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Scaling of Quasi-Brittle Fracture
and the Fractal Question

The paper represents an extended text of a lecture presenting a review of recent
results on scaling of failure in structures made of quasibrittle materials, characierized
bv a large fracture process zone, and examining the question of possible role of the
fractal nature of crack surfaces in the scaling. The problem of scaling is approached
through dimensional analysis, the laws of thermodynamics and asvmptotic matching.
Large-size and small-size asymptotic expansions of the size effect on the nominal
strength of structures are given, for specimens with large notches (or traction-free
cracks ) as well as zero notches. and simple size effect formulas matching the required
asymptotic properties are reported. The asvmptotic analysis is carried out. in general,
for fractal cracks, and the practically important case of nonfractal crack propagation
is acquired as a special case. Regarding the fractal nature of crack surfaces in
quasibrittle materials, the conclusion is that it cannot play a signification role in
fracture propaganion and the observed size effect. The reason why Weibull statistical
theory of random material strength does not explain the size effect in quasibrirtle
failures is explained. Finally, some recent applications to fracture simulation oy
particle models ( discrete element method ) asd 10 the determination of size effecr and

fracture characteristics of carbon-epoxy composite laminates are orieflv reviewed.

1 Introduction

Scaling is the essertiai characteristic of every physical theory.
However. in mechanics of materials. little artention has been
paid to the scaling of failure. More than a dozen years ago. the
observed effect of structure size on the nominal strength of a
structure had generally been explained by Weibuil-type theories
of random strength. However. careful recent analysis (BaZant
and Xi. 1991) indicates that this Weibull-type theory does not
capture the essential cause of size effect for quasibrttle materi-
als such as rocks, toughened ceramics. concretes, mortars, brittle
fiber composites. ice (especially sea ice), wood particle board
and paper. in which the fracture process zone is not small comn-
pared to structural dimensions and large stable crack growth
occurs prior to faiture. Rather. the dominant source of size effect
in these materials is deterministic and consists in the global
release of stored energy from the structure as a result of Jarge
fracture and the associated redistribution of stresses.

Approximate analysis of the global energy release was shown
to lead to a simple size effect law (BaZant 1983, 1984) for
quasi-brittle fracture. This law subsequently received extensive
justifications. based on: (1) comparisons with tests of notched
fracture specimens of concretes. mortars, rocks, ceramics, fiber
composites (Bazant and Pfeiffer, 1987: BaZant and Kazemi.
1990a,b; Bazant et al., 1991; Gettu et al.. 1991, BaZant et al.,
1994; Bazant et al., 1995) as well as unnotched reinforced
concrete structures, (2) similitude in energy release and dimen-
sional analysis, (3) comparison with discrete element (random
particle) numerical model for fracture (BaZant et al., 1990:
Jirdsek and BaZant, 1995). (4) derivation as a deterministc
limit of a nonlocal generalization of Weibull statistical theory
of strength (BaZant and Xi. 1991), and (5) comparison with
finite element solutions based on nonlocal model of damage
(BaZant et al., 1994). The simple size effect law has been
shown useful for evaluation of material fracture characteristics
from tests. Significant conmributions to the study of size effects
In quasi-brittle fracture have also been made by Carpinteri
(1986), Planas and Elices (1988a.b). van Mier (1986) etc.
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Recently, the fractal nature of crack surfaces in quasivnuie
matedials (Mandelbrot ¢t al. 1984: Mecholsky and Mackin.
1988: Molosov and Borodich, 1992: Borodich. 1992: Xie. 1993:
etc.) has been studied and it has been suggested that the crack
surface fractality might be an alternate source of the observed
size effect (Carpinteri, 1994; Carpinteri et al., 1993, 1955:
Lange et al., 1993, and Saouma et al.. 1990, 1994).

