MICROPRESTRESS-SOLIDIFICATION THEORY FOR CONCRETE

CREEP.

II: ALGORITHM AND VERIFICATION
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ABSTRACT:

This paper presents a numerical algorithm for the microprestress-solidification theory developed

in a companion paper and verifies this theory by comparisons with typical test data from the literature. A model

for cracking is incorporated in the algorithm.

INTRODUCTION

The companion paper in this issue (BaZant et al. 1997) pre-
sents a generalization of the solidification theory. Compared
to the previous solidification theory, the generalization is better
justified by the understanding of the physical processes in-
volved in the effects of aging and drying on the creep of con-
crete. It remains to formulate a numerical algorithm for prac-
tical application of this new theory in finite-element programs
and to compare the new theory to the main available experi-
mental data. This is the purpose of this paper. All the defini-
tions and notations introduced in the preceding paper are re-
tained.

INCORPORATION OF CRACKING

For concrete exposed to a drying environment, it is neces-
sary to consider distributed cracking. If the specimen or struc-
ture is large and drying times long, it is also necessary to
consider localization of cracking into continuous cracks and
use fracture mechanics, but this situation will not be consid-
ered here.

To calculate the strain increments due to cracking, the crack
band theory is used (BaZant and Oh 1983). The cracking strain
is assumed to be additive to creep and shrinkage strains [Fig.
1(c)]. We are concerned only with cylinders subjected to sym-
metrical loading and, therefore, only cracking in the three or-
thogonal orientations normal to axes r, 9, and z [Fig. 1(a)] is
considered. Cracking is initiated when the stress reaches the
tensile strength (f;). After that, a linear softening stress-crack
strain diagram of slope C;, as shown in Fig. 1(b) is followed
(C; < 0). The material parameters needed to define this are the
tensile strength (f;) and the strain at zero stresses (g,). Un-
loading in Fig. 1(b) follows a vertical slope, which implies
that the unloading slope for the material as a whole [Fig. 1(d)]
is the elastic modulus E. The area under the stress-strain dia-
grams in Fig. 1(b and c) must be equal to G/h where G, =
fracture energy of the material and & = crack band width. The
slope of the descending branch shown in Fig. 1(c) is given by
E =(C;' — E™Y)™,

The rate of cracking strains for the axisymmetric case may
be written as ¢ = C,&, where the crack compliance matrix is
given by (BaZant and Oh 1983)
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However, since the role of cracking on the planes normal
to the radial coordinate r is negligible, the first diagonal term
of the matrix was replaced in computations by 0.

Without cracking it would be impossible to model the large
strain difference between the creep specimen and its compan-
ion shrinkage specimen that appears initially after the start of
drying. This strain difference is illustrated in Fig. 2, which
also shows the microprestress flow term for drying environ-
ments at 50 and 75% relative humidity (RH).

It must be emphasized that the concept of smeared cracking
must be replaced by fracture mechanics if the cracking can
localize into continuous cracks. According to BaZant and
Raftshol (1982), this is probably unimportant for normal size
laboratory specimens, but is important for more massive spec-
imens and larger structural members [see also Planas and
Elices (1993)].

APPLICATION OF EXPONENTIAL ALGORITHM FOR
TIME STEPS

Time is subdivided by discrete times ¢, (i = 1, 2,...) into
time steps Af = t,,; — . The quantities corresponding to time
1, are labeled by subscript i. The distributions of pore humidity
h and microprestress S are solved first, in advance of structural
analysis. The solution of A is reviewed in Appendix I

The solution of S is obtained step-by-step by integrating the
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FIG. 1. (a)Crack Orlentations Considered; (b) Relation of Nor-
mal Stress to Cracking Strain with Postpeak Strain Softening;
(c) Rule Assumed for Unloading of Cracks; (d)
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FiG. 2. Microprestress Flow Term without Effect of Cracking
first-order differential equation (6) of Part I of the companion
paper. For the step (2, #,+,), one obtains

Ah

i+1/2

Si1 =8 — coStanlt — ¢ 2)
where Ak and AS = increments over At and the value of
Si+12 is taken as S, for the first iteration and S; + AS/2 for the
second iteration of step (¢, f,,;) (this is actually the Runge-
Kutta algorithm).

