eivy2p Ervqyn) freqy) +

i—1

+A§Z {5(514- (1/2)) €J+(1/2))L(1/—2)—]
= NG

AE k(&rq/a) firasa

™

T fori=2,..., N, (18)

VEir(/4)

2 AL k(&+(3/4))fz+(3/4

3\/_ \/£z+(3/4)
+ Af Z V(§1+(1/2 £]+(1/2))—1/—)-] for i=1 yorsy N, (19)
V8it(1/2)

j=i+l

_ L
Vitr(1/2) = T

L

. 2 A8 5/0)A L a4
Vit(1/2) E'At

3vm \/ Gi+(3/4)

N
Af, |
+AE Y Vi, 5,,~+(1/2))—’i“—’2—’} fori=1,...,N,  (20)
=it E€i+(1/2)

+
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Fig. 3. Discrete subdivision of crack ligament and functions characterizing the distribution of crack opening
displacements and stresses along the crack line.

¥

where subscripts ¢ refer to discrete coordinates £;; &4 (1/4) = &+ %AE s ivarey = &Gt %3A§ ,
and

fivappy = 3(fi+ fir1),  fivqyay = $6Fi+ fir1)s  Firgpay = 5(Fi+3fi01), @21

A f denotes changes of f over the time interval A f. The overbars refer to the values at the
middle of the time step, i.e. at time t,_(1/2) = t, — %At, and A f denotes the increment over
the time step, that is

Fo=g3(F+ 70 Al = 506 + fiv) = 377+ £7D),
Afigapey = §(fi +3firn) = 171+ 355D, (22)

fi represents the unknown values at the end of the current time step (i.e. attime ¢, = t,_1+At),
and f["l represents the known values at the end of the preceding time step (i.e. at time ¢,_1 ).
Superscripts r for the end of the current time step are here omitted, and an overbar is equivalent
to superscript r — % It is understood that the sums are zero when the upper limit is less than
the lower limit of the sum. In deriving (17-19), the integrals in the near-tip and near-notch
regions have been integrated as follows

Eit(1/2) _
/é (&rqy2) — m) "2 dn = V2AE,

z

wWIN

it
/ (1= &ir1/2)" 2 dn = 2(1A)32
i+(1/2)

E14(1/2) _
T sam - an = (23)

Equation (15) must be satisfied for every point £; (1/2), which may be written as

®; = oirq/2) — Flvigy2), %isy2) =0 (G=1,..., N). (24)
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Equation (14) for the prescribed load-point displacement may be approximated in finite
difference form as

L N+1 f
Oy =7y |u—-—= eix(&)—=| =0, (25)
E! 12231 2 J \/6_]
where u and f; are the values at the end of the current time step (i.e. at time ¢,.); v is a chosen
scaling parameter introduced for numerical purposes; and c; represent the coefficients of the
numerical integration formula chosen to evaluate the integral in (14).
Equation (13) for load P at the end of the current time step (i.e. at time ¢,.) may be
approximated in finite difference form as
N fi
P =bLALY c¢;—L. (26)

If the value of displacement u at the end of the time step is prescribed, (24) and (25) represent
a system of NV + 1 nonlinear algebraic equations for the unknowns fi, fa,..., fn41. They
may be effectively solved by a standard computer library optimization subroutine for the
Levenberg-Marquardt algorithm, which minimizes the sum E{v +'<I>%. When the minimum
of zero is attained, ®; = --- = ®yy; = 0. Subroutines for calculating the values of
®1,..., Ny from fy ,..., fn41 based on (24), (25), (17-21) must be written, for being
called repeatedly by the optimization subroutine. The initial values of f; for the optimization
process must also be supplied.

In programming the subroutines that calculate functions ®;, one must take into account
that v;, (1/2) = O until the stress corresponding to v; +(1/2) for the first time reaches the limit
stress at which the crack opening begins. This is achieved by setting ®; = +' ;4 (1/2) until this
condition is reached (where v’ is a suitably chosen scaling parameter).

With arbitrary initial values, the optimization algorithm would not normally converge to
the correct solution, or the convergence would be very slow. However, correct and rapid
convergence can be easily achieved by using a small enough time step At and supplying to
the optimization algorithm, as the initial values, the values ff~!(i = 1,..., N 4 1) obtained
for the end of the preceding time step.

