S1ZE EFFECT IN PENETRATION OF SEA ICE PLATE
WITH PART-THROUGH CRACKS. I: THEORY

By Zdengk P. BaZzant,' Fellow, ASCE, and Jang Jay H. Kim’

ABSTRACT: The paper analyzes the vertical penetration of a small object through a floating sea ice plate. The
analysis takes into account the fact that the bending cracks reach only through part of the ice plate thickness
and have a variable depth profile. The cracks are modeled according to the Rice-Levy nonlinear softening line
spring model. The plate-crack interaction is characterized in terms of the compliance functions for the bending
moments and normal forces in the crack plane, which are computed by an energy-based variational finite-
difference method. The radial crack is divided into vertical strips, and a numerical algorithm with step-by-step
loading is developed to calculate the vertical growth of the crack in each strip for a prescribed radial crack
length increment. The initiation of crack strips from the surface of the plate is decided on the basis of a yield
strength criterion with a fracture based flow rule. Systems of up to 300 nonlinear equations are solved by the
Levenberg-Marquardt optimization algorithm. The maximum load is reached when the circumferential cracks
begin to form. Numerical calculations, comparison of the results with test data, and a study of scaling laws are
relegated to the companion paper, which follows in this issue. Numerical calculations show a typical quasi brittle
size effect such that the plot of log oy versus log k (where gy = nominal stress at maximum load and h = plate
thickness) is a descending curve whose slope is negligible only for 4 < 0.2 m and then gets gradually steeper,
asymptotically approaching —1/2. The calculated size effect agrees with the existing test data, and contradicts

previous plasticity solutions.

INTRODUCTION

Sea ice plates subjected to a vertical load applied on a small
area from above or below typically fail by propagation of ra-
dial cracks in a star pattern [Fig. 1(a)]. The maximum load,
which represents the failure ioad under load control conditions,
is reached when circumferential cracks start to form (Frank-
enstein 1963).

The penetration problem is important for many operations
in the Arctic Ocean such as airplanes landing on the ice, ve-
hicles traveling on the ice, or submarines penetrating through
the ice from below. Of particular interest is the size effect on
the nominal strength, which governs extrapolation of small-
scale laboratory tests to such field situations.

The problem has been studied extensively for a long time
(Bernstein 1929; Frankenstein 1963, 1966; Kerr 1975, 1996).
Because small-scale laboratory tests show sea ice to be notch
insensitive, the applicability of fracture mechanics to sea ice
has been doubted for a long time. So it is not surprising that
the penetration problem had until recently been analyzed on
the basis of the strength criterion and plastic limit analysis
(Kerr 1996). However, the doubts started to dissipate after
Dempsey (1989, 1990; DeFranco and Dempsey 1990) sug-
gested that this conclusion was due merely to insufficient size
of the specimens. The applicability of fracture mechanics to
sea ice on a large scale has recently been demonstrated by the
in-situ experiments of Dempsey and coworkers (Adamson et
al. 1995; Dempsey et al. 1995a,b; Dempsey 1996; Mulmule
et al. 1995; Mulmule and Dempsey 1997).

In the early studies, the load capacity of a floating sea ice
plate was determined by elastic analysis coupled with the ten-
sile strength criterion (Bernstein 1929). Nevel (1958) used the
strength criterion, assuming that there is a large number of
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radial bending cracks splitting the ice plate into small-angle
wedges that can be treated as beams of variable cross section.

Sea ice, however, is a quasibrittle material which, when fail-
ing in tension, exhibits no plastic yield plateau but postpeak
softening. Such behavior alone, as a matter of principle, im-
plies the plasticity solutions to be unrealistic except for very
small sizes. [For general information, see BaZant (1983, 1984,
1993); BaZant and Planas (1998). For specific information re-
garding sea ice, see BaZant and Kim (1985); BaZant and Gettu
(1991).] From the practical viewpoint, the main limitation of
plastic limit analysis is that it cannot capture the size effect on
the nominal strength of the structure. Only fracture mechanics
can do that. The size effect is not statistical (BaZant et al.
1991), nor fractal (BaZant 1997a,b), but is caused by the fact
that, with increasing size (plate thickness, in this case), the
stored and subsequently released energy increases faster than
the energy consumed and dissipated by fracture. This is called
the quasibrittle size effect.

An additional reason why correct solutions must be based
on fracture mechanics is that the maximum load is reached
only after stable growth of large cracks. In that case, a deter-
ministic size effect due to energy released by large cracks nec-
essarily takes place and prevails over the statistical size effect
of Weibull type (BaZant et al. 1991; BaZant and Planas 1998).
If the plate failed right at crack initiation, the use of fracture
mechanics would not be necessary and the strength criterion
might be appropriate, provided that the stress redistribution
due to a microcracking zone formed before attaining the max-
imum load could also be neglected. In that case, which is not
the real situation, the size effect of Weibull type would have
to be expected (BaZant et al. 1991; BaZant 1997a,b; BaZant
and Chen 1997; BaZant and Planas 1998).

Fracture mechanics has been applied to the penetration
problem by Slepyan (1990), BaZant (1992a,b). BaZant and Li
(1994a,b), Li and BaZant (1994), BaZant et al. (1995), and
Dempsey et al. (1995a,b). To take the effect of the radial bend-
ing cracks approximately into account, linear elastic fracture
mechanics (LEFM) was introduced by BaZant and Li
(1994a,b). They used Nevel’s (1958) one-dimensional approx-
imation to calculate the energy release caused by radial crack
propagation. Li and BaZant {1994) carried out a two-dimen-
sional analysis and formulated a method to determine the num-
ber of initiating radial cracks.

In the aforementioned studies, the radial cracks were as-
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FIG. 1. Diagram of: (a) Vertical Cross Section of Floating Sea
Ice Plate, Crack Pattern Viewed from Top and Plate Wedge be-
tween Two Adjacent Radial Cracks; (b) Half of Plate Wedge with
Part-Through Crack Profile and Schematic Representation of
Compression Resultant Elevation Showing Dome Effect; (c)
Bending Moment and Normal Force Acting on Cracked Cross
Section, and Additional Rotation and Displacement due to
Crack; (d) Stages in Evolution of Vertical Crack Strips

sumed to be fully opened through-cracks. However, the hori-
zontal expansion that is associated with bending cracks causes
the cracks to open through only a part of the thickness of the
plate, as experimentally observed by Frankenstein (1963). This
expansion induces compressive forces in the plate and thus
engenders a dome effect, which plays an important role in
helping to carry the vertical load [see the idealized dome shape
in Fig. 1(b)]. The importance of the dome effect in plates, and
a similar effect in beams called the arching action, was rec-
ognized by many authors. [Regarding concrete, see Ockleston
(1958); Park (1964, 1965); Desayi; and Kulkarni (1977); Park
and Gamble (1980); Black (1975); Braestrup and Morley
(1980). Regarding floating ice, see Sodhi (1995a,b); Kerr
(1996)]. But these studies were made under the assumption of
plastic behavior.