For the special case that p = 2 as considered here, it is more
accurate and preferable to integrate Eq. (6) of the companion
paper exactly [e.g., Rektorys (1994), Sec. 17.2] under the sim-
plifying assumption that d In h/dt is constant within each time
step and changes only by jumps between the steps. In that
case

S, — cwA(ln k)
S, =it
e 1+ Cosi(DAt (3)

where
w = (tan AEYAE for Ah > 0and Af > 107° “)
® = (tanh AE/AE for Ah <O and AE > 107° )
w=1 for At =107° 6)
and

AE = VeocAt|A In & ¢

The last formula is exact only for Ah = 0. It is introduced for
|Ah| = 107 because the numerical accuracy in evaluating the
two preceding formulas breaks down as Ak — 0.

For uniaxial stress, an efficient, unconditionally stable step-
by-step solution algorithm, which was of the exponential al-
gorithm type [BaZant (1971); BaZant and Chern (1985); Ba-
Zant (1988), Chap. 2], was given by (5-14) in BaZant and
Prasannan (1989b). In an algorithm of this type, the differen-
tial equations of the constitutive law are integrated for each
time step exactly under the simplifying assumption that the
strain rate and all the age-dependent coefficients are constant
within the time step and change only by jumps between the
steps. In view of (15) in the companion paper, this algorithm
may be generalized to multiaxial stress by replacing o with
Go, € with g, etc. The matrix generalization of the recursive
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relation for -y, [Eq. 5 in BaZant and Prasannan (1989b)] yields
the following exponential algorithm formulas:

1- - A
Virer = KuYe, + Ko Go + 1= M GAo (8)
EI-'- E“'
where
1 -k At
K, =e™, AN =—-=L and Ay, =— )
» M Ay.. Y T

Note that 0 = A, < 1. For Ar << 7,, A, approaches 1, which
means that the response of the Kelvin unit is almost the same
as the response of the dashpot alone, with the effect of the
spring being negligible. For At >> 7,, A, approaches 0, which
means the Kelvin unit p. responds almost the same as a spring,
with the effect of dashpot being negligible. This feature makes
the exponential algorithm numerically stable for arbitrarily
large At. Evaluating Ay = 2, (¥,,,, — 7%.,)» We obtain

Ay = CyGAe + Avy" 10)
where
S 1—
Cy=, — (11)
p=l Eu
and
d 1
Ay" = 2 1 -« (—- Go, — 'Y.L,) (12)
p=l Eu

Applying the central difference approximation over At to the
matrix Eq. (18) of Part I of the companion paper provides
Ag’ = I:ﬂ] and Ay= [ﬁ] (CvGAo + Ay") (13)
v livin Y li+in

where subscript i + 1/2 refers to the average value in the time
step. Finally, adding [as shown in Fig. 1(c) in the companion
paper] the matrix generalization of the viscous flow strain
(Ag”) of the instantaneous elastic strain (¢;GAg), of the
shrinkage strain (Ae,) and of the cracking strain Aeg, =
C.Ac, we obtain the incremental quasielastic stress-strain re-
lations
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FIG. 3. Stresses and Shrinkage in Cracked and Uncracked
Specimen (I} ()



Ao = E(Ae — Aeg") 14)

where E = incremental stiffness matrix given by

E= I:G_l (q, + Ao I:%:I + Cy [%] ) + C,,] (15)
i+12 i+172

and where Ae” = incremental inelastic strains given by

v Mi+112

A
Ae" = [ﬁ] Ay" + d Go1p + Agy, (16)
+12

where E = incremental quasielastic stiffness matrix of the ma-
terial; and Ae” = total inelastic strain increment during At.
The following algorithm of finite-element analysis may be
used in each time step (¢, t,+,), in which the values of
o, €, €}, &/, v, and vy, for the beginning of the time step are
already known form the solution of the preceding step.

1. Estimate @,.,», = o, + Ac/2 for all integration points (of
all finite elements) using for Ao the value obtained in
the preceding iteration of the step, or for the first itera-
tion, the value obtained in the previous loading step.
Then, using (10), (11), (12), (15), and (16), calculate
Cv, A", Ay, E, and Ae” for all the integration points.

2. Solve the structure using the quasielastic stress-strain re-
lation (14) along with the load and displacements incre-
ments prescribed for this time step. Check the chosen
tolerance for the termination of iterations and if it is not
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met, return to Step 1 and start the next iteration of this
time step. Otherwise evaluate 0., = &, + A0, ¥4, =
e + Ae, v, = v, T Ay, etc. for all the points of the
structure, return to Step 1 and start the first iteration of
the next step.