This paper, which represents the expanded text of a lecture
at the Diamond Jubilee Symposium of ASME Materials Divi-
sion held in San Francisco in Novernber, 1995. presents a gener-
alized asymptotic theory of scaling of quasibritle fracture and
also explores the possible roie of the crack surface fracality in
the size etfect. Some selected applications to panticulate materiai
models and to fracture testing of fibre composite laminates are
also briefly demonstrated.

2 Large-Size Asymptotic Expansion of Size Effect
for Nonfractal and Fractal Fracture '

For the sake of generality we will conduct the analysis for
fractal cracks and the nonfractal case will then simply ensue as
a limit case, Let us consider a crack representing a fractal curve
(Fig. 1) whose length is defined as a; = §y(a/8y)* where d,
= fractal dimension of the crack curve (= [) and 64 = lower
limit of fractality implied by material microstructure, which
may be regarded as the length of a ruler by which the crack
length is measured (Mandelbrot et al.. 1984 ). Unlike the case
of classical, nonfractal fracture mechanics, the energy dissipated
per unit length of a fractal crack cannot be considered as a
material constant because the length of a fractal curve is infinite.
Rather, the energy i, dissipated by a fractal crack in a two-
dimensional body of thickness & needs to be defined as

W /b = Gya® (1)

where G, = fractal fracture energy, of dimension Jm ™% "' A
nontractal crack is the special case for d; = 1, and in that case
G, reduces to Gy, representing the standard fracture energy. of
dimension Jm™". Fractality of the crack surface profiles across
thickness b is not considered.

The following three hypotheses will be introduced:
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Fig. 1 Von Koch curves as examples of fractal crack at progressive
refinement

1. Within a certain range of sufficiently small scales, the
failure is caused by propagation of a single fractal crack.

2. The fractal fracture energy, Gy is a material constant
correctly defining energy dissipation.

3. The material may (although need not) possess a material
length, c;. .

The rate of racroscopic energy dissipation ., with respect
to the ‘‘smooth™’ (projected. Euclidean) crack length a is:

(e.g., Borodich, 1992; Molosov and Borodich, 1992). To char-
acterize the size effect in geometrically similar strucrures of
different sizes D (characteristic dimensions), we introduce, as
usual. the nominal stress @y = P/bD where D = characteristic
size (dimension) of the structure, P = dead load applied on the
structure (or load parameter), and b = structure thickness in
the third dimension (we restrict attention to two-dimensional
similarity; generalization to three-dimensional similarity is ob-
vious). When P = P, = maximum load, oy = nominal
strength.

The material length, ¢,, may be regarded as the size (smooth.
or projected) of the fractal fracture process zone in an infinitely
large specimen (in which the structure geometry effects on the
process zone disappear). The special case ¢, = 0 represents
fractal generalization of linear elastic fracture mechanics
(LEFM). Alternatively, if we imagine the fracture process zone
to be described by smeared cracking or continuum damage
mechanics, we may define ¢, = (G,/W,)"'*~* in which W,
= energy dissipated per unit volume of the continuum represent-
ing in a smeared way the fracture process zone (area under
the complete stress-strain curve with strain softening). As still
another ajternative, in view of nonlinear fracture mechanics
such as the cohesive crack model, we may define ¢, =
(EGplf ©)"*"% in which E = Young’s modulus and f;, =
material tensile swength..

There are two basic variables, 2 and ¢,, both having the
dimension of Euclidean length. We will introduce two dimen-
sionless variables: @ = a/D and € = ¢,/D. According to Buck-
ingham's theorem of dimensional analysis (e.g., Sedov, 1959;
Barenblatt, 1979), the complementary energy [1* of the struc-
ture with a fractal crack may be expressed in the form:

= X p3
=% oD f(a.8) (3)

in which fis a dimensionless continuous function of a and 4,
characterizing the geometry of the structure and loading.

