PENETRATION FRACTURE OF ICE PLATE:
2D ANALYSIS AND S1ZE EFFECT

By Yuan-Neng Li' and Zdenék P. Bazant,’ Fellow, ASCE

AsstaacT: The problem of static penctration of an object through a sca ice plate
18 studied as a two-dimensional fracture problem using lincar clastic fracture me-
chanics. The ice sheet floating on water is modeled as a thin clastic plate resting
on Winkler's elastic foundation. The cquilibrium cquations arc cstablished by min-
imizing the potential encrgy approximated by finite differcnces in terms of nodal
dcflections. The growth of radial cracks is analyzed using the plate bending theory.
The fracture process zone is assumed o be a point in the planc of plate. The
maximum Joad is found to occur when circumferential cracks begin to form. which
is governed by a strength criterion. As a refinement and extension of a previous
idea, a theory of nitial crack spacing is proposed to estimate the number of radial
cracks formed during penctration. This theory can also explain the change of the
faiture mechanism, {rom (ailure by formation of circumferential cracks to failure
by a conic crack. Particular attention is paid to the size cffect. In addition to the
size ¢ffect deseribed by a simplificd one-dimensional solution in a previous paper,
the influcnce of the difference in the number of radial cracks on the size cffect is
discovered and analyzed.

INTRODUCTION

When an increasing upward or downward load is applied over a small
area of ice plate floating on seawater, diffuse cracks first emerge at the
other side of the ice plate. Subsequently, several radial cracks develop and
propagate with increasing load. The maximum load is reached when cir-
cumferential cracks begin to form. After that the load decreases with in-
crcasing displacement and the plate wedges between the radial cracks are
broken (Frankenstein 1963; Kerr 1975). Bazant and Li (1994) studied this
problem using Nevel's (1959) narrow wedge-beam approximation, which is
acceptable when the central angles of the wedges are sufficiently small. To
solve the cases with larger wedge angles and to understand the limitations
of the narrow wedge-beam approximation, a truly two-dimensional plate
analysis must be conducted. To the best of our knowledge, there is no
analytical solution for an infinite wedge plate with an arbitrary central angle
resting on a Winkler’s foundation.

The goal of the present study is to present a two-dimensional solution of
the floating elastic wedge plate and use it to analyze fracture caused by
penetrating objects. Commercial finite element programs for floating elastic
plates seem unavailable, therefore, a variational form of the finite differcnce
method is developed. The potential energy, approximated by finite differ-
ences, is minimized with respect to nodal deflections. Since regular meshes
can be used with a polar coordinate system, the fimte difference method
appears to be simpler than the finite element method. The finite difference
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method has been used to solve plate problems [e.p. Selvadurai (1979)]:
however, its classical form does not scem very suitable for the present
problem.

With the vartational principle, the static boundary condition is taken care
of automatically and the matrix of cquilibrium equations is symmetric, which
yields considerable savings in computational effort. By using polar coor-
dinates, the wedge can be treated as a rectangular region. which means that
the geometric shape of the wedge can be modeled exactly, and the coding
itself becomes much casier. The finite difference method based on a vari-
ational principle 1s a well-documented numerical approach [e.g. Forsythe
(1960) and Hall (1990)]. Most applications are for the second-order partial
differential equations. After this paper was submitted, onc of the reviewers
brought our attention to the work by Bushnell (1973), who used a similar
vartational finmite difference method to solve varnous problems with shell
structures.

The sccond goal 1s to analyze the fracture process two-dimensionally,
determine the angular spacing and growth of the radial cracks, estabhish the
relation between the plate thickness and the number of radial cracks, and,
most importantly, clarfy the size effect. Since the ice sheet may fail by a
conic crack under the load, which s obviously a three-dimensional phe-
nomenon, we will also attempt to provide some information on this type of
failure.

VARIATIONAL PRINCIPLE AND ITS FINITE
DIFFERENCE APPROXIMATION

Consider an ice plate [Fig. 1(a)] with polar coordinates (r, 8). floating
on water and subjected to a vertical Toad P that is uniformly distributed
along the circumference ot a circle with radius a,,. Based on observations,
it 1s assumed that the load produces n radial cracks of equal length ¢ from
the center, forming plate wedges of equal angles ¢, = 2w/n. The seawater,
of unit weight p. acts exactly as an elastic (Winkler-type) foundation, because
the buoyancy is exactly proportional to deflection. We assume that the

A

FIG. 1. (a) Floating Ice Sheet Subjected to Vertical Load; (b) Wedge Geometry
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deflections are not so large that water could flood the top of the plate when
itdeflects downward, or the plate would not be lifted off of the water surface
when it deflects upward.

