EFFECT OF COMPOSITION ON BASIC CREEP OF CONCRETE AND
CEMENT PASTE

By Laurent P. Granger' and Zdenék P. Bazant,? Fellow, ASCE

ABSTRACT: A two-level composite model for predicting the basic creep of aging concrete from its composition
and the properties of its constituents is proposed. On the macroscale, concrete is treated as a composite of
elastic aggregate embedded in the matrix of creeping hardened cement paste. The composite action is described
by a combined series-parallel model in which a portion of the paste acts in parallel with the aggregate and
the remaining portion in series with this parallel coupling. The portion of the paste coupled in parallel is
determined as the amount of paste needed to fill the voids when the aggregate is at its maximum possible
compactness, and the remaining portion of the paste then corresponds to the series coupling. On the microscale,
the hardened cement paste is considered as a composite of elastic anhydrous cement grains embedded in a
matrix of cement gel with voids filled by water and air. The aging is considered by an extension of the previously
proposed solidification theory, in which the creeping constituent, the gel, is considered to have nonaging
viscoelastic properties, and the aging caused by the chemical reaction of cement hydration is totally ascribed
to the volume growth of the load-bearing (bonded) portion of hardened cement gel. The model is calibrated

and verified by means of a comprehensive data set reported by Ward, Neville and Singh.

INTRODUCTION

Aside from environmental effects, the error in predicting
the creep properties of concrete is the greatest source of error
in the estimates of creep effects in concrete structures. The
reason for this large error is no doubt the fact that the existing
formulas used in codes and design recommendations [CEB-
FIP (1990); ACI-ASCE (1958); BP-model: Bazant and Pan-
ula (1978, 1979); BP-KX-model: Bazant et al. (1991, 1992),
Bazant and Kim (1991, 1992a~c); French Code BPEL: Béton
(1991); and model B3: Bazant and Baweja (1994)] for pre-
dicting the creep of a given concrete are at least to a large
extent empirical. They have been formulated without any use
of the mechanics of composite materials. A few attempts to
relate the creep of concrete to its composition by some ra-
tional calculations have been made [e.g., Neville (1984) and
Popovics (1986)]; however, they have not used composite
material models that would describe the complex influence
of aging due to hydration and would treat realistically the
variation and redistribution of stress between the aggregate
and the cement paste caused by creep.

The objective of this paper is to propose a new model that
treats the creep interaction of cement paste and aggregate as
well as the phenomenon of solidification due to hydration of
cement in a realistic way, and at the same time agrees with
the comprehensive test data existing in the literature. How-
ever, from the viewpoint of mechanics of composite materials,
the model will be conceptually simple. It will be a uniaxial
model involving series and parallel couplings, which do not
capture the triaxial aspects of interactions in a composite.
Treatment of such triaxial aspects together with the com-
plexities of creep with aging appears to present formidable
difficulties and preclude development of closed-form solu-
tions. The analysis will be restricted to the basic creep; that
is, creep at no moisture movement through the material. The
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creep at drying as well as drying shrinkage are beyond the
scope of this paper.

A composite model for predicting the creep of concrete is
needed not only for structural analysis. Its development is
even more important in order to gain basic understanding of
the composition factors that influence the magnitude of creep.
Such understanding should allow development of better con-
cretes exhibiting lower creep, which are needed for many
practical applications, such as bridges, tall buildings, or nu-
clear-reactor containments and vessels (Granger et al. 1993;
de Larrard et al. 1990).

CONCRETE AND CEMENT PASTE AS
COMPOSITE MATERIALS

Concrete can be regarded as a composite that consists of
mineral aggregate and hardened cement paste, corresponding
to the macroscale and microscale, respectively. In more de-
tail, one can further distinguish coarse aggregate (gravel) and
fine aggregate (sand), and correspondingly regard concrete
as a composite consisting of gravel in a matrix of mortar, and
mortar as a composite consisting of sand in a matrix of hard-
ened cement paste. The corresponding scales are then called
the macroscale and mesoscale. The hardened cement paste,
too, can be regarded as a composite consisting of hardened
cement gel with unhydrous cement particles, and pores filied
by capillary water and air with water vapor, which could be
imagined to correspond to the microscale and submicroscale.
On a still smaller scale, the cement gel itself contains far
smaller pores, as small as only a few water molecules in thick-
ness. These are filled with adsorbed water or other types of
strongly held but evaporable water.

Obviously, modeling the microstructure at all these scales
would be extremely complex, and so the problem must be
simplified. In this study we consider composite models at only
two scales: the concrete as a composite of aggregate and
cement paste; and the cement paste as a composite of cement
gel, anhydrous cement, and evaporable water in capillary
pores.

The determination of mechanical properties of composites
from the properties of their constituents has been studied
extensively and much has been learned [e.g., Hashin (1983),
Hashin and Shtrickman (1963), Christensen (1979), Aboudi
(1991), Mura (1982), and Nemat-Nasser and Horii (1993)].
However, the previous works have dealt with elastic and plas-
tic properties. Composites exhibiting aging creep, which are
of concern here, have apparently not been investigated. The
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aging characteristic of viscoelastic creep brings about serious
complication. They cause the creep problems to lead to Vol-
terra integral equations in time with nonconvolution kernels,
which cannot be solved analytically. Their numerical solution
is not difficult, but does not help understanding of the be-
havior. We strive for a solution described by closed-form
expressions rather than computational algorithms.