The laws of thermodynamics must be satisfied by nonfractal
as well as fractal cracks. Let us begin with the first law, i.e.,
energy balance. In this respect, note that the energy release
from the structure as a whole must be calculated on the basis

of a rather than a;. Indeed, the smooth length a is the length
that matters for the overall strain energy of the elastic stress
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field on the macroscale. Therefore, [1*/da = 9/ Ja. Subst-
tuting (2) and differentiating. we obtain
g—'i: + D32 i! le = !
E Dg(a, 8) + 2D*f(a. §) £ 9a er
in which g(a. ) = 8f(a, 8)/8a = dimensionless energy re-
lease rate.

According to the second law of thermodynamics. the condi-
tion of stability of equilibrium state of a structure is equivalent
(e.g., BaZant and Cedolin, 1991, chapter 10) to the condition
AP/8a > 0. At the stability limit, 9P/8a = 0 which coincides
with the condition of maximum load. Therefore, if we are inter-
ested in the size effect on the load at the limit of stability. that
is, the maximum load or nominal strength. we have the condi-
tion doy/da = 0. So, Eq. (4) gives:

-
¥ VD, (a. 6)

where a, = relative crack length a at maximum load.

(4

(5)

3 Fractal and Nonfractal Scaling Laws

Because function g(a,. §) ought to be smooth, we may ex-
pand it into Taylor series about the point (a, ) = (a0. 8). Eq.
(4) thus provides:

ES..
oy = 1,—3 [g(ao. 0) + gi(ao, 0)%

1 o 2 -2
+5-!gz(ao. O) (‘D-) + ... (6)

in which g,(aq. 0) = dg(as, 8)/96. g2(as, 0) = §°g(aq, 9)/
98%, . .., all evaluated at @ = 0. The last equation represents
the large-size asymptotic series expansion of size effect. To
obtain a simplified approximation. we now truncate the asymp-
totic series after the linear term. Then. with the notations:

8:i{ag, O) ' EG,
D, = , B ,=J———- (7
¢ 7 g, 0) f ¢81(ao, 0) )

the following size effect of fractal fracture is obtained:

-172
oN = Bf:D(dl—nn(l + BD_)

0

(8)

For the nonfractal case, d,— 1. this reduces to the size effect
law deduced by BaZant (1983, 1984), which reads -7

poBfi 5D

Vl+ 8 " Dy

in which A is called the brittleness number (BaZant 1987: Ba-
Zant and Pfeiffer, 1987).

For geometrically similar fracture test specimens, a, is con-
stant (independent of D), and so is D,. For brittle failures of
geometrically similar quasibrittle structures without notches, it
is often observed that the crack lengths at maximum load are
approximately geometrically similar. For concrete structures,
the geometric similarity of cracks at maximum load has been
experimentally demonstrated for diagonal shear of beams,
punching of slabs, torsion, anchor pullout or bar pullout, and
bar splice failure, and is also supported by finite element solu-
tions (e.g., ACI, 1992; BaZant et al.. 1994 ) and discrete element
(random particle) simulations (BaZant et al., 1990), albeit for
only a limited size range of D. Thus, k, co, Do, % and Bf!
are all constant. In these typical cases, (8) and (9) describe the
dependence of oy on size D only, that is, the size effect. Figure

(9)
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Fig. 2 Size effect curves obtained for geometrically similar specimens
with nonfractal and fractal cracks and finite size of fracture process zone
{possible transition to horizontal line for nonfractal behavior is shown
for D < D,)

2 shows the size effect plot of log o versus log D at constant
ay. Two size effect curves are shown: (1) the fractal curve and
(2) the nonfractal curve (for which the possibility of a cut-off
of fractality at the left end is considered in the plot).

The curve of fractal scaling obtained in Fig. 2 does not agree
with the bulk of the aforementioned experimental evidence ( for
concrete, see e.g., BaZant et al., 1994). Just to give some exam-
ple, Fig. 3 shows the data for size effect measured on double
edge-notched and single edge-notched tensile fracture speci-
mens of carbon fiber epoxy composites used in aerospace indus-
try (BaZant et al., 1995), and Fig. 4 shows the data for size
effect measured by BaZant and Pfeiffer (1987) on three types
of fracture specimens of concrete and mortar. So it must be
concluded that the size effect is not significantly affected nor
explained by the fractal nature of crack surfaces in quasibrittle
materials.