A plate with part-through cracks is actually a three-dimen-
sional fracture problem. However, based on the simplifying
idea of an embedded softening line spring, proposed by Rice
and Levy (1972) in a study of the fracture of metal plates, the
problem can be reduced to a two-dimensional one. Since the
opening depth of the radial bending cracks is unknown in ad-
vance, the functions defining the compliances of the line
springs must be solved together with the plate problem.

In the present paper, the problem will be solved by means
of a system of integral equations based on the compliance

functions of the floating plate wedge formed by two adjacent
cracks. This formulation was given by BaZant et al. (1995),
who also incorporated the nonlinear line spring model. The
formulation will be extended by introducing a method to cal-
culate the initiation of new crack segments. In a subsequent
paper (BaZant and Kim 1998), a numerical solution of the
problem will be obtained using a nonlinear optimization al-
gorithm. The size effect will be analyzed and the dome effect
will be demonstrated.

FLOATING PLATE WITH PART-THROUGH RADIAL
CRACKS

Consider an infinitely extending elastic plate of thickness A,
floating on water of specific weight p [Fig. 1(a)]l. The water
acts exactly as an elastic foundation of Winkler type. The dif-
ferential equation of equilibrium of the plate in terms of the
vertical downward deflection w as a function of rectangular
coordinates x and y may be written as DV*w + pw = 0, where
D = Eh*12(1 — v*) = cylindrical stiffness of the plate; v =
Poisson’s ratio; and E = Young’s modulus. The load is as-
sumed to be applied only on the boundary of the plate.

It is convenient to introduce a length constant for the plate,
L = (D/p)"*, called the flexural wavelength. It represents the
length over which an end disturbance in a semiinfinite plate
decays to e”! of the end value. Introducing the dimensionless
coordinates X = x/L and Y = y/L, we may rewrite the differ-
ential equation of the plate as

aera2 62w+62w =0 1
axt T arr)\ax2 T arr) T T M
The assumption of full-through cracks, however, is realistic
only if the parts of the plate separated by the crack can move
freely apart. This is true for a long thermal fracture in an
infinite ice plate (BaZant 1992a,b), or for very thin plates. In
the present problem, the plate wedge prevents the sides of the
crack from moving freely apart. Thus, the relative rotations
across the crack cause the top portion of the ice plate to come
under horizontal compression [Fig. 1(a)]. The resultant of the
in-plane compression force in the planes gets shifted above the
midthickness. This engenders a dome effect (Fig. 2), which

FIG. 2. Diagram of: (a) Subdivision into Vertical Crack Strips
for Purpose of Numerical Analysis; (b) Mesh Used for Calculat-
ing Compliance Functions of Plate Wedge
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helps to carry the vertical load. The previous fracture analyses
of this problem, except that of Dempsey et al. (1995a,b), could
not capture the dome effect. The compressive stress above the
part-through crack can be high enough to cause microcracking
damage, which is manifested by a whitening of the ice surface
seen from above (Frankenstein 1963). The dome effect is the
reason why the cracks reach only through a part of the thick-
ness (for loading up to the maximum load; after the peak,
some cracks may penetrate through the whole thickness).

The partial opening of the radial cracks is a three-dimen-
sional phenomenon. A detailed three-dimensional fracture me-
chanics analysis would be computationally expensive, if not
intractable. In the present analysis, the vertical cracked cross
section of the plate is subdivided by discrete nodes into narrow
vertical strips. In each strip, the crack is assumed to propagate
vertically and independently of the crack propagation in the
adjacent strips. This simplification will require us to introduce
some rule according to which the vertical crack in each strip
initiates from the smooth surface of the plate. In reality, the
crack front of course propagates horizontally from one vertical
strip to the next and no new cracks initiate. This aspect is
neglected in the present analysis. The resulting error may be
expected to be small if most of the crack front edge is almost
horizontal, which is certainly true since the radial crack is
much longer than its vertical depth.

The weakening of the plate by a part-through crack will be
modeled in terms of distributed nonlinear softening line
springs, in the manner proposed by Okamura et al. (1972) and
Rice and Levy (1972). In each infinitesimal vertical strip in
the crack plane, the crack is assumed to grow vertically as a
function of the bending moment and normal force in the same
strip only, i.e., independently of the bending moments and nor-
mal forces in the adjacent strips. [This approximation is similar
to replacing the foundation on an elastic half-space with the
Winkler foundation; e.g., BaZant and Cedolin (1991).] By vir-
tue of the line spring concept, the plate with radial cracks can
still be analyzed as a two-dimensional problem. The effect of
partial cracking in the plate is reflected by increased compli-
ance, characterized by the line springs. In previous applica-
tions of the line spring concept (Rice and Levy 1972, Demp-
sey et al. 1995a,b), the shape of the depth profile of the
part-through crack was assumed. In our approach, however,
the depth profile will be considered as unknown and will be
solved.

Denote by A and 6 the additional in-plane circumferential
relative displacement and relative rotation (about the radial
ray) that is caused by the radial crack and is work-conjugate
to N and M [Fig. 1(c)]; A and 0 vary in an unknown way with
the applied load and with the radial distance r. A positive
bending moment is that which causes tension at the bottom
surface of the plate, and a positive normal force is that which
is tensile. According to the line spring concept

A= AN+ NpM, 68 =MN + ApM 2)

where Ay(i, j = 1, 2) = compliances of the line springs

7 f ki(t)k(8) dt 3
0
k(i = 1,2), where k, = stress intensity factor in an infinitely
long plate with a single-sided crack (or notch) of depth b(r),
loaded remotely by a unit force N; and k, = stress intensity
factor of the same strip loaded remotely by a unit moment M.
Approximate expressions for A;; and Ay, are given by Tada et
al. (1985). So one needs to deduce an approximate expression
only for A,. This has been done by means of (3).
The degree of accuracy of the line spring model was clar-
ified by Kuo et al. (1995). They showed that the stress inten-
sity factors obtained by the line spring model closely approach

1
RU=2
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those calculated by three-dimensional analysis as the ratio of
the radial crack length to the vertical crack depth increases.
They also showed that the stress intensity factors calculated
by the line spring model are very accurate for part-through
cracks for which the ratio of the radial crack length to the
crack depth is large, which is the case for sea ice.