Let D = IJJ/(1 — v?) be the plate stiffness, 1 = 7912 the moment of the
mertia, and /i = thickness of the plate, £ = Young’s modulus, and v =
Poisson’s ratio. The expression L. = (D/p)'*, which we will call the plate
decay length, represents a basic characteristic of the plate-foundation sys-
tem. To avord the intrinsic singularity of the axisvmmetric solution i the
center, the materral within the loaded circle is considered to be removed
and oad /715 considered to be uniformly distributed along the arcle r =
ay. As shown by Bazant and Li (1994), the removal of the material has a
negligible cffect on the maximum negative moment if /1. ~~ 1. The
surfaces of the radial cracks are assumed to be free, that is, the radial cracks
are assumed to transmit no bridging moments and shear forces, which means
we assume linear clastic fracture mechanies (LEFM) is applicable. Because
the plate-bending theory requires the normals to remain straight, we must
incvitably assume the fracture-process zone to be concentrated in one nor-
mal associated with one point. In rcality, the fracture spreads gradually
across the plate thickness, but this cannot be captured by two-dimensional
analysis. Although the wedge is actually infinite, the radial length of the
wedge is considered to be finite and 1s taken as r = a; = 6.5, because
the deflections are negligible for r > 3L when only a small central region
is loaded. The far side of the wedge can be treated as a free boundary. The
behavior of the plate s assumed to be symmetric with respect to cach radial
crack and to the axis of symmetry of each wedge; therefore, only one-half
of the wedge needs to be analyzed.

Introducing a nondimensional radial coordinate v = #/1, and substituting
w = all; oy = ay /o and o = a1 the potential energy I of the wedge
[Fig. 1(h)] can be expressed in a nondimensional form as

. ,,,”_ o fet? [ ] ,(fn" | e [ dn A 7 i _(Vw
- : cr b () _
pl.- oy S0 l2 v’ Yy o X7 d0” v Xl

1 ow ’ 0w\ 1 aTw | IS 7
- — — b — ( b l x dO

v a0 I AT ’
Ty €, /2 l . (¢, 2 [)LZ
+ J"“ J“ E wax d0 de - J“ é;l—) w di (n

It should be noticed that the load P represents the total force applied on
the ice sheet. The integrals corresponding to the boundary conditions along
radial hnes are dehiberately neglected. Since along the radial lines of sym-
metry and of the extension of radial cracks we have zero Kirchhoff shear,
while the slope in the 0-direction must be zero due to symmetry, the integral
is zero. On the other hand, both the normal moment and Kirchhotf shear
force are zero along the radial crack surface. Therefore the boundary integral
in (1) vanishes along all the radial boundaries.

For a genenc iternal node, the integration will be carried out on a cell
shown as the shaded areain Fig. 2(a). With the local node numbering defined
m Fig. 2(h). the denvatives in the integrand can be approximated with
second-order accuracy in /i by finite difference expressions as follows:
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FIG. 2. (a) Geometric Definition of Mesh; (b) Local Node Numbering; (c) Generic
Boundary Node; (d) Corner Node

a’w 1

af = E} [)\IWZ = (A Adwy, 4 7\2W4] (2a)

alw 1

902 = hi [howy = (1 + p)wy + pows] (2b)
3}

where /i, = (h,, + h,,)/2 = average nodal spacing along x-axis (the non-
dimensional r-axis, A, = h /b, and Xy, = h/h o hy = (hyy + b )2, @, =
holhyy, and w, = hy/hy.. For the mixed second-order derivative and all first-
order derivatives, central finite difference approximations (which are not
exactly of second-order accuracy if the nodal spacings are unequal) are
applied

dw ]
Axao - 4h h (ws = we 4wy = ) (2¢)
} Vg
ow 1
F™ ~ i (wy, — wy) (2d)
w |
T (w, — wy) (Ze)
0 .

The foregoing approximations are valid only for the internal nodes. For
the boundary nodes, a symmetric central finite difference approximation
would become difficult because three of the nodes would fall out of the
domain of the wedge. Although fictitious external nodal values could be
introduced, they would have to be solved from the boundary conditions,
making the formulation cumbersome for programming. In this paper, single-
sided finite difference approximations, which have only first-order accuracy
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{even for a uniform mesh), are used. For a generic node on boundary x =
o, [Fig. 2(c)] the second-order partial derivatives may be approximated as

9w 1

23 = (i = (0 A+ hwy) (3a)
t RSV R NN TEN
‘ ~ Sab (W — wy + wy, — w)) (3b)

axd8 hh,

In these approximations the central difference approximation with respect
to 8 is preserved. For the corner nodes [Fig. 2(d)]. asymmetric finite dif-
ference approximations are used, c.g.