COMPARISON TO AVAILABLE EXPERIMENTAL
EVIDENCE

In creep measurements in drying environment, it is standard
not to report the total deformation but report separately the
drying shrinkage strain of load-free companion specimen and
the compliance representing the difference in strain per unit
stress between the loaded creep specimen and the load-free
companion specimen. The creep value thus defined, however,
is affected by microcracking of the companion shrinkage spec-
imen, which relieves the tensile stresses due to drying and
strongly reduces the overall shrinkage deformations (Fig. 3).
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FIG. 6. (a) Evolution of Microprestresses with and without
Drying; (b) Displacements in Drying Specimen; (c) Stresses in
Drying Specimen
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Thus, when the deformations measured on the companion
specimen [(I) in Fig. 3] are subtracted from the deformations
measured on the loaded and drying specimen, it is not only
the true creep that remains but also the cracking deformations
of the companion specimen (Fig. 4). This explains why some
reported drying creep measurements show a large strain in-
crease immediately after loading, compared to the nondrying
loaded specimen [e.g., L'Hermite et al. (1965)]. Cracking, al-
beit milder, appears even in the creep specimen that is sub-
jected to compressive load [e.g., Granger et al. (1994)], and
therefore it is not easy to separate cracking in the companion
drying specimen from cracking in the loaded drying specimen.

When a three dimensional analysis of the drying loaded
specimens is performed, it is essential to know the locations
of measurement points on the specimen, i.e., the precise points
the displacements of which were measured and used to deter-
mine the strains reported. The reason is that, at the specimen
surface, a drying environment gives large shrinkage strains
immediately after exposure whereas a long time is required for
the drying to reach the core. Many reports on test data in the
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literature do not indicate the locations of the measurement
points and, therefore, are not very useful for the present pur-
pose.

VERIFICATION AND CALIBRATION BY TEST DATA
Bryant and Vadhanavikkit’'s (1987) Data

Square prisms of sides a = 150 mm and length ! = 600 mm
were exposed to a drying environment of RH 60%. After 8
days of curing, relative displacements were measured on the
specimen surface. The axial compressive stress was —7 MPa.
To enable axisymmetric analysis of moisture diffusion and de-
formation that simplifies programming, it is assumed that the
strains are the same as in an equivalent cylinder of volume-
to-surface ratio (V/S). = (VIS),c,/c. where (V/S), = a/4 = vol-
ume-to-surface ratio of prism and ¢, = 1.15, and ¢, = 1.25 are
the shape correction coefficients based on the results of the
study of BaZant et al. (1976). The basic creep strains and
strains at drying for three different ages at loading (¢’ = 8, 28,
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FIG. 7. Fltof Basic Creep and Total Strains at Drying by L’'Hermite et al. (1965); Troxell et al. (1958); Russell and Corley (1977); Bryant

and Vadhanavikkit (1987)
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TABLE 1. Values of Coefficients Used in Comparison with
Test Data
S3=25.26;,| S;=5.5; 182 = 0,143;
Tests 12 = 1.01° | 83 = 0.32° ° 83¥1 =27 x 107
(1) @) (3) (4) (5)
g: (MPa™") 203 X 107°| 24 x 10| 27 x 1073 1.48 X 107
g (MPa™") 39x10°%] 53x10*| 53x%x10°* 6.1 x 107
o 14% 102 85x%x 10| 42x 107 1.9 x 1072
a, 0.5 0.5 0.75 0.65
¢ (1/I(MPa)*s]) | 1.59 x 107° | 2.72 X 107 | 3.44 X 10°¢ 1.03 x 107
¢o (1/I(MPa) 5)) 0.49 0.94 1.79 1.35
¢, (MPa) 1.98 8.2 13.2 224
2 (MPa) 2.89 1.7 19.4 0.143
kn 1.83 X 107° | 2.62 X 107 | 4.73 X 10 5.7 X 107
E (MPa) 4.92 % 10* | 3.85 x 10* | 5.27 x 10* 8.31 x 10*
£ (MPa) 18 1.4 1.2 24
€ 253 % 107 | 1.68 x 107* | 4.74 x 107* 923 X 107*
D (mm/day) 0.84 1.35 0.25 432
C (mm?*/day) 35.3 24.9 36.3 458

Note: Test values in molar pascals.
*Bryant and Vadhanavikkit (1987).
*L’Hermite et al, (1965).

“Troxell et al. (1958).