The aforementioned objection to the fractal hypothesis is not
the only one. The fracture front in quasibrittie materials does
not consist of a single crack. but a wide band of microcracks,
which all must form and dissipate energy before the fracture
can propagate. Only very few of the microcracks and slip planes
eventuaily coalesce into a single continuous crack, which forms
the final crack surface with fractal characteristics. Thus, even
though the final crack surface may be to a large extent fractal,
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Fig. 3 Size etfect on nominal strength measured i
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Fig.4 Size effect on nominal strength measured on concrete and mortar
specimens (top: three-point bend specimens, middle: double edge-
notched centric tension specimens, bottom: eccentric compression
symmetricaily edge-notched specimens: d, = maximum aggregate size).
After Bazant and Pfeiffer {1987).

the fractality cannot be relevant for the fracture process zone
advance. Most of the energy is dissipated in the fracture process
zone by microcracks (as well as plastic-frictional slips) that do
not become part of the final crack surface and thus can have
nothing to do with the fractality of the final crack surface.

So it appears one ought to distinguish two types of fractality:
(1) Fractality of the final crack surface, which is an undisputed
morphological feature (although only for a limited range of
scales); and (2) fractality of the fracture process controlling
energy dissipation. The latter cannot be a significant property
of quasibrittle materials.

There is another, conceptual, problem. Unlike the shoreline
of England, the crack must have a morphology that is kinemati-
cally admissible, such that the zones of material adjacent to the
crack face could move apart as two rigid bodies. But a fractal
curve can have recessive segments and even spiraling segments
which preclude such movement.

4 Extensions and Ramifications of Asymptotic Anai-
ysis

Material length ¢, can, in particular, be rigorously and unam-
biguously defined as the LEFM-effective length (measured in
the direction of propagation) of the fracture process zone in a
specimen of infinite size. In that case, § = /D = (a ~ay)/D
= a — ao, and 50 g(a, 0) reduces to the LEFM function of
one variable, g(a). Also, g(a,, 0) reduces to 8(ap), 8108 =
d/da, and g,(a, 0) takes the meaning of g’(a) = dg(a)/ da.
Equation (7) thus yields:
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( EG
Do=C/'—g ao)' Bfi = |— —,
g(ao) <8 (ao)

4,
- -——_EG"?(""" (10)
8 (ag)

and so Eq. (8) takes the form:

EGf,d,aS/"
On =
" Ve'(a0)c; + g(ao)D

The advantage of this equation is that its parameters are directly
the matenial fracture parameters. For 4, = 1, Eq. (11) reduces
to the form of size effect law derived in a different manner by
BaZant and Kazemi (1990, 1991) (also Eq. 12.2.11 in BaZant
and Cedolin. 1991). Firting this equation to size effect data,
which can be done easily by rearranging the equation to a linear
regression plot. one can determine G; or Gy; and ¢;. This serves
the basis of the size effect method for measuring the material
fracture parameters, which has been adopted by RILEM as an
international standard for concrete,

Alternatively, one may introduce more general dimensionless
variables £ = 8’ = (¢c,/D)’, h(ay, £) = [g(aq, 8)), with any
r > 0. Then, expanding in Taylor series function h(ayq, £) with

‘respect to &, one obtains by a similar procedure as before a
more general large-size asymptotic series expansion (whose
nonfractal special case was derived in BaZant, 1985, 1987):

on=0pB"+ 1 + kB + 1B + k87 + .17V (12)

(11)

where 8 = D/Dy and k,, x, . . . are certain constants. However,
based on experiments as well some limit properties, it seems
that r = 1 is the appropriate value for most cases.