The additional relative rotation 6 and horizontal displace-
ment A calculated from (2) must be equal to the rotation and
displacement calculated from the compliances of the plate
wedge. This represents a crack compatibility condition that
reads as follows:

P a
Au(NIN(r) + A rIM(r) = Cyyp(r) w j Cn(r, TIM(') dr’
0
4

AMi(ON@) + Np(NM(r) = —j Canlr, "IN dr' (5)

where n = number of radial cracks of length a; Cyp(r) = ro-
tation of the plate at » due to a unit P; Cpyy(r, r’) = rotation
of the plate at r due to a unit moment acting on the crack
surfaces at r’'; and Cyy(r, r’) = circumferential displacement at
r due to a unit normal force N at r’. The negative sign in front
of the integrals is due to the fact that a positive force on the
crack surfaces causes the crack to close.

The applied load P is related to the load-point displacement
u by the equation

u= CppP + j Cou(M(r) dr 6)
0

where Cpy(r) = Cyp(r); and compliance Cpp = u caused by
loading the plate wedge alone with P = 1.

Due to symmetry, the compliance functions are calculated
for a wedge plate representing one-half of the wedge between
two radial cracks [Fig. 1(b)] of length a and depth b(r); b(r)
> 0 for gy = r < a, and b(r) = 0 for r = a along the radial
line with a crack. The possibility that the radial crack lengths
might become unequal is not considered.

The compliance influence functions can be discretely rep-
resented by compliance matrices. They are solved numerically,
e.g., by the finite-element method or finite-difference method.
The integrals in (4) and (5) are then approximated by sums,
and thus (4) and (5) yield a system of nonlinear algebraic
equations.

CRITERIA FOR PLASTIC AND LINEAR ELASTIC
FRACTURE MECHANICS (LEFM) STAGES OF CRACK
GROWTH

In a discrete formulation with n nodes along the radial ray
containing the crack, there are 3n + 1 unknown variables—
namely, the nodal values of M, N, and b, and the applied load
P, with the load-point displacement u being specified. Egs. (6),
(4), and (5) yield 2n + 1 discrete compatibility equations. To
obtain the same number of discrete equations and unknowns,
we need one more equation for each node. The necessary
equation is the fracture criterion. Various types of the fracture
criterion needed for various stages of the analysis are sche-
matically represented in Fig. 1(d).

The condition for crack propagation in the LEFM stage
[stage 3 in Fig. 1(d)] may be written as

Ki=K,(a=r=a) )
in which

K, = ki[b(MIN() + klb(NIM(r) ®



and K, = stress intensity factor; K, = V E'G, = critical stress
intensity factor (fracture toughness) of sea ice; G, = fracture
energy of ice; E, v = Young’s modulus and Poisson’s ratio of
ice; and E’ = E/(1 — V).

Initially, the ice plate is elastic [stage 1 in Fig. 1(d)]. The
initiation of the vertical crack strips from the plate surface (b
= () cannot be handled by LEFM. In general, one could in-
troduce the cohesive crack model of Hillerborg type for the
initiation of cracks (BaZant and Planas 1998). But that would
be unnecessarily complicated because, as the computations
confirm, the portion of the radial crack length in which the
crack is in the cohesive (or plastic) state is very small, and the
maximum depth to which a plastic crack reaches is only about
0.02h. But when A is small (A = 0.2 m), the plate fails by a
punch-through cone around the circular loaded area.

Therefore, we can adopt a simplified form of the cohesive
crack model. We will base it on the assumption that, after
reaching the tensile strength limit f; of ice, the crack grows
as a plastic crack at yield limit as long as both M and N are
below the values that correspond, according to LEFM [Fig.
1(d)}], to the values of 8 and A. Specifically, we assume in this
simplified model that, in the plastic limit state, the stress dis-
tribution consists of a constant normal stress equal to strength
f: over the entire crack length and a linearly distributed normal
stress across the remainder of the cross section (the ligament).
Thus, after taking into account the horizontal and moment
equilibrium conditions, we find that the plastic stage of the
crack [stage 2 in Fig. 1(d)] is characterized by

ou(b) + ond) =fi ®)
in which
oM N
ou(b) = Wi+ 25 on(b) = Pp— 10

Strictly adhering to the theory of plasticity, one would have
to introduce for the plastic stage 2 a normality rule as the flow
rule that determines the relation between the ratio A/A and the
ratio M/N. However, (9) and (10) imply a different relation
between these two ratios, namely

A Ny + Na(MIN)

= 11
A Ay + A(MIN) an

which differs from the normality rule of plasticity. So, with
the strict plastic formulation, the transition from the plastic
stage 2 to the LEFM stage 3 would be very complicated. It
would not occur for M and N simultaneously. One would have
to distinguish various transitional stages, and if such transi-
tional stages were ignored, the values of M and N would
change from the plastic to the LEFM stage discontinuously,
by jumps. Numerical convergence of the solution would then
be difficult to achieve.

To circumvent the aforementioned problem, the following
simplifying idea is proposed: The flow rule for a plastic crack
is defined by LEFM. This means that the ratio A/A is assumed
to be given by (11), which is a nonassociated flow rule. With
this expedient assumption, both M and N are guaranteed to
transit from the plastic stage 2 to the LEFM stage 3 simulta-
neously and continuously, without jumps.

When b = 0, the limit value of the ratio in (11) for b —» 0
needs to be used because A\; = O in that case. However, to
avoid calculations of this limit value, the crack depth b is
immediately extended from O to depth 107%k as soon as the
elastically calculated stress reaches the tensile strength f; of
ice. With this simplifying assumption, (11) never needs to be
used, because, for b > 0, it is embedded in the compliance
condition (3). Thus, in computations, it suffices to use the
LEFM compatiblity equations in (4) and (5) at all times

through stages 1, 2, and 3. In stage 2, these equations are used
in conjunction with the plastic limit state criterion in (9), and
in stage 3 in conjunction with the LEFM criterion in (8). In
this manner, a continuous variation of M and N from stage 2
to stage 3 is ensured.

The limit state conditions of plastic state and of brittle crack
propagation in (9) and (8) may be jointly expressed as

max[K; — K, fi — 0u(b) — on(b)] =0 (12)

This criterion may be used for both stages 2 and 3.

The plasticization of a part of the thickness of the ice plate
is a simple approximation for damage caused by microcrack-
ing. In experiments, the microcracking is visually manifested
by whitening of the ice plate. The microcracks develop prin-
cipally at the interfaces between the columnar ice crystals and
at the voids filled by brine.

The problem of crack initiation in the vertical strips is dif-
ferent from that studied by BaZant et al. (1979), Li and BaZant
(1994), and Li et al. (1995). The reader is also referred to
BaZant and Cedolin (1991, section 12.6). In those studies, the
focus was on the initial crack spacing. But here, for the vertical
strips, the problem of their spacing does not arise. The crack
strips open only along the same radial ray.