At first one might desire to adapt to the problem some of
the powerful methods for composites, such as the Hashin-
Shtrickman variational bounds (Hashin and Shtrickman 1963),
the method of composite spheres (Hashin 1962), the self-
consistent model (Hill 1965), or the Mori-Tanaka method
[e.g., Benveniste (1987)]. However, in the context of aging
creep, these methods appear to be too complicated. They try
to capture the triaxial behavior, but for concrete creep the
more important issue is the time effect. The stresses in the
paste and aggregate vary strongly in time, as the load is grad-
ually transterred from the creeping component (the matrix
of hardened cement paste) to the elastic component (the min-
eral aggregate). This causes a significant redistribution of
stresses between the aggregate and cement paste, and within
the paste between the recently and earlier solidified hydration
products. This redistribution is greatly affected by aging; that
is, the progress of the chemical reaction of cement hydration.
These reasons preclude the use of the simple effective mod-
ufus method known from classical viscoelasticity.

Therefore, we will use for the composite action a simple
parallel-series model, which is uniaxial. This is not completely
unrealistic, because it is known from measurements that the
Poisson ratio for basic creep of concrete is nearly constant in
time and nearly equal to its elastic value v = 0.18. Because
of material isotropy, the volumetric and deviatoric compli-
ance functions are simply obtained as J,, = 3(1 — 2»)J and
Jp = 2(1 + v)J, where J = uniaxial compliance function,
which we will try to predict from the composition of concrete;
Jy and J, then follow automatically.

The parallel and series couplings of two constituents are
known to provide the upper and lower bounds on the stiffness
of an elastic composite, called the Reuss and Voigt bounds,
respectively (Christensen 1979). Often, however, these bounds
are too far apart to be useful for prediction of the actual
stiffness. Any value between these bounds can nevertheless
be obtained by a combination of parallel and series couplings
of the constituents in the model [Fig. 1(a)]. This is what we
choose to pursue here. The drawback is that, compared to
the aforementioned more sophisticated composite models,
the ratio of subdivision of the constituents between the series
and parallel couplings, characterized in Fig. 1(a) by cross-
section parameter a and length parameter B, is not deter-
mined by the model and must be deduced by other consid-
erations or experiments.

First the model of Fig. 1(a) will be applied to concrete as
a composite of aggregate and cement paste, in which case the
shaded area A, = af is chosen to represent all of the aggre-
gate, and the unshaded areas coupled in parallel and in series
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FIG. 1. (a) Combined Parallel Series Coupling Model for Con-
crete; (b) Series Coupling Model
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represent portions of the hardened cement paste. The portion
in series can be imagined to correspond to the thin layers in
the narrow regions of near contact between adjacent aggre-
gate pieces, and the portion coupled in parallel to the rest of
the hardened cement paste. This also reflects the fact that
the hardened cement paste forms a contiguous matrix, but
the aggregate is not contiguous.

For the hardened cement paste we will consider a similar
parallel-series model but with variable volumes of the con-
stituents, in order to model the aging.

CONCRETE AS COMPOSITE OF AGGREGATE AND
CEMENT PASTE

According to the model in Fig. 1(a), af = A, = volume
of aggregate grains per unit volume of concrete (thus, if A,
is given and B is chosen, a can be determined). Obviously,
according to the parallel-series model, the Young’s elastic
modulus of concrete, E,, is given by
1 _1-p, B A,

B

E. = E aE, + (1 - 0)E,

P

(1

in which E, and £, = elastic moduli of the aggregate and
the paste.

The aging creep, as mentioned, will be treated by the age-
adjusted effective modulus method proposed by BaZant (1972),
which reduces the problem to quasielastic analysis. The use
of this approximate but quite accurate method is one basic
idea of the present approach for the composite. The method
is applicable only to problems with steady loads, in which the
stress and strain rates decay in time.

The aging creep of concrete is characterized by the com-
pliance function J(¢, t,) representing the strain at age ¢ caused
by a unit uniaxial stress applied at age f,. Alternatively, the
creep properties can be characterized by the relaxation func-
tion R(t, t,) representing the stress at age ¢ caused by a unit
constant strain applied at age f,. One of these functions can
be obtained from the other by numerical solution of a simple
Volterra integral equation. Approximately, but with very good
accuracy, the relaxation function can also be obtained from
the compliance function using the following one-line formula
proposed by Bazant and Kim (1979) (in which ¢ and £, must
be given in days):

0992 0.5 [J(t - A 1]

R0 =300 “ie -1 J(t, 1y + B)

t—t,

2 (2)

In the age-adjusted effective modulus method, one assumes
that the strain history is a linear function of the compliance
function, that s, e(f) = N + wJ(z, 1,), where A and p. are two
arbitrary parameters. As proven in Bazant (1972), the cor-
responding stress history is then o(f) = AR(t, £) + w. This
property is easily understood if one notes that the strain his-
tory corresponding to constant stress p introduced at age ¢,
is pJ(t, %), and the stress history corresponding to constant
strain A introduced at age t; is AR(¢, ;). Then the superpo-
sition of these two histories yields the aforementioned result.