“Russell and Corley (1977).

and 182 days) are analyzed. Fig. 5 shows the different terms
contributing the strains fitted for the drying specimen with ¢/
= 8 days. Fig 6(a) shows how the microprestress, with and
without drying, develops in time. To illustrate the behavior of
the load-free drying specimen, Fig. 6(b) shows the deforma-
tions as a function of time. Fig. 6(c) shows the corresponding
stress profiles, from which one can see how cracking influ-
ences the stresses. The optimum fits achieved are shown in
Fig. 7 for basic creep strain and the total strain of loaded
specimen at drying (the sum of shrinkage, elastic, and creep
strains). Table 1 gives the material parameters corresponding
to the fits of these data as well as the data to be considered
next. The exponent of the power law for microprestress was
taken as p = 2.

L’Hermite et al.’s (1965) Data

The tests of basic creep included three different ages at load-
ing (¢' = 7, 28, and 365 days) and those of drying creep in-
cluded one age at loading (¢’ = 28 days) and three different
environmental RH (100, 75, and 50%) with exposure begin-
ning at f, = 1 day. The specimens were square prisms of a =
70 mm and ! = 280 mm. The measurements were taken on the
surface. The axial compression stress was —9.81 MPa. The
results are shown in Fig. 7 for the basic creep strains and for
the total drying strains. The data points for basic creep re-
ported for ¢ = 28 and 365 days and ages larger than 800 days
are excluded from the present comparison because it is likely
that some uncontrollable disturbances occurred because the
scatter is very large and decrease of creep with time takes
place, which is physically impossible.

Troxell et al.’s (1958) Data

These tests included one age at loading (¢’ = 28 days) and
three different environmental RH (100, 70, and 50%) with
exposure starting at t, = 28 days. The specimens were cylin-
ders of diameter 102 mm and length 365 mm, and the meas-
urements were taken on the surface. The axial compressive
stress was —5.5 MPa. Fig. 7 shows the results.

Russell and Corley’s (1987) Data

These included one age at loading for basic creep (t' = 28
days) and three ages at loading for tests at drying (' = 28,
182, and 361 days). Exposure to environment of RH = 50%

started at #, = 7 days. The specimens were cylinders of di-
ameter 152 mm and length 305 mm. The measurements were
taken on the surface and the axial compressive stress was
—15.5 MPa. Fig. 7 shows the results.

Previously it was speculated that the discrepancy between
the strong long-term age effect on creep and the absence of
long-term volume growth of hydration products could be ex-
plained by polymerization of calcium silicate hydrates, i.e.,
formation of new bonds that stiffens the microstructure. How-
ever, this speculation has not be justified in detail and, in view
of the present theory, may be abandoned.

CONCLUSIONS

1. In the previously formulated solidification theory for ba-
sic creep of concrete, aging is explained by the volume
growth of a nonaging viscoelastic material (the cement
gel) into the pores. Although this theory agrees with the
available test data as well as one might hope in view of
inevitable random scatter, it has, from the physical view-
point, the following two shortcomings: (1) The effect of
age at loading on the creep compliance remains strong
even after many years, whereas the volume growth of
the hydration products ceases after about 1 year; and (2)
the drying creep (Pickett effect) is not explained by the
theory and its modeling requires separate assumptions.
The present improvement of solidification theory re-
moves these shortcomings and brings about simplifica-
tion and unification.

2. The long-term aging, which cannot be accounted for by
the volume growth of hydration products, can be ex-
plained by relaxation of a tensile microprestress in the
bonds or bridges across the micropores in hardened ce-
ment gel filled by hindered adsorbed water. The micro-
prestress represents a reaction to the disjoining pressure
exerted on the micropore walls by hindered adsorbed wa-
ter and its initial buildup is caused by high local shrink-
age and crystal growth pressure at locations close to the
micropore.

3. The long-term creep, deviatoric as well as volumetric, is
considered to originate from viscous shear slips between
the opposite walls of the micropores in which the bonds
or bridges that cross the micropores (and carry the mi-
croprestress) break and form again in a manner similar
to the movement of dislocations through a crystal lattice.
The shear has the property that bonds can restore, and
thus the macroscopic stiffness of concrete does not get
reduced (tensile breaks do not allow bond restorations;
rather they lead to cracks and reduced macroscopic stiff-
ness, which characterizes the nonlinear creep above the
service stress range).

4. Due to creep in the direction transverse to the slip plane,
the tensile microprestress undergoes relaxation. This re-
laxation reduces the effective viscosity of the shear slips
and thus brings about long-term aging associated with
the flow term in the creep model.

5. Because the tensile microprestress S is the reaction to the
disjoining pressure, it changes with the disjoining pres-
sure, which in turn changes almost instantaneously with
the relative humidity 4 in the adjacent capillary pore in
the hardened cement paste. In consequence, $ depends
linearly on k. This is the cause of the Pickett effect (dry-
ing creep or stress-induced shrinkage).