Development of a large in-plane compressive force can
cause the crack strip to unload. The unloading first causes a
reduction of the stress intensity factor K; below the critical
value K. As long as 0 < K, < K}, the crack strip can neither
grow nor shorten. This is labeled as stage 4. If the case K; =
0 is attained, K; cannot decrease any more and further unload-
ing causes the crack surfaces to come into contact. Thus, the
length of the opened portion of the crack strip diminishes,
which is equivalent to negative fracture growth at K; = 0. This
is labeled as stage 5. Stages 4 and 5 were included in the
computer program, but in the present computations they have
never been encountered. The crack strips were found to grow
all the way to the maximum load. But stages 4 and 5 would
no doubt occur in postpeak loading, and of course for unload-
ing (decreasing P). Another type of unloading criterion would
have to be programmed if the unloading were to begin from
the plastic stage (stage 2), but this case has never been en-
countered.

NUMERICAL SOLUTION OF ICE PLATE WITH PART-
THROUGH RADIAL CRACKS

Before tackling the crack problem, the values of the com-
pliances Cyp(r), Cype(r, '), and Cyn(r, r') are calculated for
the nodes i = 1, 2, ... n along the ray with the crack and are
stored as matrices. If the load-point displacement « is speci-
fied, there are 3n + 1 unknown quantities to be solved; they
are the internal forces M(r), N(r) and the crack depths b(r) at
the nodes of the radial ray with the crack, and the applied load
P. These unknowns can be solved from 32 + 1 nonlinear
algebraic equations consisting of (6), (4), (5), and (12). If the
solution is found, the radial crack length a can be obtained
from the location of the last node that is not in the elastic state
(stage 1).

The aforementioned solution procedure can be used in an
incremental loading approach, in which the load-point dis-
placement is incremented in small steps. However, this solu-
tion procedure was found to converge very slowly, and the
resulting load-deflection curves were not very smooth. The
reason was an unsystematic representation of the radial crack
length a, defined as the distance from the origin to the first
node that is in the elastic state (stage 1). The main problem
was the representation of a radial crack tip that lies somewhere
between two nodes. The numerical model cannot capture the
difference between the crack with a tip in the middle between
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two nodes and the crack with a tip very close to one of the
nodes. This causes roughness in the calculated response.

The problem has been remedied by adopting the radial crack
length a (or its dimensionless parameter o = a/L,) as the con-
trolled variable, instead of the displacement u. This makes it
possible to move the tip of the radial crack, lying at distance
a, from one node to the next in each loading step. Thus, the
crack length a is forced to take only values compatible with
the mesh. This approach adds the load-point displacement u
as an additional unknown in each loading step. But at the same
time the value of b is prescribed as 0 at one of the nodes (the
crack tip node). So the number of unknowns remains 3z + 1.
With this modification, the solution converges much faster and
the computed response becomes smoother.

The system of 3n + 1 equations, with the inequality criteria
for the stages of all the crack strips, is highly nonlinear. An
efficient way for solving such an equation system is the Lev-
enberg-Marquardt nonlinear optimization algorithm (Leven-
berg 1944; Marquardt 1963). All the equations are written such
that the right-hand sides are zero. If an approximate solution
is substituted, the right-hand sides are not exactly zero. The
optimization algorithm is used to minimize the sum of the
squares of the right-hand sides of all the equations. This sum
cannot be negative. Ideally, if this sum could be reduced to
zero, the right-hand side of each equation would then be also
zero and the solution would be exact. In practice, it suffices
to reduce the sum to a sufficiently small positive value satis-
fying a specified tolerance, which ensures the right-hand sides
of all the equations to be sufficiently small.

Attempting to solve this equation system right away for
some specified value of a, one would not obtain a unique and
physically correct solution, because the sum of squares of the
right-hand sides of nonlinear equations has typically many lo-
cal minima. The correct solution can be obtained only if a
very good initial state, close to the correct solution, can be
supplied as the input for the start of the iterations in the next
step. Fortunately, the present problem belongs to a special
class of problems in which the solution can be traced in small
steps from an initial state (in this case, a = 0) for which the
solution is known. The solution obtained for the crack tip at
one node is used as the input of the initial estimate of the
solution for the start of the iterations. If the nodal spacing is
sufficiently small, the solution for the tip at the previous node
provides a very good estimate for starting the iterations. When
the convergence is too slow, one needs to diminish the spacing
of the nodes, which amounts to reducing the loading steps.

The growth of radial cracks in a star pattern does not lead
to a maximum load and postpeak softening. The deflection
curve is always rising. As known from small-scale field ex-
periments (Frankenstein 1963) and confirmed for thick plates
by the present calculations, the maximum load is determined
by the initiation of circumferential cracks [Fig. 1(b)]. We as-
sume these cracks to initiate anywhere along the radial crack,
and the initiation to be decided by the strength criterion.
Therefore, after the iterations for each step converge, the val-
ues of the radial normal stresses o, on top of the plate are
calculated for each node. This is done on the basis of the
deflection curvature w,, along the radial ray and twist angle
wy, along the 6 arc (r = constant). These are calculated ap-
proximately by a second-order finite-difference formula from
the nodal deflections w. During the finite-difference calcula-
tions of the elastic compliance matrices of an ice plate wedge,
the influence matrices of the circumferential bending stresses
are obtained as well. They include the curvatures in the radial
direction of the wedge, F,,; the curvatures in the 8 direction,
Fgo; and the twist curvatures, Fy,, per unit value of the bending
stress 0, and the normal stress oy along the radial ray with
the crack and the applied load P. Labeling the components
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corresponding to g, oy, and P by superscripts M, N, and P,
and grouping o,,, 04, and g, for all the nodes on the radial
ray into column matrices, we have

0w =F'o, + Floy + F7P 14)
oo =FYo, + Floy + F2P (15)

The maximum principal stress in the horizontal plane is o;
= [0, + o + V40L + (0, — 0,)'1/4. When the maximum
value 0,,, among all the nodes on the crack line reaches or
exceeds the strength limit f;, the circumferential crack initi-
ates.

Since the maximum load is decided by the strength crite-
rion, one might think that there should be no size effect. But
this is not the case, as the computations confirm. The reason
is that the failure occurs only as a consequence of radial crack
growth and the strength limit is attained only when the ratio
o = a/L, reaches a certain value, which tends to a constant as
the plate thickness # is increasing. The attainment of a certain
relative crack length o is decided by the energy release cri-
terion of fracture mechanics. Hence the size effect.

CLOSING REMARK

In the present paper, the method of numerical fracture anal-
ysis of the problem has been formulated. The numerical cal-
culations, their analysis, comparison with test results, the ques-
tions of scaling, and formulation of the conclusions will be
the subject of the companion paper (BaZant and Kim 1998),
which follows in this issue.
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SizE EFFECT IN PENETRATION OF SEA
Ice PLATE WITH PART-THROUGH
CrAckS. |: THEoORY. Il: REsULTS

Discussion by J. P. Dempsey®

A thorough examination of the quasi-static penetration of a
floating elastic-brittle plate via a fracture mechanics approach
has been presented by Bazant and Kim. BaZzant and Kim reach
the conclusion that there is a size effect (in terms of the plate
thickness, h). A few of the assumptions made by these authors
will be examined in this discussion.