This result is translated to a more convenient relation as
follows: the initial strain at the time of first loading, &, is £(2,)
= N + pEG! = o(ty)/E,, where a(t;) = initial stress at the
first loading and E, = initial elastic modulus. Note that, by
definition, E(t,) = 1/J(t,, t,). Using A to denote the changes
from ¢, to the current time ¢, e.g., Ae(f) = =(f) — =(t,), we
have for these strain and stress historics Ae = p(J — Egh,
and Ao = MR — E,). Then we solve \ and p from the last
two equations and substitute them into the foregoing expres-

with A =




sions for e(f) and o(f). Thus, defining the creep coefficient
as d(1, 1) = E(t,)J(¢, &) — 1, we obtain the following familiar
form of the basic relation of the age-adjusted effective mod-
ulus method:

_ M f'(i) E(’o) - R(t’ to)
A0 =5 * Fay o 1)

In other words, the strain increment is the sum of the elastic
strain increment based on age-adjusted effective modulus E”
and -times the initial elastic strain. We now apply this rule
to the stress and strain changes in the paste from #, to ¢ in
the model in Fig. 1(a).

Let us now denote the stresses in the aggregate and in the
portion of paste coupled in parallel as o, and ¢, and their
common strain as g,. To calculate the compliance function,
we apply stress o (t,) on the model at age ¢, and then hold it
constant, i.e., Ac = 0. The stress-strain relations for the
aggregate and the parallel portion of the paste (the latter
based on the age-adjusted effective modulus method}, and
the equilibrium condition for the parallel coupling, are

@, ), E" = &)

t
Ao, = EAe,; Ao, = E! [Asp A ¢] (4a,b)

Ep(tﬂ)
ado, + (1 — a)lo, =0 (5)
in which
- E, (%)

o,(to) = a(ty) aE, + (1 — a)E,(t) (6)

where o(t,) can be chosen as 1. From these relations

— _ " 0.(t()) ¢p(t’ t(])
Ae=(-of 0 -wE@w E, 9
E, =aE, + (1 - )E] (7b)

where E7 is according to (3) expressed for the portion of
paste coupled in parallel. Adding the compliance function for
the portion of paste coupled in series with the parallel cou-
pling, we then finally obtain the compliance function of the
composite that we have been seeking

- B _Es
J(t, ) = oE, + (1 = B0 [1 + (1 - a) E,Z (1, to)]
+ (1 = B, 1) @
in which
gy =B ROW 0 B -1 ©)

¢p((’ t(l) ’

This formula was presented in a recent conference paper by
Bazant (1993).

INTERPRETATION OF MAXIMUM
AGGREGATE COMPACTNESS

An intricate question is the determination of parameters
« and B, which characterize the subdivision of the paste be-
tween the parallel and series coupling for concrete [Fig. 1(a)].
First several hypotheses regarding a and B were examined:
(1) have B fixed for all the cases and then o = A,/B; (2) have
« fixed for all the cases and then B = A,/a; (3) choose a new
parameter y and then « = VyA and B = \/m However,
none of these three hypotheses gave satisfactory results in the
fitting of test data described later. Therefore, a different idea
was tried— the maximum compactness of aggregates (Fig. 2).
This idea was inspired by de Larrard and Le Roy (1992), who
exploited it for determining the elastic modulus of concrete.

Ay = A5 = Aq, Ay < A= 4,
56
L g
Ay = A < Agy,

@
Too much sand

©
Not enough sand

FIG. 2. Interpretation of Maximum Compactness A, = A,,,, of
Aggregates for Parallel and Series Model

The maximum compactness of the aggregate, A, [Fig.
2(a)], is defined as the maximum volume content (total vol-
ume of all grains per unit volume of granular material) that
can be reached for aggregates with given maximum and min-
imum grain diameters d,,;, and d,,,. The A, -value is at-
tained when the aggregate size distribution (grading) follows
a certain optimum grading curve (granulometric curve). Ca-
quot (1935) experimentally established the following empir-
ical formula:

Ag. =1 = 0.47(dnfd ) (10)

&ma

The coefficient 0.47 pertains to essentially round aggregate
shapes (for aggregates of other shapes, e.g., with sharp cor-
ners or elongated, larger coefficients need to be used). For
the aggregate content A, = A, , the concrete must be ex-
pected to exhibit the least creep possible because the number
of contacts between the aggregate pieces is maximum and the
paste is merely filling the remaining voids.

This fact is suggested by the studies of shrinkage of the
prepacked (or preplaced) aggregate concrete (also called
“prepakt”) (Neville and Dilger 1970; Neville et al. 1981) and
is also known for the so-called sifcon (slurry infiltrated fiber-
reinforced concrete). To produce such concretes, the forms
for placing concrete are first filled with the aggregate alone.
After compacting it, the aggregate is infiltrated by a cement
(or cement mortar) slurry.