Another important feature is to specify a proper value of parameter v. If ¥ = 1 were used,
the values of ® i1 could differ from the average of the values of @, , ..., ®», by many orders
of magnitude depending on the choice of units of measurement. Then either ®3, +1 would be
negligible compared to 3 + - - - + ®%; or vice versa. The problem would be ill-conditioned,
the surface of Y¢? would be cylindrical, and the algorithm would not converge properly. To
achieve that ® ;| be of the same order of magnitude, one may set

v = fi/up, 27)
where f/ = tensile strength of the material and u,, = expected approximate value of  at the
peak load. Similarly, one may chose v/ = «.

5. Generalization to aging viscoelastic material

For materials such as concrete, we must model not only the rate effect in the fracture process
zone, but also creep in the entire structure. The stresses outside the fracture process zone may
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be assumed to be within the linear viscoelastic range. Then we may consider the stress-strain
relation for concrete to be of the form

()= B /0 I, ¢) do(t), 28)

where € and o are 6 x 1 column matrices of stress and strain components, B is a constant
6 X 6 matrix implementing the conditions of material isotropy, and J(¢, ¢') is the compliance
function representing the strain at age ¢ caused by a unit uniaxial stress acting from age ¢’ to
age t. In terms of discrete times #g, t1 ,..., ¢, (which do not have to be distributed uniformly
in time), we may approximate the history integral in (28) by a finite sum (see, e.g., BaZant

(6:

r 1g— i
€= BY Joglo" - o), Jrg =7 (b, LR, @9)
=1

where superscripts 7 and q refer to times ¢, and 2.
It may now be noted that the elastic stress-strain relation € = Bo / E’ can be transformed
into (29) by replacing 1/ E’ with the difference operator

)= 3l ) = (. (30)
g=1

The linear creep law now permits making this replacement in all the equations of the
aforementioned algorithm that contain 1/ E’. These are (19) and (20), and we notice that this
operator acts on the variables f;,(1/2) and f;;(3/4). Therefore, it is convenient to define the
creep-transformed variables

Gy = E L = ZJ«I (/2 ~ Fias)

v = E7 e = Z:IJT"’(’%(S/‘*) Ao oY
q=

The creep transforms of (19) and (20) may be written as follows

r—1 r
Bir(1/2) = r—(1/2) _ A§(3/2)k(§i+(3/4)) (g,-+(3/4)+gi+(3/4))+
B - 2+(1/2) \/g— 3ﬁ
i+(3/4)
r—1 r
LAE i V(72 Si+0172) Gik1/2) +gj+(1/2)J )
j=i+1 Véi+a/2 2
oy _ Lo 2 APy 3)

Vik(1/2) = Vip(172) = g

3\/— (g:+(3/4)'_g:.;(13/4))+
T VEi+(3/4)
N
|4 : » Sg
1A Y (§it(1/2)) Ei+(1/2))

(95+a1/2) — gr';11 2 )] ) (33)
j=itl V/E&i+(1/2) : +/2)
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where 3, (1 /) and 9, (1/2) now also represent creep transforms.

If we are solving the unknowns at time ¢,, all the values for times %, ¢ ,..., t,_; are
already known. Thus the system of N + 1 equations ®; = O contains N + 1 unknowns
f1 +--+s fhy1, and the values of ®; can be calculated from f7 ,..., N4y using (17),

(31), (32), (21), (24) and (25). Again, a subroutine to do this calculatlon must be provided
to the Levenberg-Marquardt optimization algorithm which minimizes £®2. So the solution
can proceed in time steps in the same manner as before. The values for time ¢,_; are used
as the initial values for the optimization algorithm that calculates the values at time t,.
The only difference is that all the values of fq+(1/2), f,+(3/4)’ gH_ 1/2),g1+(3/4), for times
q=0,1,..., r— 1 must now be stored in the computer memory and sums over these values
must be repeatedly calculated (while in absence of creep all the values prior to time ¢, can
be discarded).

It should be noted that the subdivision of time by ¢, need not be uniform. For the case of
constant load, the times steps ¢, — ¢,_; should be increased in a geometric progression (i.e.
so that they be constant in the log-time scale).