The formulation presented by BaZzant and Kim assumes both
that a radial system of part-through cracks is formed and that
the appearance of these radial cracks is accompanied by stable
crack growth. The analysis proceeds by subdividing each part-
through crack into narrow vertical strips (the ith strip being of
length b;, with ligament h — b). In each strip, the crack is
assumed to propagate verticaly, independently of the crack
propagation in the adjacent strips. A simplified form of a co-
hesive crack model is adopted, with the crack initially growing
as a plastic crack.

The assumed stable development of the part-through radial
cracks does not match experimental observations, especially
for thin to moderately thick ice sheets (h < 0.5 m). The initi-
ation of cracks in ice aimost aways leads to unstable crack
growth (DeFranco and Dempsey 1994). The radia cracking
that occurs prior to the formation of circumferential cracks and
subsequent penetration is understood to occur suddenly and to
be through-the-thickness. In other words, a system of through-
the-thickness radial cracks occurs, with rapid radia and
through-the-thickness crack propagation. Even though these
radial cracks are subjected to the dome or arching effect, crack
growth instability in ice is sufficient to allow through-the-
thickness cracks to form (in thick ice sheets, it is plausible to
assume that the through-the-thickness cracking would be pre-
vented by the arching effect). Dempsey et a. (1995) studied
radial cracking with closure for the case of a clamped plate
subjected to a concentrated lateral load. By assuming that the
closure width was a function of the radia crack length only,
Dempsey et a. (1995) obtained an analytical solution that fa-
cilitated a thorough examination of the dependencies of the
closure width, the nucleated radia crack lengths, the energy
release rate, and the penetration load. In particular, the latter
analysis made it clear that radial crack growth instability
would accompany the nucleation of any radial crack system.
A finite-element study of a radially cracked floating plate by
Sodhi (1996) confirmed the broad applicability of the conclu-
sions reached by Dempsey et al. (1995).

An implicit requirement underlying the size effect anaysis
presented by Bazant and Kim is the stable formation of pro-
cess zones (contiguous to each traction-free crack front) that
scale self-similarly with the ice sheet thickness. However, if
sudden and unstable radial crack formation takes place, with
full through-the-thickness crack-face separation and subse-
quent compressive closure (unilateral contact, in other words),
there is no logical way in which one can simultaneously as-
sume the stable formation of process zones; there are, in fact,
no ligaments subjected to bending, but instead pairs of com-
pletely separated crack faces subjected to ever-increasing pres-

“December 1998, Vol. 124, No. 12, by Zdenék P. Bazant and Jang Jay
H. Kim (Papers 14531 and 17980).
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sure due to the arching action. This pressure grows to be of
such magnitude that zones of circumferential microcracking in
the plane of the ice sheet have been observed to occur, at
variable radial distances away from the load. The radial crack
lines have been observed to “whiten’’ with intense micro-
cracking (Frankenstein 1966), and this is consistent with uni-
lateral contact conditions of the receding type (Dundurs 1995),
in which the extent of contact remains invariable with increas-
ing load (in the case of elastic media; creep may dter this
behavior, but not significantly). The issue of crack growth sta-
bility and whether the radial cracks would form stably or un-
stably was bypassed by Bazant and Kim, since they adopted
the radial crack length a as the controlled variable. Their for-
mulation, therefore, does not include a condition related to
crack growth stability. By controlling the radia crack length
numerically, their crack growth simulation is more stable than
could be obtained in ice even under closed loop displacement
controlled loading. For the majority of situations encountered,
the much less stable condition of load control is operative.

For the case of relatively thick ice sheets, it is plausible that
aradia crack system could form that would be comprised of
part-through cracks. These part-through cracks would still
form suddenly and, because of crack growth instability, would
immediately partially close, with conditions of K = 0 along
the crack front. Even on further loading, the remaining liga-
ments would be subjected to the compression induced by arch-
ing, and only during load-up would the crack fronts experience
tension and process zone growth. The stable formation of
crack-tip contiguous—but not necessarily self-similar—pro-
cess zones would be expected to occur, but only for the case
of rather thick ice sheets (thick here is estimated to mean h =
1 m).

If there is a size effect in ice thickness, it is important that
it be determined, especially from the viewpoint of vehicles
landing on, or traveling on, the ice. Safety is of primary con-
cern in this case, and breakthrough is to be avoided. However,
for the case of submarine surfacing, successful breakthrough
is paramount, and a realistic load resistance estimate is all
important. Given that the data in Fig. 5 of the authors paper
do not “visually demonstrate the invalidity of Sodhi’s claim
that there is no size effect,”” one would intuitively favor amore
conservative approach in the latter instance.

Conclusion: A fundamental requirement of a Bazant-type
size effect analysis is the stable and self-similar growth of
crack-front contiguous cohesive-type process zones. Such be-
havior is deemed implausible for the problem at hand. While
a size effect may occur for thick ice sheets, it is unlikely to
be significant for ice thicknesses less than 1 m.
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Discussion by Devinder S. Sodhi*

In their papers, the authors arrive at the conclusion thereis
a size effect on the failure load of floating ice sheets for ice
thicknesses greater than 0.2 m. However, the results of their
analysis are only useful if the assumptions made in their anal-
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ysis correspond to the real situation during vertical loading
and breakthrough failure of floating ice sheets.

PART I

The process of a gradually increasing axisymmetric load on
afloating ice sheet results in the following sequence of events:
(1) elastic deformations; (2) formation of radial cracks; (3)
wedging of radialy cracked segments of ice sheets; (4) for-
mation of many circumferential cracks; and (5) breakthrough
due to large deformation or brittle failure of ice. If the loading
rate is low, we also need to consider creep deformation of ice
aong with elastic deformation. During field tests, it is often
difficult to observe their formation because of snow cover.
During small-scale tests, the formation of radial cracks is a
very short-time event. They propagate to a length of about 2—
3 times the characteristic length and arrest. After the formation
of radial cracks, compressive stresses in the top part of theice
sheet support the load because of the wedging or dome effect.
The compressive stresses cause creep deformation of ice, re-
sulting in further deformation.