The prepacked concrete should be describable quite wel
by the parallel coupling only. The reason is that this coupling
yields the greatest possible stiffness of model, and that the
maximum aggregate compactness yields the stiffest possible
concrete. The layers of paste separating the adjacent aggre-
gate pieces (Fig. 3) are coupled basically in series with the
aggregate pieces. So we assume that the amount of paste that
is needed to fill the voids at maximum aggregate compactness
corresponds to the parallel coupling, and that the excess amount
of paste used in the concrete corresponds to the series cou-
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FIG. 3. Parts of Soft Matrix that Act Approximately in Parallel and
Series Couplings with Hard Aggregates
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FIG. 4. Interpretation of A as Function of r = s/g

pling (Fig. 3). This is the key idea for estimating the portion
coupled in parallel.

It is thus clear that, for our parallel-series model, the min-
imum creep is reached if all the paste is coupled in parallel
with the aggregates |Fig. 1(b)], in which case a« = A, and
B = A,/A, = 1][Fig. 1(b)]. For real concretes, for which
the grading between d,.,;, and d,,,, is not optimum [Figs. 2(e)
and 2(f)], we can define A as the maximum relative com-
pactness obtainable when the maximum possible amount of
paste is withdrawn from the concrete without creating further
voids [Fig. 2(b)]. During this withdrawal, the aggregates may
be imagined to be brought into contact with each other to
the maximum possible extent by means of homogeneous con-
traction, but the configurations of adjacent grains are not
rearranged optimally as in vibration. So this is not the same
as compacting the aggregates by vibration, as done by Ca-
quot. This means that to fill the remaining voids more paste
is needed than for Caquot’s optimum case [Fig. 2(b)]; there-
fore A7 < A, .

Because Caquot’s formula applies to the optimum size dis-
tribution (grading) between d,,;, and d,,,,, one must expect
the difference A; — A,,., to depend on the grading, or at
least on the sand-gravel ratio r = s/g, as the simplest char-
acteristic of grading. Because A; attains a maximum at
A, , the dependence of A; on s/g near this minimum must
obviously be a concave function. We take it as a quadratic
function of r (Fig. 4)

AL =1 = Mdeldna) *[1 + p(r — 1], r=slg (1)

in which A, p, and r,, are empirical constants to be found by
data fitting.

There are various interesting points about the aforemen-
tioned configuration witha = A7 and B = A_/A} [Fig. 1(a)].
If we consider constant A, (same volume of the paste) and
increase A by optimizing the grading of the aggregates or
by taking another set of aggregates, we will increase the creep,
which is at first surprising. But this can be understood upon
realizing that if § = A,/A, decreases, the portion of the
paste coupled in series increases. Furthermore, if we consider
constant A, any increase of A, will reduce creep.
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VARIATION OF CEMENT PASTE COMPOSITION
CAUSED BY HYDRATION

Before treating the hardened cement paste as a composite,
we need to formulate a physical model for the variation of
its composition caused by the chemical reaction of cement
hydration as well as some related long-time processes, such
as polymerization. We will consider a unit mass of cement
paste and we will denote by lowercase letters the masses of
various constituents per unit mass of cement paste (i.e., mass
concentrations, dimensionless). Furthermore, we will denote
by capital letters the volumes of various constituents per unit
mass of cement paste (not of the constituent) (dimension cm?¥
g), i.e., the inverses of mass densities of the constituents
within the paste. Thus, ¢, w, and v, will be the masses of
anhydrous cement before hydration, water, and cement paste
per unit mass of paste (of course v, = 1), and C, W, and V,
will be the corresponding volumes of cement, water, and the
paste. Obviously, the mass density of the paste is p, =
V1. The total initial volume of a unit mass of the paste (e.g.,

1 I;;) can be expressed as

1 C w,
V=———°+—°> 12
»0 1—P<pc Pu (12)

in which p = volume of the pores filled by entrained air and
vapor per unit volume of paste (air porosity); ¢, = initial
mass of anhydrous cement; p, = 3.15 g/em3; and p, = 1 g/
cm?® (mass densities of anhydrous cement and water).

The progress of hydration may be characterized by function
h(t) of concrete age r, representing the ratio of the mass of
hydrated cement to the initial mass of cement. Although ac-
curate analysis calls for different functions for different ce-
ments and mixtures, we choose for the sake of simplicity only
one function

h.\/t
h, + Vit
where, by definition, A. = 1 if the cement has become fully

hydrated. The volume of anhydrous cement decreases with
age t as

h(t) = (13)

) = % [1— h(f)] (14)

The full hydration of cement is known to require a mass of
water equal to about r, = 20% of the mass of anhydrous
cement (Taylor 1964; Powers 1968; Lea 1971). The cement
gel produced by hydration is very porous. Its porosity may
be approximately considered as r, = 20%, which character-
izes the volume of pores filled by evaporable (not chemically
bound) water (which consists of water adsorbed on the sur-
faces of the pores and interlayer water in the hydrates, but
not the capillary water that is present in the hardened cement
paste but is not counted as part of the cement gel; the capillary
pores have typical dimensions of 10~ m and the gel pores
of 3 X 107" m to 160 x 10719 m).

Let W, A, and G be the volumes of water, air, and cement
gel per unit mass of the paste. To calculate G from the mix
proportions, we need the relative volume of gel, r,. Although
the volume of hydration products with their pores is almost
precisely equal to the initial volume of cement and water
before they react, the volume of gel (without the capillary
pores of the paste) is about 10% less than the combined
volume of cement and water used in the chemical reaction of
hydration (this phenomenon is related to Le Chatelier con-
traction). So we may set 1 — r, = 0.1 or r, = 0.9. The
remaining volume becomes the pores filled with air and water
vapor. This shrinkage, of course, is much smaller (typically



less than 10~%) because of the restraining effect of the hard-
ened framework of cement paste. The deficiency of gel vol-
ume caused by hydration is the source of autogeneous shrink-
age.