6. Analysis of the available test data confirms that the mi-
croprestress relaxation needs to be introduced only for
the viscous flow term of the solidification theory. The
dashpots in the Kelvin units of the chain need not be
considered affected by any microprestress. Their viscos-
ity varies only as a consequence of volume growth. On
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the other hand, the volume growth does not affect the
flow term. This separation of the effects of volume
growth and microprestress greatly simplifies the mathe-
matical formulation.

7. Good agreement with the available test results, as good
as that of the previous solidification theory, can be
achieved with the present model, which is simpler.
Cracking must, of course, be taken into account in sim-
ulating the tests, and the diffusion problem of drying
must be solved.

8. The existing form of the solidification theory for basic
creep of concrete (BaZant and Prasannan 1989a) as well
as Model B3 based on it (BaZant and Baweja 1995) does
not need to be changed as a result of the present analysis.
What needs to be changed for basic creep (i.e., creep at
constant water content) is only the interpretation—the
viscous flow term of the original solidification theory
expression for the compliance function is not due to vol-
ume growth of hydration products into the pores, but is
due to relaxation of tensile microprestress. For drying
creep, the results of the present theory are different, but
not significantly different, from those of the previous
combination of solidification theory with stress-induced
shrinkage (BaZant and Chern 1985, 1987; BaZant and Xi
1995). This is not surprising, because the present for-
mulation can be regarded as a refinement of these pre-
vious formulations.
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APPENDIX1. PORE HUMIDITY SOLUTION AND
FINITE ELEMENT ANALYSIS

The humidity profiles are obtained by solving the nonlinear
diffusion problem governed by the field equations (e.g. BaZant
1988)

y=—kdiv] +h, J=-\gradh an

where J = moisture flux; A = moisture permeability of con-
crete; k = inverse slope of desorption isotherm of concrete;
and h, = rate of selfdessication, which was neglected. For the
sake of simplicity, k was assumed constant. Then the moisture
diffusivity is D = kA. It was shown (BaZant and Najjar 1972)
to depend on A approximately as

1 — o
A+ ———
R Ll
1—h,
where oy = 0.05; n = 6; A, = 0.75; and D, represents the
diffusivity at saturation (h = 1). At unsealed surface, h was
assumed to be equal to RH of environment. As reviewed in
BaZant and Thonguthai (1979) and BaZant and Kaplan (1996),
the two-dimensional finite-element formulation was obtained

applying Galerkin weighting procedure to (17) and then intro-
ducing the approximations

D) = D, (18)

h = Nh, Vi = Bh, and A = Nh, 19)

1200 / JOURNAL OF ENGINEERING MECHANICS / NOVEMBER 1997

r

-

FIG. 8. Finite-Element Mesh Used to Analyze Cylindrical Test
Specimens

where N = humidity interpolation matrix; and B = humidity
gradient interpolation matrix. Then the finite-element equa-
tions are

Ch+ Kh=R 20)

where K = moisture diffusivity matrix; C = capacity matrix;
and R = moisture load vector. A detailed description of the
solution method was given by Hauggaard et al. (1996).

In axisymmetric finite-element analysis of structural re-
sponse, the generalized displacements are u = (u,, u,)", and
the generalized strains and stresses are & = (€, €,, €, V)" and
o = (0, 0y 0, T,) . The incremental formulation of the prin-
ciple of virtual work is [e.g., Damkilde (1983)]

J’ Ao™de dV=f £fT8u dV + f p'duda — f o/de dA (21)
v v A v

where V and A are the volume and surface of structure, re-
spectively; f, p = given distributed volume and surface load;
o, = stresses at the beginning of the increment; and Ao =
stress increment. Insertion of the constitutive equation (14)
gives

jAeTESE dv — J' Ae""Ede dV=J’f"8u av
v v v

+fp’8udA—fof8€dA
A v (22)

and insertion of the finite-element approximation u = Nv and
Ae = BAYV gives

K;AV=R — R, (23)

where K; = [, B'EB dV is the structural stiffness matrix; R =
fvB"EAe" dV + [, NfdV + [, N'p dA is the load vector;
and R, = [, B"o, dA is the internal load vector corresponding to
the stress state. Fig. 8 shows the finite-element mesh; 16 linear-
strain triangles were used throughout the diameter of the cylin-
drical specimens. The solution was done in time steps, iterating
the solution of the equation system within each step.
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