The results of linear elastic fracture mechanics analysis are
not immediately relevant to the propagation of cracks in a
creeping material. The results of Slepyan (1990) and Bazant
and Li (1994) are particularly flawed, because the interference
between segments during elastic deflections of wedge-shaped
beams was ignored. Dempsey et a. (1995) presented a for-
mulation of plates having radial cracks with closure. Bazant
et a. (1995) and Bazant and Kim (1998) consider closure of
part-through cracks, and the failure criterion is the formation
of the first circumferential crack. They did not consider the
creep deformation of ice, nor did they consider the formation
of multiple circumferentia cracks, which have been observed
in small-scale and full-scale tests. The authors arrive at aresult
that the dependence of breakthrough load P is proportional to
h*? using the results of field tests by Frankenstein (1963, 1968)
and Lichtenberger et al. (1974). Those field tests were con-
ducted by loading an ice sheet at a constant rate, and some of
these tests lasted for hours. Therefore, it is not reasonable to
use the results of those field tests to support the conjecture
that fracture, while ignoring creep, gives the size effect P; o
h** for ice thickness greater than 0.2 m. Their criterion that
an ice sheet fails when the first circumferential crack formsis
also not correct, because many circumferential cracks form
around the area of load application before final breakthrough
takes place.

PART II

In their analysis, the authors considered a hole of radius
equal to 10% of the characteristic length and assumed the load
to be distributed at the periphery of the hole. Because there is
considerable deformation of material in the area close to the
center, the conclusion they have reached may not be totally
correct.

On page 1320, they state that ** Frankenstein made extensive
observations on lake ice, which can be assumed to behave
similarly as seaice.”” Yet they criticized Sodhi (1995b, 1998)
at the bottom of page 1321 by saying that “‘a second ques-
tionable aspect of Sodhi’s (1995a,b) evaluation of test data is
that he correlated in the same diagram the test results from
different test series while implying the same ice properties.
However, the ice properties were most likely quite different.”’
Nevertheless, the authors plot the data from tests with fresh-
water and seaice in Figs. 5(c and d).

On page 1321, the authors state: **In view of the high scatter
and limited size range of the available data, it cannot be
claimed, however, that results actually prove the present the-
ory.”” Yet the authors state on the bottom of the same page:
“Nevertheless, all the plots in Fig. 5 visually demonstrate the
invalidity of Sodhi’s claim that there is no size effect.”” In
Figs. 5(a and b) of the paper, the authors have not realy
proven the existence of a size effect by fitting curves through
three sets of data having high scatter and a narrow range of
ice thickness.

In Fig. 6, results of small-scale and full-scale tests are plot-
ted in terms of ice thickness versus failure load. This figure
includes the data from ICEX-93 tests, in which ice penetration
forces were measured during uplifting and breakthrough of
floating ice sheets by two submarines (Dane 1993; Sodhi
1998). A line P; = 1,934 h* (where P; isin kN and h isin m),
obtained from the results of small-scale tests, passes through
plots of full-scale data, which have considerable scatter. Be-
cause this line passes through the middle of the full-scale data,
the discusser concluded that there is no size effect for ice
thickness up to 2 m (Sodhi 1995b, 1998). Compilation of field
data by Gold (1971) also supports failure load being propor-
tional to the square of the ice thickness. Accepting the authors’
conclusion that there is no size effect for ice thickness less
than 0.2 m, the discusser has plotted a line representing Py o
h*? in Fig. 6 from a point on the line (P; = 1,934 h?), where
ice thickness is equal to 0.2 m. This line does not fit the data
obtained from full-scale tests on freshwater and sea ice.

The authors raise a point in the paper that the properties of
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freshwater and sea ice may influence the failure load. How-
ever, the discusser considered creep properties of freshwater
and saline ice and did not find much deviation between aline
(P = h?) and the estimated failure loads (Sodhi 19954). The
dependence of failure loads on salinity of ice appears to be a
secondary effect, but its dependence on h? is supported by the
strength failure criterion (Bazant 1993) because of creep de-
formation during wedging action.

On page 1322, the authors state: ** Sea ice exhibits creep,
and the effective fracture energy as well as the strength de-
pends on the rate of crack growth.”” Analysis of this problem
incorporating creep will require abandoning LEFM, on which
they base their present conclusions.

APPENDIX. REFERENCES

Dane, A. (1993). “‘Ice station X.”” Popular Mech., 170(11), 30-34, 132.

Gold, L. W. (1971). ““Use of ice coversfor transportation.”” Can. Geotech.
J., Ottawa, Canada, 8, 170-181.

Sodhi, D. S. (1998). ‘‘Vertical penetration of floating ice sheets.”” Int. J.
Solids and Struct., 35(31-32), 4275-4294.

Closure by Zden&k P. Bazant,” Fellow, ASCE,
and Jang Jay H. Kim®

DEMPSEY’S DISCUSSION

Dempsey’s thoughtful and stimulating discussion is deeply
appreciated by the writers. Citing certain simplifications made
in the paper and revoking his own analytical solution, Demp-
sey states that dynamic fracture propagation instabilities may
cause the size effect to be significant only for rather thick ice
plates, thicker than about 1 m. Dempsey et al.’s (1995) elegant
analytical solution, however, rested on even stronger simpli-
fications, which render his conclusion about the lack of size
effect for not too thick plates unjustified.

Dempsey assumes the cracks to reach through the full ice
thickness, which implies the stress intensity factor K, at the
boundary of the crack closure zone (contact zone) is zero.
Consequently, there is no dissipative mechanism at al in
Dempsey et a.’s solution. No energy is dissipated by the frac-
ture process as modeled. Despite the possibility of dynamic
instabilities described by Dempsey, this seems to be a severe
simplification.

Another drastic smplification in Dempsey et al.’s (1995)
solution is that the depth profile of the open crack along the
radial coordinate is assumed to be uniform from the load point
up to the tip of the radial crack, with a discontinuous jump at
the tip. The numerical solution in the paper, by contrast, re-
vealed that the depth of the opened crack varies strongly with
the radial coordinate and, at the radial crack front, approaches
zero continuously.

The solution in the paper has proven that a static loading
process cannot produce radial cracks that cut through the full
ice thickness. Dempsey argues that full-through cracks are pro-
duced by dynamic instabilities, after which the crack partially
closes because of arching (or dome) action. To support his
view, he citesthe fact that, in field experiments, the top surface
of ice was seen to whiten along the radial cracks. This obser-
vation, however, does not proves Dempsey’s point, in the writ-
ers’ opinion. Cracks actually reaching the surface were not
observed in the field. The observed whitening of the top sur-
face of the ice was more likely caused by distributed cracking,
which occurs in the fracture process zone of seaice. The cor-
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rect interpretation should be that the fracture process zone
reaches close to the top surface. But this is not incompatible
with the notion that the equivalent LEFM cracks reach to
about 85% of ice thickness, as found in the paper.

Dempsey is not right in stating that ‘‘the issue of crack
growth stability ... was bypassed by Bazant and Kim.”” Be-
cause, as shown in the paper, the vertical load increases with
an increasing displacement, it is immediately clear that the
solution obtained is stable (which means that this is a fracture
problem of positive geometry, in fracture mechanics terminol -
ogy). Contrary to Dempsey’s comment, the solution is stable
regardless of whether the radial crack length or the load-point
displacement is controlled. The purpose of using in compu-
tations the crack length control instead of the displacement
control was not to achieve stability of the actual response but
merely to improve the convergence of iterations (or ensure
stability of the numerical algorithm).