3’w _ A,

= - 2 + — 4
a0 Tk, 5T e b we = ow) (4)

Now we substitute these finite difference approximations into the inte-
grand of the potential energy expression. The potential energy density in
each integration cell of the mesh (the shaded area) is a quadratic function
of the nodal deflections w;,, which also contains x as a variable in the expres-
sion. To carry out the area integration, Gaussian-quadrature is employed
to take care of the x variable. Six sampling points for the Gaussian quad-
rature seem to give sufficient accuracy. The integrand is constant in 0-
direction, thus no special treatment is needed except that a proper coor-
dinate incremental length A, must be multiplied to the results.

To find the equilibrium solution from the potential energy approximation,
it is necessary that the partial derivative with respect to any nodal deflection
w, be zero. This yields a system of linear algebraic equations

[A{W} = {F} (5)

where {W} = vector of the nodal displacements; {F} = vector of the applied
load; and |A] = corresponding stiffness matrix. Because it is defined by
minimization of the potential energy, [A] must be symmetric.

Note that, in deriving (5), no kinematic boundary condition has yet been
taken into account. The condition of symmetry requires that the boundary
rotation be zero. To implement it, (5) must be modified before {W} can be
solved. The zero-rotation condition can be approximated as w,, = w,, where
the local nodal numbering is used according to Fig. 2(b) and the plate s
assumed to be placed to the left of the r-axis. Substituting this equation into
(5) results in combining the columns corresponding to w, and w;. To keep
the symmetry, the corresponding two rows should also be combined.

DISTRIBUTIONS OF DEFLECTION AND MOMENTS

Because the deformation is distributed very inhomogeneously between
ay and «,, the mesh is nonuniform along the x-axis. Specifically, because
the deformation varies rapidly in the range x < 3, the mesh is so designed
that for small x-values the nodal spacing is smaller. In addition, the radial
crack front coincides with one of the nodes so that the radial crack length
is reproduced exactly. The displacement solution may be represented in the
form

_PL?
- 2wD

w(x, 8) = PF(x, 8; a,, @); P (6a.b)
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where I :/ nondimensional load; and F (which has the same dimension as
w) = displacement function to be found. The distributions of displacement
as well as moment is calculated under the assumption that P = 1.

The displacement field is examined n two perspectives. First, it is com-
pared with the previously obtained narrow wedge-beam solution (Bazant
and Li 1994). For this purpose, an average deflection is defined along each
circumferential arc. The comparison is shown in Fig. 3 for the case where
ay = 0.1 and the radial crack length o« = 3. According to Bazant and Li
(1994), the maximum nondimensional radial crack length that an applied
load I can produce is about 2. Therefore, by selecting o 3 the wedge
can be practically considered the same as a wedge with infinite length. When
the number n of radial cracks is increased, the wedges become softer, and
the solution is seen to converge. However, the averaged deflection does not
converge exactly to the narrow wedge beam solution (Nevel 1959; Bazant
and Li 1994), which is represented by a dashed linc in Fig. 3. The discrepancy
is minute and the reason for it may be explained by the difference in the
definitions of action radii. For infinitely narrow wedge beams floating on
water, the action radius is defined as [ = El/p; and for a plate, the action
radiusis L = El/[p(1 — v?)]. Nevertheless, the difference is so small it can
be neglected.

Fig. 4(a) shows the contour map of calculated constant deflection contours
in a wedge with central angle ¢, = w.in which a rather complicated pattern
is displayed. The numbers displayed within the curves are the values of
function F, and the number on the right side of the map is the radial
coordinate x. For ¢, = w/2, the contour map is shown in Fig. 4(b) (a« =
3; a, = 0.1). The constant deflection contours arc close to straight lines
perpendicular to the axis of symmetry of the wedge. This reveals that the
narrow wedge-beam approximation proposed by Nevel becomes acceptable
when ¢, = w/2. However, as is seen from Fig. 4(a), the narrow wedge-
beam assumption no longer applics for ¢, = w. Comparing Figs. 4(b) and
4(c), onc can understand the effect of the length of radial cracks on the
distribution characteristics of the deflection fields. In Fig. 4(¢), where the
radial crack is reduced 10 « = [, the deformation ficld beyond the crack
tip looks very close to an axisymmetric deformation field, while the defor-
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FIG. 3. Average Radial Deflection Profiles of Wedge Plates
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(o)

FIG. 4. Deflection Contours: (@) n = 2, = 3;(b)n = 4; 0 = 3;(C)n = 4; a0 = 1

0

mation within the range of the radial crack looks more like that of a wedge
beam. In the neighborhood of the radial crack tip. the deformation pattern
is transitional from an axisymmetric plate to a wedge beam.