The aforementioned changes can be described by two equa-
tions: the equation of mass conservation stating that the masses
of cement, chemically bound water and pore water must equal
the mass of cement gel

¢y — c(t) + rJeo — (O] + r,G(t) = g(®) (15)

and the equation of constancy of volume, stating that the
volume of hydrated cement, bound water, and pore water,
reduced according to Le Chatelier contraction, must equal
the volume of gel

rdocleo — )] + rufe — ()] + r,GO} = G() = p;'g()
(16)
where p, = mass density of the gel. From (15) and (16), we can
solve

I

G(t) = k,coh(f); p, = 2.31 glem?;
-1
k= TP ) g
1 - rr, (17a-c)
Then the volumes of evaporable (free) water and air (with
water vapor) are

W) = Wy — r.ch(t) — r,G(1) (18)

A(f) = T{)—; (— + w0> + (rl - 1) Gty  (19)

4

in which the subscripts 0 denote the initial values in the mix.
The last equation states that the volume of air equals the
initial volume of entrained air plus Le Chatelier contraction.

In the fresh mix, the anhydrous cement grains are far from
each other, separated by layers of water. Therefore, during
the first hours up to the time of set, the gel that is produced
by the chemical reaction of hydration lends no stiffness to
the fresh paste. Initially, the solid particles can move in re-
sponse to hydration but, after a few hours, the moment of
set, ¢, is reached, at which the cement grains get close enough
to form a solid framework. From that moment on, the gel
that is produced further serves to increase the stiffness of the
existing microstructure. It is thus clear that we must distin-
guish the time periods before and after the set. Let A, be the
degree of hydration at the moment of set, that is, s, = h(z,).
As is well known, ¢, depends on the water-cement ratio w/c,
and for this purpose we choose the empirical relation

t = 7 <Z - 0.1) | (days) (20)

The numerical coefficients would certainly change somewhat
for various types of cement (depending, for example, on the
amount of C;A4). Prior to the set, one has mainly anhydrous
cement grains surrounded by envelopes of gel in the state of
suspension in water. Therefore, the volume deficiency cre-
ated by Le Chatelier contraction prior to the set is manifested
as a decrease of volume of the hardened paste. Only the
volume deficiency created after the set creates voids (or pores)
since the microstructure has become stiff enough to prevent
significant volume contraction (other than small strains due
to stress). To take this behavior into account, we modify (19)
as

Q) = 77— (;— " wo) " (i - 1) [Go) - G} @)

< 8

Now we can also calculate the volume of the hardened cement
paste

V() = A() + C() + W() + G(r), for t<t (22)

while V() = V,(t,) = constant for ¢ = ¢,.

As with concrete, we will now adapt, for reasons already
explained, the parallel-series model to the cement paste. As
illustrated in Fig. 5, the anhydrous cement grains are repre-
sented by an element of cross section a(¢) and length b(w/c).
The cement gel, which represents a contiguous matrix, is
imagined to be separated into a part of cross section v(f) and
length b(w/c) that is coupled in parallel with anhydrous ce-
ment grains, and another part of length 1 — b(w/c) and the
same cross section u(¢) that is coupled in series, as shown in
Fig. 6 (for the sake of simplicity, we chose the parts of cement
gel coupled in series and in parallel to have equal cross sec-
tion, u(f), at all times). The increase of v(f) models the so-
lidification process involving the dissolution of cement grains
and the precipitation of the hydrates. Parameters a and b for
the anhydrous cement are analogous to « and B for the ag-
gregates in Fig. 1. Parameter b for the length of the parallel
and series parts of cement gel is empirical and constant in
time but can vary depending on the composition of the paste,
particularly the water-cement ratio w/c.

Then, according to the model in Fig. 6

a(hb = CIV,; o(t) = GOV, (23, 24)

According to the parallel and series couplings of the model

in Fig. 6, the overall elastic modulus of the hardened paste,

E,, at the time of first loading ¢, (>,) is given by the equation

1 b 1-5b

+—
E, E;  w)E,

pO

with Ef = a(t)E,. + v(t)E, (25)
where the Young’s elastic moduli of anhydrous cement grains
and cement gel are denoted as E,. and E,.

A similar equation could be written for the modulus of the
paste E, at any time f. This modulus must always increase

Tc
Water &
Air

vit)

1-b(wic) ][.7 Egq

b(wic) t
a(t) i)

FIG. 5. Parallel and Series Model for Solidifying Cement Paste

strains
C{t)
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creep

¥, (t-to)
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FIG. 6. Model for Role of Solidification in Creep for Cement Gel
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due to hydration, i.e., dE,/dt or dE,/d[h(t)] > 0. A sufficient
but not necessary condition to satisfy this inequality is

1.79E, b(wlc) > E,, (26)

which restricts the choice of empirical parameter b.