In principle, of course, it should not be ruled out that re-
moval of some simplifying assumptions may lead to a signif-
icantly different solution exhibiting dynamic instabilities.
There exist two possible sources of the dynamic instabilities
emphasized by Dempsey: (1) strong inhomogeneity of seaice;
and (2) three-dimensionality of fracture propagation near the
radial crack front, alluded to by Dempsey, which is undescrib-
able by the assumed vertical propagation along an infinitesimal
strip.

At the critical state of the stability limit, a structure is at the
limit of static response (equilibrium). When stability is lost,
the response becomes dynamic (i.e., there must be inertia
forces to satisfy D’Alembert equations of dynamic equilib-
rium). Since the static solution for a homogeneous ice plate is
stable, the only possible cause of unstable crack jumps (in-
evitably dynamic) is periodic inhomogeneity of ice properties.
The value of fracture toughness K., considered constant in the
paper, actually fluctuates randomly along the crack path (with
some dominant wavelength |, representing the dominant spec-
tral component of the random process of K. as a function of
crack path length).

In crack path segments in which K. is decreasing fast
enough, crack propagation may become unstable, dynamic.
But it must be a snap-through instability, with ajump to a new
stable equilibrium state, which must occur in the next crack
path segment in which K. is growing, constant, or not decreas-
ing fast enough. Since every materia is inhomogeneous, such
instabilities occur in all fracture. They get manifested by
acoustic emissions. Yet static LEFM still provides the correct
approximation on the macroscale.

One might think that the rate of energy to form the fracture
should be equal to the rate of stored energy release minus the
rate of the energy radiated by acoustic waves. But the energy
of acoustic emissions in ice may surely be considered negli-
gible compared with the tota energy needed to form the
cracks. In concrete, for example, the acoustic emissions, due
to snap-throughs at each fluctuation of fracture toughness
caused by aggregate pieces, are as strong as in ice, yet it is
generally accepted that the energy they radiate is insignificant
compared with the energy required for concrete fracture. Oth-
erwise, static fracture analysis of concrete would be impossi-
ble. Besides, it would actually be incorrect to subtract the en-
ergy of acoustic emissions, because it is never subtracted
during the measurement of fracture energy. So the fracture
energy value used in fracture calculations already includes the
energy of acoustic emissions.

Dempsey apparently believes that the typical length of the
segments of decreasing K. along the crack’s path (or the dom-
inant spectral wavelength |, or the length of crack front jumps)
is not microscopic, negligibly short compared with the radial
crack length, but relatively long. But unless this length were



comparable to the entire radial crack length (i.e., unless almost
the whole radia crack forms dynamicaly), a static fracture
analysis must still provide at least an approximate overall de-
scription, correct in the energetic sense.

Static approximations to dynamic instability in the form of
a snap-through from one equilibrium state (the initial un-
cracked state) to another equilibrium state (the full-through
crack with partial closure) must generally satisfy Maxwell’s
condition of energy equivalence (whose classical example is
the Maxwell line through the instability in the van der Waals
pressure-volume diagram for the vapor-liquid phase transi-
tion). But even if a dynamic snap-through from an uncracked
state to a full-through crack followed by a partial crack closure
were the actual fracture mechanism, Dempsey et al.’s solution
does not appear to be energy consistent.

The solution in the paper, on the other hand, is energy con-
sistent. Unlike Dempsey et al.’s solution, it guarantees the rate
of release of the stored strain energy and gravitational energy
of sea water to be equal to the rate of energy needed to form
the radial cracks in ice, corresponding to the given vaue of
the fracture energy of ice. Thus, the condition of overall en-
ergy balance is satisfied.

In view of the foregoing considerations, as well as the fact
that no solution with a dynamic instability has yet been pre-
sented, Dempsey’s concern about the dynamic instabilities ap-
pears exaggerated. It is clear from the solution in the paper
that, under the assumptions made, the load is continuously
increasing with the crack length as well as with the load-point
displacement. This guarantees continuous stability up to the
moment of formation of the circumferentia cracks, provided
that the ice is treated as homogeneous.

The second suspected source of error, the three-dimension-
ality, isreflected in Dempsey et a.’s solution to alesser degree
than by the solution in the paper. Dempsey et al.’s assumption
that the depth of open crack along the radial crack is uniform,
with a sudden jump to zero at the radial crack front (a place
where the dynamic crack jumps would have to take place), is
a rather severe simplification of a plausible fracture shape. In
the paper, the open crack depth is variable and at the radia
crack front approaches zero without any discontinuity. The
depth variation is found to be quite significant. Therefore, the
deviation from the actual three-dimensional behavior is evi-
dently greater for Dempsey et al.’s solution.

It is strange that, while questioning the existence of size
effect except in very thick plates, Dempsey ignores the evi-
dence given by Fig. 5in Part Il of the paper. That figure shows
the results of three field tests, and each of them clearly shows,
despite high scatter, that a strong size effect is present even
for a size range beginning with 0.1 m.

In conclusion, the writers remain convinced that the sim-
plifications made in the fracture and size effect analysis of the
paper were not unreasonable and that the numerical solution
presented, with all its approximations, ought to be more re-
alistic than the analytical solution of Dempsey et al., ingenious
and elegant though it may be. In particular, the writers do not
agree with Dempsey that a static analysis leading to *‘ stable
and self-similar growth” would be implausible. Simplified
though the analysis in the paper obviously is, it nevertheless
appears to be a reasonable simplification.

SODHI'S DISCUSSION

Sodhi has made some interesting and thought-provoking
points. However, his severe criticism is unconvincing and, in
the writers' opinion, invalid.

It is true that the neglect of radial crack closuresin Slepyan
(1990) and Bazant and Li (1994) was an oversimplification,
but these early studies, judged as ‘“‘particularly flawed’ by
Sodhi, represented necessary steps in the evolution toward a

realistic fracture analysis and clarified some important aspects
of the scaling problem. Prior to Dempsey et al. (1995) and
Bazant et al. (1995), no fracture studies of ice plate penetration
took the crack closures with the inherent dome effect into ac-
count (some limit analysis studies did, but to treat ice as a
plastic material without softening damage is a much more se-
rious ‘‘flaw,”” in the writers' opinion).

There is no dispute that certain simplifying assumptions
were made in the paper, but the writers believe them to be
reasonable and sufficiently realistic. One simplification wasthe
neglect of creep, which is repeatedly reproached by Sodhi.
However, assuming that creep would not mitigate the size ef-
fect is not baseless.

There used to be a widespread intuitive misconception that
the influence of creep is like that of plasticity, which tends to
increase the process zone size, thereby making the response
less brittle and the size effect weaker. But the influences of
creep and plagticity are very different.