6. Application to nonlinear rate-dependent fracture tests of concrete

The smeared-tip superposition method represents an effective way to model the recent test
results of BaZant and Gettu [7], in which three-point-bend fracture specimens were tested
over a broad range of loading rates, characterized by time to peak ¢, which ranged from 1s
to 300,000 (this represents a range of over 5 orders of magnitude). The size effect method
(RILEM ([8]) has been used for determining the fracture energy of the material G ¢ and the
effective length of the fracture process zone ¢y, and particularly their dependence on the
loading rate. For the purpose of the size effect method, geometrically similar specimens of
three different sizes, with size ratios 1:2:4, have been tested for every loading rate. The
spec1mens were three-point-bend beams of depths d = 38, 76, 152 mm, span 2.5d and notch
depth 5d. The details of the test procedure and the test results are given in [7] and need not
be repeatcd here. Various consequences of these tests are discussed in BaZant and Jir4sek [9],
in which a rate dependent R-curve model with creep has been presented and shown to model
the test results well. The R-curve approach, however, does not have a general validity since
the R-curves depend on the specimen shape. Therefore a more fundamental analysis of these
test results in terms of a crack with bridging stresses is desirable. The present formulation of
the smeared-tip method is suitable for this purpose.

The test results revealed a strong dependence of the peak load and post-peak response on
the loading rate, which is apparent from Fig. 4. The response curves correspond to a constant
rate of the crack-mouth opening displacement (CMOD). Based on the maximum load for
similar specimens of different sizes, the size effect plots based on the size effect law proposed
in 1984 by BaZant (see, e.g. [1]) have been constructed from the test results (see [7]).

A surprising feature of these test results has been a shift to a higher brittleness at decreasing
loading rate (i.e. shift toward LEFM-type behavior). This shift of brittleness appeared difficult
to model, nevertheless a material fracture law that yields this shift of brittleness has been
found by trial-and-error approach. After examining many different material fracture laws, the
following law has been found to fit the test results of [7] adequately and generally exhibits the
basic known trends of rate dependent fracture behavior

o(v, v) = s(v) + S(v, 9), (349
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Fig. 4. Example of test results of [8] for two different loading rates, and comparison with calculated curves.

in which
s(v) = b(a + v%3) exp(—cv), (35)
S(v, 9) = flp |1 - S v [l — exp (—_v)] if >0; else 0 (36)
’ ¢ wG'y Oy ’ ’

Here Gy, ¥, w, p, a, b, and c are empirical constants, whose physical dimensions are
obvious. f{ is the tensile strength of the material, which is introduced only for the purpose of
dimensionality and is determined by other types of tests.

As (34) indicates, the behavior in the fracture process zone is characterized by the rheologic
model in Fig. 5 in which a viscous element is coupled in parallel with a cracking element. The
cracking element describes progressive cracking at increasing displacement v, as characterized
by (35). The viscous element is described by (36) and obviously corresponds to a viscosity
that is dependent on the rate of separation v as well as the magnitude of separation v. In (35)
(Fig. 6), the parameters a, b, and ¢ are determined so that:

(1) 3(0) = af{ where « is a specified fraction of strength f/;
(2) the peak stress is f{; and
(3) the area under the curve is %G i

This means that among parameters a, b, ¢ only one is independent. The parameters p and w
control the magnitude of viscosity and the degree of separation up to which the viscosity acts.
Parameter v, controls the extent to which the rate of separation affects the bridging stress.
With regard to the rheologic model in Fig. 5, it should be noted that a linear viscous element
cannot be used to represent the available test data realistically, neither in parallel coupling nor
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Fig. 5. Rheologic model for the softening stress-  Fig. 6. Dependence of the crack bridging stress at constant
displacement relation for a crack. opening displacement rate.

in series coupling. For the case of a constant viscosity (independent of the displacement and
displacement rate), the values of the peak load for different rates also differed by an order of
magnitude, which grossly disagrees with test results. A highly nonlinear viscous element is
inevitable to model the fact that a change of loading rate by 5 orders of magnitude changes
the peak stress by less than 100 percent.

The fitting of the test results of BaZant and Gettu resulted in the following values of the
empirical material parameters: p = 2, w = 0.65, 9; = 0.012mm/day, and o = 0.5 with
ft = 1.3 MPa. The fracture energy was obtained as G; = 2.0 x 107 J/m2,

The compliance function of concrete in the bulk of the specimen has been characterized
by the double-power law ([6], p. 157), which works particularly well for creep durations less
than about 1 week. According to this law