COMPLIANCE FUNCTION OF PASTE BASED ON
SOLIDIFICATION THEORY

The solidification process of cement paste may be regarded
as a gradual precipitation of layers of cement gel, character-
ized by volume growth v(f). These layers are in a stress-free
state at the moment of their precipitation. Our mathematical
formulation will be similar to that used by Bazant and Pra-
sannan (1989) for concrete as a single composite system; how-
ever, the solidification theory is now applied only to the gel,
which is on the submicroscopic level.

The principal idea of the solidification theory is that the
aging property of creep is not a true property of the material
but an apparent property. The material must be decomposed
into constituents of nonaging properties, and the aging comes
about as a change in volume concentration of one component,
whose mechanical properties are age-independent. This type
of formulation is not only physically justified but is also nec-
essary from the thermodynamic viewpoint. Chemical ther-
modynamics does not deal with substances of time-dependent
properties; rather, it deals with compounds of age-indepen-
dent properties but varying concentrations or volumes. More-
over, by virtue of modeling the solidification process in this
manner, one can take into account one obvious restriction,
namely, that a layer of the solidified constituent at the mo-
ment of its precipitation must be free of stress. This restriction
is by no means automatically implied, and in fact some creep
models proposed in the past violated this restriction if inter-
preted in terms of solidification.

According to Bazant and Prasannan (1989), the compliance
function of the cement gel is chosen as the sum of the vis-
coelastic strain characterized by function ®(¢, t,) and viscous
flow characterized by function ¥,(¢, t,), that is

1 t _ n
Ot — 1) = ta In [1 + (—)\ t") ]
& 0

t -t
q’g(’v L) = (

o 27
in which E, = elastic modulus of the gel; g, and m, = con-
stants; v, represents the viscosity of the gel; and A\, = an

empirical parameter that is approximately A, = 1 day (BazZant
and Prasannan 1989). The expression for the viscoelastic strain
is the log-power law, which is justified by the observation
that for short times the creep curves are approximately power
curves and for long times they are approximately logarithmic
curves. Indeed, for short ¢ — ¢, the logarithmic term in (27)
approximately equals g,(t — t,)", but for long ¢t — ¢, it ap-
proximately equals g,n In(t — ¢,), and (27) gives the simplest
transition between these two functions.

Because of the solidification process, the compliance func-
tion J,(1, ¢,) for the hydrates of growing volume concentration
must be obtained in terms of rates, which is written as follows:

J&m=£ﬁm—m+ab 28)

where v(tf) = volume associated with ®, and k(¢) = volume
associated with ¥, as in Fig. 7. The overdots denote differ-
entiation with respect to ¢, e.g., J(¢, ;) = 3J(¢, t,)/dt. [Note
that if the compliance rates in (28) were replaced by the
compliance values, we would imply that the material solidifies
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in a stressed state, which would be physically unacceptable.]
According to (24)

1 V 1 1
m=zﬁ<‘v‘z+z) ()

Function k(¢), which characterizes the growth of viscosity
and is important for long-time creep of a paste loaded at early
age, must also be quantified in relation to the growth of gel
volume. A simple way to describe this function is to assume
that, at the moment of loading, it is proportional to v(¢,) and
later increases proportionally to ¢ because this preserves the
logarithmic form of the long-time creep curves; thus

t
k(t) = v(to) 7 (30)

In a strict sense, however, parameter k(t) must be inter-
preted more generally than just the volume of cement gel.
The reason is that after several months the volume increase
of the cement gel is very small, yet the creep properties still
vary significantly up to many years of age. As one possible
explanation, it was proposed that the cement gel undergoes
polymerization in which new bonds are being formed for a
long time even after the volume growth has almost ceased.
Because creep is probably caused by debonding in the cement
gel, polymerization must be expected to reduce creep. Also,
addition of new bonds increases the load-bearing part of ce-
ment paste volume that is coupled to the solid framework.
Some parts of hardened cement gel may be loose lumps when
formed and require further bonds to start carrying the load.
To take this phenomenon into account, volume k(f) is better
interpreted as the volume of the load-bearing portion of the
cement gel that represents the part that is sufficiently bonded
to function as part of the solid framework [see also BazZant
and Prasannan (1989)].

The compliance function of the hydrates can be obtained
by integration of equation (28), which may be written as

Tt 1) = 41 + 2 e dQ(, 1) + gy TnlL + (¢ = 1))

g

94 t)
+ ——<In|—-
v(ty) (to (31)
This is analogous to the expression obtained for the solidi-
fication theory in Bazant and Prasannan (1989)

1 1

= — = — 32a.b
4 Eo(i) %= (32a,b)

and ¢, and ¢, are two parameters that can be adjusted ac-
cording to experimental data.
Function Q(t, ¢,) is defined by its rate with respect to ¢



o, &) = (*-) Gl Y -

t o+ (t - to)"

Integration of this expression leads to the binomial integral,
which, unfortunately, cannot be evaluated in a closed form
for a realistic value of n. A simple approximate formula for
the integral Q(t, '), however, exists, and a numerical table
has been given (BaZant and Prasannan 1989).