It may be noted that, by retaining more terms of the large-
size asymptotic expansion (12), the accuracy can be improved,
but only for large D. The expansion in Eq. (12) diverges for
D — 0. To get a better description of the size effect for small
D, one needs a small-size asymptotic expansion.

The previous energy release rate equation (o3/E)Dg(a, ¥)
= S. (Eq. 4) is not meaningful for constitutive models such as
the smeared cracking or the continuum damage mechanics. For
such models, the material failure must be characterized by W,
rather than G;. Therefore, instead of Eq. (4), the energy balance
equation (first law) for dow/8a = 0 (second law) must now
be written in the form o3 [¥(a. n)})'/E = W, where y(a, n) =
dimensionless function of dimensionless variables @ = a/D and
n = (Dl/cs)" = 97" (vanable ¥ is now unsuitable because ¥ —
x for D = 0), and exponent > 0 is introduced for the sake
of generality, same as before. Because, for very small D, there
is a diffuse failure zone, a must now be interpreted as the
characteristic size of the failure zone, e.g., the length of cracking
band. The same procedure as before now furnishes:

on = 0pll + B" + BoB¥ + bB¥ + .. 7V (13)
in which b,, by, . . . are certain constants and
oo = EG,
" Ve e, O
vl OY(aq, 0)]""
Dy =c 14
° ’[w(ao. 0) (14

Equation (14) represents the small-size asymptotic series
expansion. This expansion of course cannot correctly describe
the asymptotic limit for D — =,

One important common feature of the large-size and small-
size asymptotic series expansions in Eqgs. (12) and (14) is that
they have in common the first two terms. Thus, if either series
is truncated after the second term, it reduces to the same general-
ized size effect law (Bazant, 1985):
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gy =0s(1 + 87" (8 =DIDy) (13)
Since this law. including its special case for r = 1, is anchored
to the asymptotic cases on both sides and shares with both
expansions the first two terms, it may be regarded as a matched
asymptotic. that is, an intermediate approximation of uniform
applicability for any size of the structure (e.g., Bender and
Orszag, 1978; Barenblatt, 1979). Based on experience, the
value r = 1 appears, for various reasons, most appropriate for
practical use.

In some types of failure, such as compression failures and
especially the brazilian split-cylinder test, a plastic mechanism
can operate simultaneously with fracture. In that case, the fol-
lowing generalization with nonzero residual nominal strength
o, may be used (BaZant, 1987):

on=0p(l + B V¥’ + ¢, (16)

Unnotched quasibrittle structures that reach the maximum
load when the crack initiates from a smooth surface, as exempli-
fied by the bending test of modulus of rupture S+ of a plain
concrete beam, require a different approach. Applying the size
effect law in Eq. (8) or (9) for the case ae — 0 is impossible
because g(ao, 0) vanishes as g — 0. To deal with this case.
one must truncate the large-size asymptotic series expansion
only after the third term. Then, considering that 7 = | and g(ay,
0) = 0, and restricting attention to the nonfractal case, the same
derivation as that which led to Eq. (11) furnishes

\/ EG, (
On = =0y
8'(0)5+38"(0)53D"

ZDD -1/2
1-=2 17
2) an

in which 0§ = VEG;/g'(0)c, and D, = —~[g"(0)/4g'(0)]e,,
with subscript b referring to the boundary layer, in which the
crack tip is located during crack initiation; and ¢y = xcy where
« = constant = 1 but close to 1. The reason that &; = ¢, is that
the fracture process zone for fracture initiation without a notch
may be expected to be larger than for a crack starting from a
notch. It is now convenient to introduce the approximation ( 1
- 2637 = | + ¢ with & = D,/D, which is admissible because
it does not change the size effect for large D. The resulting size
effect law for failures at crack initiation from a smooth surface
is

on=Bf: (1 +%) =f7 [1 —'0.0634g”(0)%] (18)

The first part of this equation was derived by BaZant et al.
(1995) in a different manner: f [ is the modulus of rupture for
infinitely large beam (but not so large that Weibull statistical
size effect would become significant), and B is a dimensionless
parameter. It is important to note that the limiting value g'(0)
is shape independent, and so is Bf 7, provided that the crack
does not initiate from a sharp corner tip; always g’ (0) = 1.12%x
which leads to the last expression in (20). This equation can
be arranged as a linear regression of oy versus 1/D. which is
again helpful for easy identification of the constants from tests.