The influence of creep on scaling of brittle failures of con-
crete, which is doubtless quite similar from the mechanics
viewpoint (albeit different in physical origin), was studied in
depth at Northwestern University, along with the effect of the
crack propagation velocity; see, e.g., Bazant and Gettu (1992);
Bazant et al. (1993); Bazant and Planas (1998); and especially
Bazant and Li (1997) and Li and Bazant (1997). The conclu-
sion from these studies, backed by extensive fracture testing
of concrete and rock at very different rates, isthat, unless creep
actually prevents crack formation, creep in the material aways
makes the size effect due to cracks stronger. In the logarithmic
size effect plot of nominal strength versus structure size, it
causes a shift to the right, toward the LEFM asymptote.

In light of these studies, Sodhi’s claim (in hislast paragraph)
that “‘incorporating creep will require abandoning an LEFM
approach’” must be seen as erroneous. The opposite is in fact
true: The slower the loading (or the longer its duration), the
closer to LEFM is the size effect in a cracked structure. The
physical reason, clarified by numerical solutions of stress pro-
files with a rate-dependent cohesive crack model (Li and Ba-
Zant 1997), is that the highest stresses in the fracture process
zone at the crack front get relaxed by creep, which tends to
reduce the effective length of the fracture process zone. The
shorter the process zone, the higher the brittleness of response
is and the shorter the size effect. This explains why experi-
ments on notched concrete specimens consistently show the
size effect to be stronger a a slower loading (BaZant and
Planas 1998). It is highly probable that the same will be ver-
ified for ice, once size effect tests at very different loading
rates are carried out.

From the aforementioned studies, it thus transpires that, in
order to take the influence of creep on the size effect approx-
imately into account, one does not need to abandon equivalent
LEFM, as claimed by Sodhi. It suffices, in the case of very
slow loading, to reduce the value of fracture energy (or frac-
ture toughness) and decrease the effective length ¢; of the frac-
ture process zone. Even these adjustments, however, are im-
portant only when loading durations differing by several
orders of magnitude are considered, which is not the case for
the ice penetration tests cited by Sodhi.

Sodhi also states that considering the load to be applied
along the circumference of a hole of a radius of about 10% of
the characteristic length must have caused the results not to
be “‘totally correct,”’ apparently meaning not totally represen-
tative of the idealized case of a concentrated load applied at
a point. However, the conclusions ought to be essentially cor-
rect. Fracture is at a maximum load driven by the global en-
ergy release from the ice plate—sea water system and is not
very sensitive to local disturbances near the load application
point, where reach is limited according to Saint-Venant prin-
ciple.
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Sodhi’s comments in the second paragraph of Part |l are
taken out of context and result from a misunderstanding of the
criticism in the original paper of Sodhi’s previous way of han-
dling the available data sets. In Figs. 5(c and d) of the paper,
cited by Sodhi, the coordinates are not the actual thickness D
and nomina strength o but their relative values, which are
normalized by the values of \,l, and Bf, only after these values
have already been determined for each data set separately. The
two plots were presented in the paper merely for visual dem-
onstration; they were not used for actually identifying the ma-
terial parameters from the test data. On the other hand, in his
previous works cited from the paper, and again in his present
discussion, Sodhi plots the data from different data sets in the
same plot and actually uses regression in this plot to determine
the parameter values. The criticism of such a procedure stated
in detail in the paper is valid.

Since the relation of the ice properties in various data sets
is not known a priori, an arbitrary vertical or horizontal shift
(in log o) of the group of data points from one data set
against that from another data set is allowed and must be con-
sidered. Just by choosing a suitable vertical or horizontal shift
of the data groups, any desired conclusion can thus be ob-
tained—the presence of a strong size effect, or the absence of
any size effect (in Sodhi’s case). Nothing is thus proven by
Sodhi’s plot. This is the salient point criticized in the paper.

The kind of plot shown in Fig. 6 and discussed in Sodhi’s
fourth paragraph, Part 11, is misleading for two reasons: (1) as
known from Buckingham’'s theorem of dimensional analysis,
general physical laws are correct only if they can be written
in a dimensionless form; and (2) the breakthrough load P,
must obviously depend on ice strength f{. To achieve a di-
mensionless coordinate, the breakthrough load in Fig. 6 must
be divided by f{h?, h being the ice thickness (a division by
f{ amounts to a horizontal shift in the logarithmic scale). But
then it is not a priori clear how thef values for different data
sets relate to each other, because they have not been separately
identified in advance.

Consequently, the relative horizontal positions of the groups
of circles, triangles, diamonds, and squares in Fig. 6 must be
considered as undetermined in advance. This implies that
Sodhi’s plot in Fig. 6 can be valid only for one kind of ice,
not for different kinds simultaneously. Arbitrary vertical shifts
of one data group against another, due to unknown differences
in f{, would have to be considered in Fig. 6 if the break-
through load were normalized by the ice strength. [Here the
shifts are not vertical, as considered in the paper, but rather
horizontal, because Sodhi for some reason inverts the coor-
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dinates; the ice thickness (normalized) would normally be the
coordinate and the breakthrough load (normalized) the ordi-
nate.]

The ice thickness h in Fig. 6 should of course aso be nor-
malized to yield a dimensionless coordinate. One way to do
that might be to adopt as the ordinate the dimensionless pa-
rameter hp,/f{, where p, is the specific weight of water (of
dimension N/m®). In that case, the vertical and horizontal shifts
in Fig. 6 are the same and thus the plot looks the same after
the shifts. But p,,/ f{ is not the only possible normalizing factor
for h and is in fact not the most reasonable one.

If fracture plays any role, then either the characteristic
length I, of the cohesive crack model or the effective length
of the fracture process zone in the sense of equivalent LEFM
must somehow appear in the solution. So the ice thickness h
should correctly be normalized by |,. In other words, the or-
dinate h in Fig. 6 should be replaced by the relative thickness
h/l,. With this reasonable normalization of h, the arbitrariness
of the horizontal shifts pointed out in the previous paragraph
remains. Ignoring this kind of normalization of h, which is
implicit to Sodhi’s approach, is tantamount to assuming
a priori that fracture mechanics plays no role in the problem
and that there is no size effect. Given that such a hypothesis
is implied, Sodhi’s use of Fig. 6 to dismiss the size effect
appears to be a circular argument.

Still another noteworthy point, aready made in the paper,
is that the coordinate of the size effect plots should not be the
load P but the nominal strength o = P/h?. The case of no size
effect then corresponds to a horizontal line. The plot in terms
of P superimposes on the size effect the underlying propor-
tionality of P to h* corresponding to the strength theory, which
does not represent a size effect as generally understood. This
obscures the size effect, as demonstrated by Figs. 4(b and c)
of the paper. Sodhi does not question this demonstration, yet
he persists in his discussion in plotting the size effect again in
terms of P rather than oy.
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