The nondimensionalized bending moment in polar coordinate system is

] L LA )
D X ox x? 90°

M, and M, , are defined similarly. These moments can be calculated using
the central finite difference approximations at internal nodes in the same
way as before. For boundary nodes and corner nodes, single-sided finite
difference approximations can be used, but the results are of very poor
accuracy. This is reflected in sudden jumps of the calculated moment com-
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ponents near the boundaries. To avoid this unpleasant feature, the moment
values at the boundary nodes as well as at the nodes adjacent to the bound-
aries are extrapolated from the internal nodes. With this approach, the
natural boundary conditions are automatically satisfied, although approxi-
mately, as can be seen from the following plots.

Fig. 5(a) shows the angular profiles of the moment components in wedges
with central angle ¢, = . Since the central line 8 = 0 is a symmetric
boundary, M,, = 0. This condition is a natural result of the fact that the
rotation about the x-axis is zero on the boundaries of symmetry. The moment
M, is zero on the free boundary (the right side of the wedge in the figure).
Such a boundary condition is implied in the variational principle and, there-
fore, is satisfied only approximately when the number of degrees of freedom
is finite. Besides. the order of accuracy is lowered due to the adoption of
single-sided finite difference approximations. Nevertheless, the calculated
M,-values are very close to zero in all the cases shown in the figures, except
those for very small x. For the case x = 3 where the radial crack tip is
located, there is a singularity in the moment distribution, which is manifested
by the dramatic increases of the moments. It is known that the moment
ficld ncar the tip of a through-crack in an elastic plate exhibits a singularity
of the type r~ "2 (r, = distance from the crack tip), which is the same as a
crack in a plane, but the angular distribution of the near-tip moment field
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FIG. 5. Circumferential Profiles of Moment Components for: (a) » = 2; and (b)
n==6
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is different {see William (1952) and Paris and Sih (1965)]. It can be shown
that the presence of an elastic foundation cannot change the type of sin-
gularity. Fig. 5(b) shows the moment distributions for wedge angle = 7/6,
which is typical of moment distributions for small wedge angles. The mo-
ments are nearly uniform, appearing almost as straight lines, which means
the deformation field is essentially one-dimensional. It is interesting to note
that the radial moment M, is positive in Fig. 5(a), which means that the
bottom face of the plate is under tension; however, for small wedge angles
the radial moment becomes negative, which means the upper face is under
tension, and the wedge behaves similarly to a cantilever.

To clarify the overall distribution of the moment components. the prin-
cipal bending moments together with their principal directions arc calcu-
lated. Tt is scen from the calculations that the maxima and minima of the
moments always occur at the radial crack surfaces. Therefore, one needs
to examine only the principal moment distributions along the radial cracks.
Fig. 6 shows typical distributions of the principal moments and their direction
for various radial crack lengths. It demonstrates that when the radial crack
is short, there is a strong singularity at the crack tip. The moment is positive
and has the direction of M,, which indicates that it is the actual cause of
the formation of radial cracks. However, as the radial cracks grow, the
magnitude of this positive moment gets reduced., which means that a greater
load is required to propagate the radial cracks. Meanwhile, as the radial
cracks grow, the magnitude of the second principal moment, which is neg-
ative, develops a maximum that is located away from the radial crack tip.
This negative moment, whose direction is between those of M, and M, is
the cause of the initiation of circumferential cracks, which are nearly per-
pendicular to the central axis of the wedge. These characteristics of the
moment distribution explain why during loading the radial cracks always
occur first, and the circumferential cracks will not form until the radial
cracks become sufficiently long.

Note also that there is a conspicuous spike in the distributions of both
principal moments near the loading edge of the wedge. The nature of such
a spike is not totally clear, and 1t might be an indication of a tendency
toward cone-shaped failure. However, the moment distribution is not a good
approximation to the true stress distribution near the loading zone of the
wedge, because when the thickness of the wedge is of the same order as
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FIG. 6. Distribution of Principal Moments along Radial Cracks (# = 6)
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the arc length of the loading edge, the three-dimensional effect must be
very significant, making the plate-bending theory no longer suitable. On
the other hand, since the plate theory is, nevertheless, the first-order ap-
proximation, it is still reasonable to expect that the plate solution provides
a correct qualitative, though not necessarily quantitative, estimate of the
overall deformation.