By matching of the three asymptotic expansions, namely: (1)
the large-size expansion for large a,, (2) the large-size expan-
sion for vanishing ay, and (3) the small-size expansion for large
@, the following approximated universal size effect law valid
for failures at both large cracks and crack initiation from a
smooth surface may be derived:

D =172
on = 1 +—=
Y ""( Do)

AR ()T o
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where, denoting g = g(a,). g’ = g'(a), g5 = g'(0), 8" =
g"(ao).

To = Cv ’ s

u(g™) = (—g&") = negative part of g”; n = empirical constant
closeto 1; k = 1 for ag = ¢;. « = constant > | for @y = 0 (x
= 1.4).

Equation (19) can be proven by expressing o 3* in terms of
J and expanding it into Taylor senies in ¢ about point ¥ = 0.
This vields (11) if &y > 0. and o/ f7 = | + D, /(D + nD,)
if @p = 0. The latter differs from (18) by constant n, but this
does not affect the first two terms of the expansion in D' in
the denominator in Eq. (17). Introducing constant n achieves
that oy be finite for D — 0, for both ay > 0 and a, = 0. The
reason for introducing the negative part of g” is that for gg >
0 the crack cannot initiate at the surface (because the stresses
before fracture are not maximum at the surface).

5 Review of Some Recent Applications

S.1 Size Effect Tests of Fracture Characteristics of Car-
bon-Epoxy Laminates. Measurements of the size effect on
the nominal strength of notched geometrically similar speci-
mens of fiber composite laminates were conducted by BaZant
et al. (1995). Tests were made on graphite/epoxy laminates
made of 0.127 mm thick unidirectional plies. The specimens
were rectangular strips of 0.25, 0.5, 1, and 2 in. widths and 1.
2, 4, and 8 in. lengths. One set of specimens had double-edge
notches and a {0/90, ), cross-ply layup, and another set of speci-
mens had a single-sided edge notch and a [0/+45/90], quasi-
isotropic layup.

A significant size effect was observed in these tests. It was
found to approximately agree with Eq. (9) and (11); see Fig.
3. Optimum fits of the test results with the size effect formula
in Eq. (11) were obtained, and the size effect law parameters
determined by linear regression were then used to identify the
material fracture characteristics, particularly the fracture energy
Gy and the effective length ¢, of the fracture process zone.
Because the crossply laminate is not isotropic but orthotropic,
the LEFM energy release rate function g(a) was determined
according to the recent solution of the stress intensity factor for
orthotropic specimens of the geometry used, which had been
obtained by Bao et al. (1992). Comparisons of the test results
to the size effect law for the cross-ply and quasi-isotropic lami-
nates are shown in Fig. 3, in which the circles represent the
nominal strengths measured in individual tests.

The R-curves were determined on the basis of the maximum
load data (Fig. 3), using the procedure proposed in Bazant and
Kazemi (1990).

The results show that in design situations with notches or
large traction-free cracks the size effect on the nominal strength
of fiber composite laminates must be taken into account and
can be described by the size effect theory expounded here.

