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Abstract. The effect of structure size on the nominal strength of unidirectional fiber-polymer composites, failing
by propagation of a kink band with fiber microbuckling, is analyzed experimentally and theoretically. Tests of
novel geometrically similar carbon–PEEK specimens, with notches slanted so as to lead to a pure kink band (not
accompanied by shear or splitting cracks), are conducted. They confirm the possibility of stable growth of long
kind bands before the peak load, and reveal the existence of a strong (deterministic, non-statistical) size effect.
The bi-logarithmic plot of the nominal strength (load divided by size and thickness) versus the characteristic size
agrees with the approximate size effect law proposed for quasibrittle failures in 1983 by Bažant. The plot exhibits a
gradual transition from a horizontal asymptote, representing the case of no size effect (characteristic of plasticity or
strength criteria), to an asymptote of slope−1

2 (characteristic of linear elastic fracture mechanics, LEFM). A new
derivation of this law by approximate (asymptotically correct)J -integral analysis of the energy release, as well as
by the recently proposed nonlocal fracture mechanics, is given. The size effect law is further generalized to notch-
free specimens attaining the maximum load after a stable growth of a kink band transmitting a uniform residual
stress, and the generalized law is verified by Soutis, Curtis and Fleck’s recent compression tests of specimens with
holes of different diameters. The nominal strength of specimens failing at the initiation of a kink band from a
smooth surface is predicted to also exhibit a (deterministic) size effect if there is a nonzero stress gradient at the
surface. A different size effect law is derived for this case by analyzing the stress redistribution. The size effect
law for notched specimens permits the fracture energy of the kink band and the length of the fracture process zone
at the front of the band to be identified solely from the measurements of maximum loads. The results indicate that
the current design practice, which relies on the strength criteria or plasticity and thus inevitably misses the size
effect, is acceptable only for small structural parts and, in the interest of safety, should be revised in the case of
large structural parts.

Key words: Fracture, compression, fiber composites, testing, kink bands, microbuckling, size effect, scaling,
asymptotic analysis,J -integral, equivalent LEFM, cohesive crack model.

1. Introduction

In the early 1980’s it became clear that the size effect on the nominal strength of quasib-
rittle materials failing after large stable crack growth is caused principally by energy release
(Bažant 1984) and cannot be explained by Weibull-type statistics of random microdefects.
Ever since, the problem of size effect has received increasing attention (see the reviews in
Bažant and Chen, 1997, and Bažant and Planas, 1998). Size effects caused by energy release
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104 Zdeněk P. Bažant et al.

into a finite-size FPZ (or damage localization zone) have been extensively demonstrated and
mathematically described for concrete, mortar, rocks, ceramics and sea ice. Description of
such a size effect requires an energy analysis of fracture mechanics type.

At present, all the textbooks and practical procedures for fiber composites characterize
the failure in terms of strength or plasticity type criteria, which are inherently incapable
of capturing the size effect. Recently, though, the existence of size effect has been demon-
strated by tests of notched orthotropic and quasi-isotropic carbon-epoxy laminates under
tensile (Mode I) loading (Bažant, Daniel and Li, 1996). A size effect of thickness in laminates
was experimentally shown by Daniel and Hsiao (1996).

The present study will focus attention on the compression failure of unidirectionally re-
inforced fiber composites. This is a particularly complex type of material failure, which can
involve two distinct mechanisms:

(1) delamination fracture, and
(2) a row of parallel axial shear cracks combined with microbuckling of fibers in a so-called

kink band.

Only the latter mechanism of failure will be considered in this study.
Compression microbuckling in kink bands has been studied extensively for over thirty

years and a large body of knowledge has been accumulated. Rosen (1965) presented a simple
formula for compression strength based on the idea of buckling of parallel fibers embedded in
an elastic matrix. Similar more refined formulae for elastic composites with wavy fibers were
presented by Bažant (1968). Argon (1972) extended Rosen’s formula by considering plastic
yielding.

A further important refinement was introduced by Budiansky (1983) who took into account
the initial misalignment of the axial fibers and showed its pronounced effect. Various sub-
sequent refinements within the framework of elastoplastic analysis were made by Budiansky
and Fleck (1993), Kyriakides et al. (1995), Christensen and DeTereza (1997), Soutis et al.
(1991, 1993), Moran et al. (1995), Jelf and Fleck (1992), Fleck and Jelf (1995), Fleck and
Shu (1995), Fleck et al. (1996), Kyriakides and Ruff (1997), and others; see the excellent
reviews by Fleck (1997), Budiansky and Fleck (1994), Schultheisz and Waas (1996), Waas
and Schultheisz (1996), and Sutcliffe and Fleck (1994). These studies included the analysis of
post-buckling behavior of the fibers, inelastic behavior of matrix, and various imperfections.
They provided understanding of the factors governing the inclination of the kink band with
regard to the direction of the fibers, including the role of lateral expansion in the kink band
and the shape of the assumed yield surface. Analysis of microbuckle initiation by small-scale
yielding fracture mechanics was presented by Sutcliffe et al. (1996)

None of the existing formulae for the nominal strength in compression, however, predicts
any size effect. Omission of the size effect in compression has seemed natural because small-
scale laboratory tests indicated no size effect and because the maximum load has been thought
to occur at the very beginning of microbuckling, before the size or the length of the kink band
becomes macroscopically significant.