ENERGY BALANCE EQUATION FOR RADIAL CRACK PROPAGATION

The basic idea of energy balance during radial crack propagation was
presented by Bazant and Li (1994), dealing with one-dimenstonal analysis.
In the present case, the work done by the distributed load varies from point
to point, because the deflections at the leading edge of the wedges are not
constant. However, the quantity that is of interest is not the distribution of
the work, but rather the total work of the applied force. For this purpose,
it is sufficient to use the averaged boundary deflection w,. The averaged
boundary deflection can also be written in the form w, = PL*f(«,. o, 1)/
2uD, where the function f(«,, o, n) has the same dimension as w. This
quantity could further be madce nondimensional by comparing the deflection
with L. The total work done by the applied load can then simply be written
as Pw,/2. The increment of this work due to a change in the radial crack
length must be absorbed by the ice sheet to create new crack surfaces,
therefore

I’ L M (a,, o,
G [ an )i Sl oo m) = L0 &)y gy
F T AnD Aot

The only differcnce between this equation and its one-dimensional coun-
terpart given by Bazant and Li (1994) is that the function f now depends
also on n. Function f, which is proportional to the compliance of the struc-
ture, is plotted in Fig. 7(a) as a function of the radial crack length. The
loading zone radius is fixed at o, = 0.01. The compliance is seen to increase
with increasing n. For sufficiently large n, the compliance of the wedge
system approaches a constant, which is almost the same as the compliance
for the wedge-bcam approximation.

As is already known from the one-dimensional analyses, the compliance
will reach a maximum and then start to oscillate around this maximum value
for sufficiently long radial cracks. The smailest radial crack length, at which
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FIG. 7. (a) Average Compliance; (b) Limiting Radial Crack Length
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the compliance derivative is zero, will be called the limiting length of the
radial cracks. In one-dimensional analysis, the limiting length is a function
of only ay. In two-dimensional analysis, however, the limiting length de-
pends also on n |Fig. 7(b)]. The smaller the n. the longer the limiting length.
When n is large enough, the limiting length approaches a constant (about
2.3) that is quite close to the wedge-beam solution (2.02). The causes for
this difference are various. In addition to the inevitable numertcal error In
the two-dimensional analysis, it may also be noted that the two-dimensional
model is softer than the wedge-beam model, the himiting fength, therefore,
should be longer than the wedge-beam solution. Nevertheless, such o dif-
ference does not seem to be significant.

THEORY OF INITIAL CRACK SPACING

- As noticed by Frankenstein (1963), the number of radial cracks formed
in a penetration test is a highly variable quantity. However, for different
sizes of the loading device, his tests demonstrated that the number of radial
cracks depends on the diameter of penctrator. It is therefore clear that,
despite inevitable large random scatter of tests, there is still a deterministic
trend. We will discuss this with the understanding that we are seeking only
a qualitative theory that ts capable of capturing the salient features,

As is well known, the lincar elastic fracture mechanics cannot model
directly the crack initiation, since when crack length is zero, the energy
release rate is also zero. Thus using Griffith’s equation of energy balancc,
the load required to initiate a crack is incorrectly predicted to be infinite.
Therefore the strength concept must be used in some form. When the load
is uniformly distributed over a circular arca of radius «, the axisymmetric
plate equation can be solved analytically to determine the load P, at which
the first crack occurs (i.e., f, is reached)

Ty, o, f.h
= o ]I/I_ = .v
3(1 + vykei'(wy) Clay)

[sce Hertz (1884), Bernstein (1929), and Wyman (1950)]. For «, = 0.01,
0.06, 0.1, 0.3, 0.6, and 1; C(«,) = 3.241, 2,129, 1.812, 1.135. 0.720, and
.437. Note the assumption that there is a hole in the ice plate is valid only
for caleulating the behavior sufficiently far away from the center. As far as
the stress in the center is concerned, this assumption is not appropriate
anymore.

When (9) becomes satisfied, the ice starts to form cracks. However. the
strength theory alone cannot provide the number of radial cracks. Therefore,
the energy criterton must be used. First, recall that when the radial crack
length approaches zero, so does the energy release rate; and when the radial
crack length approaches its limiting length, the energy release rate is reduced
to zero again. In other words, the crack propagation is unstable initially,
but will become stable when a is large enough. Therefore, once the radial
cracks start growing, they will not stop until the energy release rate starts
to decrease and the energy balance (8) becomes satisfied for 7 = P, Such
an equation can be written in a nondimensional form as