Now we have to introduce the condition of parallel coupling
of the hydrates (gel) with the anhydrous cement grains. The
model in Fig. 6 is loaded at ¢, by stress g, which is kept
constant afterwards. For the parallel coupling we have the
equilibrium relations

a(ty)o,(t,) + o,(t,) = oy, att =, (34a)
a(o, (t) + o,(t) = o(t) = o, at >4, (34b)

where o,. = stress transmitted by the element representing
the anhydrous cement, considered as completely elastic
(Young’s modulus £, ); and o, (subscript % is for hydrate)
= stress transmitted by the growing gel

! dv(1)
00 = | o1 D g (9)
Subtracting (34) we have
a()Ao,, + Aac,(0) + Ac, = 0 (36)
Furthermore

Oy
Aeac = AEh; U(xr([()) = Euc T x (37a,b)

E]

Ao,

o,(ty) = o, — a(0)o, (f); Ag, = E (37¢,d)
Because £, = q,/,{t, 1), we have Ag, = Ac/E} +

oid,/E,, and so

o, E, — R, — AaEa
= T Zu — Ty — 0404 38
A% = Er T aWE. + Ef (38)

Consequently, the compliance function of the hardened
cement paste, corresponding to the entire model in Fig. 6 is
1-b b E, - R, — AE,

Lty 2

E, *C% B a0k, + B

1
Tt 1) = — + (39)
¥l 0, E:;
This compliance function can then be combined with the ef-
fect of the aggregate according to the previously derived equa-
tion (8). to predict the overall compliance function of con-
crete.

ANALYSIS OF TEST DATA

Although the effects of concrete composition on creep were
experimentally studied by many investigators (Bazant et al.
1976), the tests of Ward et al. (1969) seem to provide the
only sufficiently comprehensive data set permitting numerical
calibration and verification of the present model. These in-
vestigators performed 14 tests of basic creep using the same
materials: two pastes, four mortars, and eight concretes (la-
beled as P, M, and C), with or without entrained air (labeled
with or without A); see Table 1, in which A, = aggregate
volume within a unit volume of concrete; s/g = ratio of fine
to coarse aggregates (sand to gravel) by mass; and f; = stan-
dard compression strength at the age of loading t, = 7 days
for all the tests. Cement of type III was used. The coarse
aggregates, of sizes from 2.4 to 10 mm, consisted of 55%
quartz and 25% limestone (ASTM absorption was 0.92). The
fine aggregate (or sand), of grain sizes from 0.1 to 2.4 mm,

TABLE 1. Composition and Main Characteristics of Ward et al.
(1969) Data

Air
Mix content f. E
number wic g s/G (%) (MPa) (GPa)
(1) 2) (3) 4 {5) (6) (7)
P7 0.80 — — 4.00 12.5 4.4
P7A 0.63 — —_— 10.70 14.9 7.1
M5 0.88 0.555 — 4.00 17.6 15.3
MSA 0.69 0.514 — 12.50 21.0 12.6
M6 0.60 0.502 — 3.75 40.0 18.8
M6A 0.45 0.396 — 11.00 39.8 15.9
C1 0.80 0.705 1/1.23 2.75 23.1 24.2
ClA 0.68 0.683 1/1.38 8.00 20.5 16.8
C2 0.88 0.716 1/1.16 3.25 17.4 17.7
C2A 0.70 0.697 1/1.33 8.00 19.5 18.7
C3 0.63 0.687 1/1.31 2.50 31.5 21.2
C3A 0.48 0.659 1/1.87 7.75 31.9 26.4
C4 0.62 0.690 1/1.28 3.00 34.1 242
C4A 0.47 0.651 122.12 8.00 36.6 23.2

g ®  Paste P7
g """" Log 2PL
g Modei

© —

0.1 1 10 100 1000
fog (time) in days

FIG. 8. Paste P7: Best Fit with Model and with Double Power Law

was a natural sand (with ASTM absorption 2.0). The test
specimens were cylinders of 76 mm in diameter, loaded by
compressive stress 0.3f.. The mass densities of the fine and
coarse aggregates were 2.6 and 2.65 g/cm?, respectively.

One advantage of these data is that the water cement ratio
w/c of the paste in these concretes and mortars ranged from
0.45 to 0.88 in the mix, and from 0.41 to 0.80 after a correction
for the water absorbed by the aggregates. This is a broad
range. Therefore, the expression of the compliance function
for pastes P7 and P7A cannot be used for other pastes. The
compliance function J,(¢, ¢') for the other pastes must be
deduced from that for paste P7 by using the present theory
for the paste composition. Thus, comparisons with the data
for the other pastes and concretes provide a verification of
this theory.

Furthermore, the measurement of the comprehensive
strength f. provides an additional check on the data (espe-
cially on the amount of air, which is difficult to measure).
The relation to W/c and A/c is known to be quite well de-
scribed by Feret (1896) law, and can be written as

w+ v\ 7?
c

fi = KR, (1 + 3.1 (40)
in which W and V' = volumes of water and of voids (pores)
per unit mass of concrete; ¢ = mass of cement per unit mass
of concrete; R, = compressive strength of the cement, mea-
sured on a 1:0.5:2 mortar specimen and taken here as 60
MPa; and K = empirical factor depending on the type of
aggregate. Fig. 7 demonstrates that Ward et al.’s (1969) data
are quite consistent from a mechanical point of view with
Feret (1896) law in which K = 6.26.