5.2 Size Effect in Particulate Material Model. Fracture
of quasibrittle materials exhibiting a large zone of distributed
cracking can be effectively simulated by the particle model,
representing an adaptation of the discrete element method. It
has been demonstrated that the size effect exhibited by particle
models agrees quite well with the size effect law in Egs. (9)
or (11) (BaZant et al., 1990). This model was extended and
refined in a recent study by Jirisek and BaZant (1995) and was
applied to the determination of macroscopic fracture character-
isucs of the particulate material model. The particle locations
have been generated randomly according to prescribed particle
size distribution. The mechanical properties on the macroscale
were characterized by a triangular elastic-softening force-dis-
placement diagram for the interparticle links. An efficient aigo-
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rithm, based on replacing the stiffness matrix changes by inelas-
tic forces applied as external loads, was developed. This algo-
rithm made it possible to calculate the exact displacement
increments in each loading without iterations and using only
the elastic stiffness matrix. The size effect was simulated for
geometrically similar notched three-point bend beams of sizes
in the ratio 1:2:4:8. (Fig. 5, top left). The average maximum
loads of these beams calculated from about ten random particle
simulations for each beam size were found to agree quite well
with the size effect law in Eq. (9).

Fitting Eq. (11) to these data (Fig. 5, top right), which can
be done by linear regression after this equation is rearranged,
the effective macroscopic fracture characteristics, including G,
and ¢y, were determined. This was repeated for many different
characteristics of the interparticle force-displacement relation
specified as the input. In this manner, it was determined (Fig.
5 bottom) how G, and ¢, approximately depend on the microduc-
tility y, and on the coefficient of variation w; of the randomly
simulated values of microstrength £, ( peak of the assumed trian-
gular interparticle force displacement diagram), which was as-
sumed to have a lognormal distribution. (v, was defined as the
ratio of interparticle displacement when the interparticle force
is reduced to zero to the displacement at peak force.)

Obviously. study of the size effect is effective for determining
the influence of the microscopic material properties on its mac-
roscopic fracture characteristics.

6 Is Weibull-Type Size Effect Significant for Quasi-
brittle Failure?

Before closing, it is proper to explain at least briefly why
strength randomness is not considered in the present analysis
of size effect. Until about a decade ago. the size effect observed
on the nominal strength of structures has been universally ex-
plained by randomness of strength and was thought to be prop-
erly calculated according to Weibull theory. Recently, however,
it has been shown (BaZant and Xi, 1991) that this theory cannot
apply when large stable fractures can grow in a stable manner
prior to maximum load, as is typical of quasibrittle materials.

The main reason is the redistribution of stresses caused by
stable fracture growth prior to maximum load and localization
of damage into a fracture process zone. If the Weibull probabil-
ity integral is applied to the redistributed stress field, which has
high stress peaks near the crack tip, the dominant contribution to
the integral comes from the fracture process zone. The important
point is that the size of this zone is nearly independent of
Jstructure size D. The contribution from the rest of the structure
is nearly vanishing, which corresponds to the fact that the frac-
ture cannot occur outside the process zone. Because, in speci-
mens of different sizes, this zone has about the same size, the
Weibull-type size effect must, therefore, disappear. In other
words, the fracture is probabilistic, but only the random proper-
ties of the material in a zone of the same size decide the failure,
cven though the structures have different sizes. :

A generalized version of Weibull-type theory, in which the
material failure probability depends not on the local stress but
on the average strain of a characteristic volume of the material,
has been shown to yield lead to the approximate size effect
formula (BaZant and Xi, 1991):

Bf:

ON & ————
,laz:llm + B

(1)

in which m = Weibull modulus (exponent of Weibull distribu-
tion of random strength), which is typically about 12 for con-
crete, and n = 1, 2 or 3 for one-, two- and three-dimensional
similarity. Typically, for n = 2 or 3, 2n/m < 1, for concrete.
Then, for m — =, which is deterministic limit, this formula
approaches the size effect law in (9). Also, for D — 0, this
formula asymptotically approaches the classical Weibull size
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Fig. 5 Size effect simulations using a random particle model {top left exampies of ran-
domly generated trusses representing three-point bend fracture specimens represented
as particle systems; top right: caiculated nominal strengths for various sizes D and their
optimum fir with the size effect law; bottom: surfaces of G, (left) and ¢, (right) as functions
of microductility and the coefficient of variation of interparticie micro-strength). After Jiré-

sek and BaZant (1995).

effect law, and for large sizes and any m, this formula asymptot-
ically approaches Eq. (9). It has been shown that the difference
between these two formulas for concrete structures is significant
only for extremely small sizes, which are below the applicability
of continuum modeling.