(9)

n L3l - v*
A ﬁ~_£*it___2 (10)
fu((xm a, i) ly ﬂ(v"((’((l)
where [, = EG,/f} = characteristic size of the process zone of ice.
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For each given n (and «, as well, of course), (10) makes it possible to
determine the initial radial crack length o, which will henceforth be denoted
as o,. However, q, is generally different for different n. To determine n we
need one more relation. The additional relation can be obtained by con-
sidering the finite energy release caused by a sudden crack length jump
from zero to «,, which is accompanied by an increase of deflection under
the constant load. It is convenient to consider complementary energy, and
then this change of energy must be calculated at constant load. The energy
released must be consumed by creating the crack surfaces, and so [ f(«,, a,.
n) — floy, oy, M)|P;L4wD = nLa,hGy, or in the nondimensional form

n . on _ 31 -v)L
q(agy, o, n) B [y, o 1) — flay, o, 1) B 7C o) 1y

The average energy release equation [(11)] and the energy release equa-
tion [(10)] can be simultaneously satisfied if and only if the function q is
equal to f,, which occurs when g reaches its maximum. Functions f, and ¢
are plotted in Fig. 8 for different n and o, = 0.1. It can be scen that there
is only one root in the entire range. The maximum of ¢ is always smaller
than the maximum of f_. Denoting the maximum value of g(a,, o, n) as

(1)

1.2

0.0 ! 1 1

0.5

n = 24 n = 36

0.0 1 1 1 ool ! 1 1) 060 . L !
00 03 06 09 00 0.3 06 09 00 03 06 09

NONDIMENSIONAL ENERGY RELEASE RATE

NONDIMENSIONAL RADIAL CRACK LENGTH
FIG. 8. Tangent Slope /, and Secant Slope 4 of Compliance (o, = 0.1)

TABLE 1. Function Q and n/Q)

ag n 2 3 4 5 6 8 12 24 36

0.1 Q 0.358 | 0.580 | 0.751 | 0.880 | 0.978 | 1.113 | 1.256 | 1.397| 1.433
0.1 n/Q | 5585 | 5175 | 5.325 | 5.682 | 6.135 | 7.186 | 9.553 | 17.18 |25.12
0.1 Q 0.339 [ 0.569 | 0.741 | 0.867 | 0.962 [ 1.091 [ 1.223 | 1.348| 1.379
0.01 | Q| 5893 | 5271 | S 400 [ 5767 [ 6.236 | 7.333 | 9.732 [ 17.80 [26.11
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Q(ay, 1), which is listed in Table 1, we car rewrite the energy releasc rate
equation [(10)] as

L)
Oy, 1) lo wCHay)

Experiments (Frankenstein 1963) showed that nincreases with increasing
punch size, and this trend is indeed captured by (12): because «,, increases
with punch size, whereas C(a,) decreases with «. the final result is an
increase in the right-hand side of the equation, and thus an increase in n.
More specifically, in Frankenstein's tests, o, = 0.06 for the small punch size
and a, = 0.6 for the large punch size. The average number of the radial
cracks for the small size punch is about 4.6, and for the large punch size
about 24. The ratio n(«, = 0.6)/n(a, = 0.06) is about 5.2. Now, neglecting
the differences in L and /, for different test sites, we see from (12) that the
ratio of the radial crack numbers should be approximately equal to the ratio
of C%(0.06)/C?*(0.6), which is about 8.7, times the ratio Q(0.6, 24)/Q(0.06,
5), which is roughly 1.6. Thus according to (12), the predicted ratio of the
radial crack numbers is about 14. Considering the crudeness of the as-
sumptions used in this calculation and the considerable random scatter ex-
hibited by the test data, the predicted value does not seem unreasonable.

The foregoing prediction might be improved by considering /,,. In the
large-size tests, the ice plate was a combination of snow and clear ice,
whereas in the small-size tests, the ice plate was clear ice. Because /, is
proportional to the maximum size of the inhomogeneities in the ice, and
the inhomogeneities in the clear ice are finer than those in the snow ice, /,
for the mixed snow and clear ice must be larger than that for the clear ice.
The prediction should be multiplied by the ratio of /,, (clear ice) over /,
(snow and clear ice), which should bring the predicted value closer to the
measured value, 5.2.