1

J(t, ') = 5
0

+ Ql—(t'"m + ap)(t - )", (37)
Eo
in which Ey, ¢1, m, n, and o are material parameters. For the purpose of characterizing the
specimens tested, the following values have been identified: Ey = 9.42, ¢, = 0.711, m =
0.315, n = 0.12, a; = 0.0417.
For the three-point-bend specimen geometry used, with span-to-depth ratio L/d = 2.5,
the following function characterizing the stress intensity factor, (1), determined on the basis
of finite element results, [1], has been used:

k(a) = 3.75v/ra(l — a)™¥(1 — 1.25a + 4.490% — 3.980° + 1.330*), (38)

where o = a/d = (n+ ao/L)/(1+ ao/L), 1 = s/L, a = ag + s = total crack length (with
the notch), and d = ag + L = beam depth. Some of the load-displacement curves obtained
with the present model are shown by the solid curves in Fig. 4, in comparison with the test
results. It is seen that the strong effect of the loading rate on the peak stress and post-peak
response is modeled sufficiently well,

Figure 7 shows the size effect plot obtained from a group of specimens of three different
sizes at different loading rates. The coordinate in this plot is log 3, where 8 = d/dy = relative
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Fig. 7. Size effect plot obtained for three specimen sizes and three different loading rates.
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Fig. 8. Variation of transitional size dy of the size effect law with the loading rate.

size, dy = constant, and the ordinate in this plot is log(on /B f{), where oy = P/bd, b =
specimen thickness (same for all the sizes in these tests) and d = characteristic dimension of
the specimen = depth of the beam. The failures governed by strength theory yield in this plot
a horizontal line, while the failures obeying linear elastic fracture mechanics give an inclined
straight line of slope —% shown in the plot. The transitional behavior indicates nonlinear
fracture behavior with a large fracture process zone.

The maximum loads P for specimens of various sizes and for various loading rates have
been calculated with the present model, and from them the nominal strengths have been
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Fig. 9. Stress profiles.

evaluated. The values of nominal strength have been analyzed by linear regression according
to the size effect law proposed by BaZant, as described for example in [7]. These regressions
yielded for each loading rate the value of dy.

Now an important result to note is that, in agreement with experiments, the value of d
increases as the loading rate increases (Fig. 8). This causes the group of specimens for the
three different sizes to shift in the size effect plot to the right as the loading rate decreases, i.e.
the response is becoming more brittle (closer to LEFM). Qualitatively, the prediction of the
present model shown in Fig. 7 agrees with this experimentally observed trend. Close fitting,
however, has not been attempted because the purpose of the present investigation has been
mainly to verify the smeared-tip method and demonstrate its application rather than to model
the test results. Anyway, a complete mathematical model for the fracture process cannot be
obtained solely on the basis of the tests of BaZant and Gettu since further information is needed
on the response of the specimens to sudden change of the loading rate by several orders of
magnitude, and on the stress relaxation in the process zone. An ongoing experimental study
will generate test data on this behavior (BaZant, Gu and Faber [10]), and once this study is
completed a refined mathematical model for the fracture process can be calibrated.

A further illustration of the predictions of the present model is seen in Fig. 9 which shows
the stress profiles calculated for the instant when CMOD =0.04 mm, for very different loading
rates. As expected, the stress profiles are very different. Reduction of the loading rate generally
causes a reduction of the stresses in the process zone.

7. Conclusions

1. A crack of an arbitrary profile can be represented as the superposition of infinitely many smeared LEFM
cracks with infinitely small stress intensity factors. Knowledge of the stress intensity factor as a function of
the crack tip location along the known crack path is all that is needed for calculating the load-displacement
curve of the specimen or structure.

2. The formulation leads to a singular integral equation between the load and the load-point displacement.
This equation is supplemented by the stress-displacement relation for the crack opening, which can be rate
independent or rate dependent.
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3. When the material in the bulk of the specimens exhibits linearly viscoelastic creep, application of the creep
operator method yields a two-dimensional integral equation in space and time which also involves integrals
over the previous history of the crack opening displacement profiles.

4. If the singularities in the kemels of the integral equations are properly taken into account, the numerical

solution of the problem can be obtained by the finite difference method, in which the crack path is subdivided
into small intervals. Furthermore, a discrete subdivision of time into loading steps can be used to obtain
the response by the technique of incremental loading, with the history integrals for creep approximated by
finite sums. This reduces the problem to a system of nonlinear algebraic equations. These can be solved,
for example, by a nonlinear optimization algorithm, in which the crack opening profile calculated in the
preceding load step is used as an initial estimate for the optimization process in the current loading step.

5. Application of the method is demonstrated for the case of rate-dependent response of geometrically similar
three-point-bend fracture specimens of different sizes. The calculated response is qualitatively similar to the
previously obtained test results. (Formulation of a definitive mathematical model for the fracture process is
planned for future study and is not attempted here because further test results are needed to make unambigu-
ous interpretation of test data possible.)
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