Thus, for quasibrittle materials, the Weibull-type size effect
might be taking place only in very large structures that fail right
at crack initiation. Because, for beam depths such as D = 10D,,
the (deterministic) stress redistribution in the boundary layer,
underlying Eq. (18). is still significant, the beam depth beyond
which the Weibull-tvpe size effect could begin to dominate
must be at least D = 100D,. Hardly any case satisfving this
condition exists in concrete practice, and probably not for other
malterials. Besides, the objective of producing good quasibrittle
materials, that is, toughening them, is to achieve that ¢, be as
large as possible. But this prevents them from failing right at
crack initiation.

7 Relations to Other Fracture Characteristics

Since the determination of G, and ¢, by linear regression of
maximum load data based on Eq. (6) is particularly easy. it is
convenient to use the size effect method for determining the
fracture parameters of other nonlinear fracture models as well.
For example, the fracture toughness and the critical crack-tip
opening displacement of Jeng-Shah two-parameter model for
concrete fracture (whichk represents an adaptation of Wells’
(1961) model for fracture of metals) may be calculated as

K. =‘38( YDoBf: = VE'G} (22)
8&rop = — ‘Jg( ag) g'(ao)DoBf |
_B K.~ _8 (G
% E' G = r\ E' (23)
The R-curve can be obtained from
cg'(a)
R(c) = G —=—— 24
c it g’ (o) (24)
g’ (o) ( g(a) )
— =20 44 25
¢ g(ao) \g'(a) aT @ (23)

366 / Vol. 117, OCTOBER 1995

Choosing a series of values of a. one can calculate from (25}
the values of the crack extension from the tip of notch (or
traction-free crack). ¢ = a — a,y. For each of them. one can
then evaluate R(c¢) from (24) (BaZant and Kazemi, 1990). This
R-curve, which represents the envelope of the curves of energy
rate balance for similar specimens of different sizes, is of course
strongly dependent on the geometry of the structure.

The cohesive crack model. pioneered for concrete by Hiller-
borg (1985), is characterized by the softening curve o = d(w)
relating the cohesive (crack-bridging) stress o to the opening
displacement w. The main characteristics of this curve are the
area Gf under the complete curve ¢(w) and the area G/ under
the initial tangent of this curve. It has been established computa-
tionally and experimentally (Karihaloo and Nallathambi, 1991:
Planas and Elices, 1989) that

G; ~ Gy, (26)

Thus. the value of G; resulting from the size effect law deter-

G[c' ~ 20!

mines the initial slope of the softening ¢(w) curve.

8 Main Conclusions

The size effect in quasibrittle structures can be analyzed on
the basis of asymptotic series expansions and asymptotic match-
ing. This approach, well known from fluid mechanics. is very
powerful because, while for normal sizes the problem at hand
is extremely difficult, it becomes much simpler both for very
large sizes (LEFM) and for very small sizes (plasticity).
Asymptotic matching is an effective way to obtain a simplified
descnption in the normal, intermediate range of sizes. The size
effect at crack initiation from a smooth surface can also be
descnbed the basis of the asymptotic energy release analysis.
and a universal size effect law comprising both types of size
effect can be formulated. Knowledge of the size effect law is
useful for identifying material fracture characteristics from tests.

The fractal aspect of the morphology of crack surfaces ob-
served in quasibrittle materials does not appear to play a sig-
nificant role in fracture propagation and the size effect.

The statistical size effect as described by Weibull's theory
of random strength cannot play a significant role in quasibrittle
structures, except for very large structures failing at crack initia-
tion—an undesirable behavior.
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