[t is also noted that the smallest value of the right-hand side of (12) is
zero, while the left-hand side has a minimum, denoted as U(e,,), which is
larger than zero and occurs at n = 3, as can be seen from Table 1. Then,
through (12), one can define the threshold length L, as

(12)

'n'[n -
Wﬂ C ((‘U)U(O‘u) (13)

L, =
When the action length L is smaller than L,, no radial cracks form during
loading, and the only way an ice plate may fail is by a conic crack under
the load. For instance, for an ice sheet with /, = 0.2 m and o, = 0.1, L,
= 3.91 m. When A is measured in meters, the action distance L can be
related to A as L = 16+ thus A, = .15 m. Note that the aforementioned
threshold value is defined for constant «. t is easy to show that even at
constant a,, there is still a lower limit for h |Fig. 9(a)], because function C
approaches infinity as a logarithmic function of h. The foregoing equation
can also be used to define a lower limit for the punch radius a, under the
condition of constant A, in which case L, is given and the minimum «o is
to be found through (12) [Fig. 9(b)]. According to this theory, the larger
the thickness A, the smaller the a,. Whether this is true should be confirmed
by future experiments.
Eq. (12) can be used directly to find L, and thus also /4, that corresponds
to a given n. However, we are often interested in the reverse problem: to
determine n for a given A. It is natural to expect that for an arbitrarily given

1493




F-zi"—l 2a,

L NI

IS Z/ TS / 7777 ///
//// radiaf cracks j/ //////’ /, /7

' 7, / punch cone

2a, = 23, 1+
"r‘ MY

7 Hl — ;;/7 radial cracks //)
P
T = 7
punch cone
(a) a, constant (b) h constant

FIG. 9. Change of Failure Mechanism for: (a) Constant ,; and (b) Constant /;

h there might be no n that satisfies the equation, because /1 is a continuous
quantity whereas n is not. Physically, when there is no o that can satisfy
(12), which is an energy balance equation, some of the assumptions that
lead to (12) must be invalid. Although it is assumed that the radial cracks
arc equally spaced and have equal length, in reality this might not be truc:
the radial crack spacing and length might be uneven duc to inevitable in-
homogeneities in the ice. Although it is assumed that all potential energy
is transferred into crack formation, in reality this becomes impossible if
some of the energy is converted into kinetic energy during crack jumping.
In other words, (12) gives only a simplified picture of a very complicated
physical phenomenon. Therefore, whenever (12) cannot be satisfied, we
simply pick, for a given A, a value n that makes the unbalance of (12) the
smallest.

Nevertheless, some questions remain unsolved. Using the experimental
data of Frankenstein, one can determine /,, indircctly through (12). The
results are [, = 0.2 m for clear ice and [, = 0.6 m for snow and clear ice.
These values seem to be a magnitude too large. The problem may be related
to one of our basic hypotheses, which assumes the radial crack to be totally
open during loading. According to Frankenstein (1963), the radial cracks
are always closed at the top surface of the ice plate, and the crack surface
will not open until the applied load is removed. However, detailed consid-
eration would require a three-dimensional analysis, which is beyond the
scope of this paper. Once suitable test data become available, this question
should be studied further.

The argument that led to (12) for determining the angular crack spacing
represents a refinement and extension of the approximate arguiment used
by Bazant and Ohtsubo (1979) to determine the initial spacing of the parallel
cooling cracks in a half-plane [see also Bazant and Cedolin (1991), chapter
12].

SIZE EFFECT

Previous studies (Bazant 1991, 1992) yielded a result at first perplexing:
for elastic plates of different thickness /1, resting on a Winkler foundation,
the nominal stress g, = P/h? required to propagate geometrically similar
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cracks is, according to LEFM | proportional to /i ¥ This scems to contlict

with the fact that in LEFM the size effect is of the type o~ (size) ', and
I is the only geometric dimension (i.e. size) for the infinite plate. The
explanation is that the problem is two-dimensional, and size fi 1s measured
in the third dimension; thus £ represents merely a parameter, not an actual
dimension in the (x, y) domain in which the boundary-value problem is
mathematically defined. The characteristic dimension in the plne (x, v) is
not geometric, but is provided by L. and indeed, in terms of L the LEFM
size cffect is of the type o, ~ L V2 (Bazant 1992; Bazant and Li 1992).

Except for the intial crack formation, the radial cracks grow stably under
load control, which means the applied load P needs to be increased as the
radial cracks grow longer. P, is reached when circumferential cracks in-
ittate. The crack initiation is not governed by LEFM but by the strength
theory, which causes no size effect (i.e. o, ~ L"). But, as shown, the
maximum bending stress that causes the initiation of circumferential cracks
occurs when the radial cracks become sufficiently long; therefore the size
effect is a combination of LEFM size effect and strength size effect.

Fig. 10(a) shows the magnitudes of the nondimensional maximum mo-
ment M. as a function of the wedge angle ¢, for different «,. When the
wedge angle becomes very small, M, approaches some constant that de-
pends only on o,. The load required to initiate the circumferential cracks
(P,.0) 1s significantly higher than the load required to initiate the radial
cracks (P;) given by (9). The ratiop = P, ./P, = nC(a,)/3M,,.. (Which is
proportional to the nominal stress a,) is plotted in Fig. 10(b), which can
be scen to be typically larger than 2. Without applying fracture mechanics,
the predicted maximum load would be P, which would be much too con-
servative.