The measured values of the compliance function J(t, ¢,) are
shown by the data points in Figs. 8-11, and the predictions
of the present model are shown by the curves. The analysis
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of concrete as a composite begins with the known values of
the compliance function of the paste. The optimum fitting of
paste P7 with the log-double power law (BaZant 1986; BaZant
and Chern 1985) provided the expression

It ) = 61_6{1 + 134.1 In[1

+0.0278(:7% + 0.016)(¢ — 15*2)} [(GPa)]-? (41)

in which ¢ and ¢, must be given in days, and the exponent 3/4
was chosen a priori because the age effect had not been mea-
sured in this experimental study. In fitting the log-double
power law to test data, it was assumed that the asymptotic
modulus E; for extrapolation of the creep curve to infinitely
fast loading is 1.5 times the conventional static modulus of
elasticity (which corresponds to load duration of about 0.1
day).

The parameters of the model, that is, the elastic moduli of
anhydrous cement and of cement gel, and parameters g, and
q, of the compliance function for the gel, were obtained by
optimum fitting of the data P7 in Fig. 9. The following values
were found: E,. = 35 MPa; E, = 80 MPa; g, = 0.1768; and
q, = 0.04304. The value of parameter b at w/c = 0.8 was
chosen as b = 0.25.

The aforementioned parameter values have been kept fixed
in all calculations. The compliance functions of the other
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pastes (Figs. 10 and 11) were then predicted by using the
present model. In doing so, parameter b for the parallel-series
coupling with the hydrates was taken as a decreasing function
of w/c

b(t,, wic) = b(wic) = 0.574 — 0.787(wic)>’  (42)

The reason for this decrease is that, in a paste of a lower
wlc ratio, the portion of the gel in the thin layers between
the cement grains (which corresponds to the series coupling)
is smaller. The compliance functions obtained for the pastes
by the model were then smoothed by fitting them also with
the log-double power law

It ) = 5 {1+ o Inl1 + 9,6 + 0.016)(¢ = Y} (43)
§
which was then easier to introduce in the parallel series model
for concrete in (8). The conventional static elastic modulus
of the paste is obtained from (43) as E, = 1J,(t, + 0.1, &).
The optimum fitting of the test data for various individual
tests of mortars and concretes was done individually (Figs.
11 and 4). The optimum fits also indicated for the elastic
modulus of the aggregate (which was not reported), the value
E, = 70 MPa.
The values of A, p, and r, in (11), based on the idea of
maximum aggregate compactness, have been left undeter-
mined. They must be identified experimentally from tests.



Optimum fitting of the data by Ward et al. (1969) provided
the values A = 0.283, r, = 0.639, and p = 5.15. With these
values, the modified Caquot’s formula led to the results in
Fig. 12, which compares the value of a obtained by fitting
the present model to data with the value of A; calculated
from (11). The agreement with test data is much better than
that achieved with the alternative assumptions discussed be-
fore. It must also be kept in mind that creep and shrinkage
tests always exhibit significant scatter (BaZant et al. 1987a,
b), and in the light of such scatter the results seen in the
figures appear quite acceptable.

The values obtained for A are larger than those predicted
by Caquot’s formula. Finding a greater value for A} and
A,... implies a larger creep for the concrete. This might per-
haps also be explained by other phenomena, such as possible
separation of the paste from the aggregates, or the fact that
the layers near the pieces of gravel might have a higher po-
rosity than the rest of the paste and thus exhibit more creep
than the paste without the aggregate. Another reason why
A} is larger than expected could be that modeling cement as
only a two-phase composite might not be entirely realistic
(Nilsen and Monteiro 1993).

SUMMARY AND CONCLUSIONS

1. The proposed parallel-series model for determining the
creep of concrete from the creep of hardened cement
paste and the elasticity of aggregate is simple to imple-
ment and gives realistic results.

2. The parallel-series model can also be introduced for
predicting the effects of age and water-cement ratio on
the creep of hardened cement paste. To this end, the
previously proposed solidification theory is generalized
to describe interaction with elastic grains of anhydrous
cement, the influence of changing porosity, and the
growth of the hydration products in time. As in the
original solidification theory, the basic creeping con-
stituent (i.e., the cement gel) is considered nonaging
and the aging property of creep is obtained entirely as
a consequence of the growth of volume concentration
of the load-bearing gel due to the progress of hydration.
In a more precise physical interpretation, this growth
may include the effect a gradual increase in the number
of loads (or polymerization), which causes that forma-
tion of further bonds couples additional hydration prod-
ucts as part of the load-bearing solid framework of the
material and thus reduces creep.

3. The subdivision of the matrix (cement paste) between
the parts coupled in parallel and in series is based on
an adaptation of Caquot’s concept of maximum com-
pactness of aggregates. The portion of paste coupled in
parallel represents the amount of the paste needed to
fill the voids when the aggregates are at their maximum
possible compactness. The remaining portion of the paste
is then considered to be coupled in series. This new idea
appears to give good agreement with comprehensive test
data from the literature.

4. To sum up, the basic ideas in the present model are:
(1) to use the parallel-series model and the age-adjusted
effective modulus method to handle creep with aging;
(2) to determine the subdivision of matrix in the model
on the basis of maximum aggregate compactness; and
(3) to combine the solidification theory with the parallel-
series model.
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