The size effect on nondimensional nominal stress o5 (= P,../l1*f) de-
peads on how the similarity is defined. If it is defined so that o, 1s constant
for varying h, then there is no size effect if the effect of bending modulus
and of changing crack number n are neglected, as is shown in Fig. 11(a).
In the calculation it is assumed that /, = 0.2 m and L = 16i1**. The size
cffeet due to a change in 1 under constant w, 1s plotted in Fig. 11(h). The
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left end of the curves corresponds to the threshold value L, as discussed in
the previous section.

It may be emphasized that the size effect due to a change in n can be
scen only through a two-dimensional analysis. The conclusions in the pre-
vious onc-dimensional study (BaZzant and Li 1994) could not reflect such a
size effect. because in the narrow wedge-beam solution the maximum bend-
ing moment is independent of the wedge angle, and thus independent of 1.

When the ratio a,/lt is kept constant for various /1, a reversed size effect
is superimposed on the size effect just mentioned. Since ay = (ao/h)[A(1 —
v2)/E]", a, actually increases with i, and we know that when o, increases,
the maximum value of the nominal stress increases, and thus the size effect
gets reversed: the larger i is, the larger o is. However, since the dependence
of «, on h is very weak in the normal range of thickness, such a reversed
size effect can often be neglected. Actually, keeping a, constant for all A is
the case that is more relevant to the practical problem—an aircraft of a
fixed and known contact arca landing safely on the ice plate, or a submarine
of a fixed and known contact area of its sail penetrating upward through
the ice. For this case, a, decreases with /1, and so the maximum nominal
stress decreases with h too, as is shown in Fig. 11(c) for several chosen n.
This type of size effect has already been discussed by Bazant and Li (1994).
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It 1s interesting to note that even with constant a,, n still increases with 4.
because the rate of increase of L is faster than that of function C2. Thus
the overall effect of changing # is to enhance the size effect under the
condition of constant a,, as can be seen from Fig. 11(d).

CONCLUSIONS

1. The variational finite difference method, in which the equilibrium
equations for nodal deflections are obtained by differentiating the potential
energy approximated by finite differences, is an effective way to solve an
elastic plate on elastic foundation. The energy release rate is obtained by
differentiating the potential energy as a function of the radial crack length.

2. Based on the assumptions of linear elastic fracture mechanics and the
plate bending theory. our numerical calculations confirm that the load from
the penetrating object (a punch) distributed along a small (but not too small)
circle causes propagation of radial cracks, and that the maximum load is
reached at the initiation of circumferential cracks whose radial distance is
less than the radial crack length. Assuming equal central angles of the radial
cracks, one needs to analyze only one-half of an infinite wedge plate between
two radial crack lines.

3. Although, as determined previously, the nominal stress (load divided
by plate thickness square) required to propagate geometrically similar cracks
is proportional to (thickness) ~**, the size effect is modified because: (1)
The initiation of the circumferential cracks is governed by the strength limit
of ice rather than its fracture cnergy: and (2) the number of radial cracks
varies with the ice-plate thickness.

4. The previously presented simplified one-dimensional solution, in which
the radial cracks are considered very dense and the wedge plates are treated
as narrow wedge beams (Nevel's approximation), is sufficiently accurate for
wedge angles up to w/4. The error is negligible when the wedge angle is
less than 7/6. However, the complicated distribution of the moments can
only be obtained through a two-dimensional analysis.

5. As an extention and generalization of a previous idea, a theory for
the initial crack spacing is proposed. The idea is that the initial crack number
n must satisfy the following three conditions simultaneously: (1) The encrgy
release rate is cqual to the fracture energy of the ice; (2) the total encrgy
released suffices to produce the total crack arca «,hn; and (3) the applied
load is such that the maximum stress before cracking be equal to the tensile
strength of the ice. This theory also reveals that for a given nondimensional
punch radius o, = a,/L (a, = radius of punch size; L = dccay length of
the plate), there is a threshold thickness below which the ice plate fails by
a conic crack. The smaller the «,, the larger the threshold thickness.

6. Aside from the size effect on the modulus of rupture for bending,
there are two factors that affect the final combined size effect: (1) A change
in the number n of radial cracks as a function of «, and L: and (2) the
modification of size effect due to the definition of similarity. If constant «,
is used to define the similarity, and as long as n is constant, therce is no size
effect due to a change in thickness. If @, is constant, then there is a size
effect because o, decreascs with thickness. The effect of a change in the
number of radial cracks is always to enhance the overall size effect.
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