Recently, though, various fracture mechanics aspects of the kink band failure came to
light. Based on strain measurements at the flank of the kink band, the experimental studies
of Sutcliffe and Fleck (1994) and Fleck et al. (1996, 1997) demonstrated that the axial normal
stress across the band decreases with the distance from the band front, and reaches a plateau
equal to about 50 percent of the maximum stress. This means that the diagram of the axial
normal stress versus the axial relative displacement across the band exhibits softening and
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then reaches a yield plateau at about 50 percent stress reduction. Such a crack-like behavior of
the band (Fleck et al., 1996) was further confirmed by the study of Moran et al. (1995), who
discovered the phenomenon of band broadening. In retrospect, the band broadening appears
natural to expect because it is required to accommodate the increase of relative displacement
across the band with the distance from the front, similar (but opposite in sign) to the increase
of crack opening.

Fleck (1996) and Sutcliffe and Fleck (1996) conducted two-dimensional fracture analyses,
adapting the cohesive crack model for compression, and estimated the fracture energy associ-
ated with the kink band propagation. Soutis et al. (1991) reported extensive numerical studies
with a crack-bridging model and analyzed the effect of the size of a hole on the strength of a
composite specimen. They calculated and experimentally verified how the apparent strength in
the vicinity of a hole decreases with an increasing diameter of the hole. Although geometric
similarity of the hole with the specimen dimensions was not maintained in these tests, the
results nevertheless hint at the likelihood of size effect.

Recently, Budiansky, Fleck and Amazigo (1997) analyzed the propagation of a semi-
infinite out-of-plane kink band, approximating the band with a crack whose face is allowed
to overlap in compression. They assumed the FPZ to be lumped into a point, and analyzing
energy balance derived the formula

σu = σb +
√
Gb/L (1)

in whichσu = axial normal stress ‘upstream’ in the direction of propagation (far enough ahead
of the front),σb = axial normal stress transmitted across the band far enough behind the front,
L = specimen height, andGb = material constant playing the role of fracture energy and
consisting of the work of sliding shear stresses in the band, the work of fiber debonding, and
the work of the axial normal stress on the relative displacement across the band. Sutcliffe et
al. (1996) examined the energy release rate required for microbuckle initiation by small-scale
yielding fracture mechanics approach. required for microbuckle initiation

Although this formula does not give the effect of sizeL on the nominal strength of geomet-
rically similar specimens and does not take into account the effect of the size of the FPZ at the
front of the kink band, it clearly suggests the existence of a size effect. More importantly, the
type of analysis that has led to this formula gives an inspiration for taking a fracture mechanics
approach.

The present study, involving specimens of geometrically similar shapes, reports experi-
mental results that reveal the existence a size effect in kink band compression failure and
permit an approximate calibration of size effect theory. A simplified analysis of the energy
release, briefly outlined at a recent conference (Bažant 1998(a)), is used to obtain closed-form
formulae for the size effect in failures that occur either after a large stable growth of kink
band, or at the initiation of the kink band. These formulae represent a special application of
the general asymptotic analysis of size effect proposed for compression fracture in Bažant
(1997) and Bažant and Chen (1997).

2. Size effect tests of notched specimens

The kink band failure is often combined with axial splitting-shear cracks and delaminations.
Such combined failures are difficult to analyze because the contributions of the microbuckling
in the kink band and of the shear, splitting and delamination failures are hard to separate.

206427.tex; 11/05/1999; 11:04; p.3
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Therefore, the objective of experimental investigation aimed at verifying a theory should be
to find the type of fiber composite and the shape of specimen that would lead to a pure kink
band failure and would do so even for very large sizes.

After experimenting with various types of composites, the carbon fiber composite with a
PEEK (poly-ether-ether-keton) thermoplastic polymer matrix was selected. The advantage of
PEEK is that it is less brittle than carbon epoxy composites, which leads to a more stable type
of failure. It follows that, if a size effect is revealed in this type of composite, it should exist
and be in fact more pronounced in more brittle composites, such as the carbon fiber-epoxy
composites.

To exclude the effect of random variation of material strength over the specimen volume
(known to cause Weibull-type size effect), the specimens (shown in Figure 1(a,c) and 2) need
to be provided with notches. The notches ensure the failure to begin in one desired place,
preventing the failure from starting at diverse locations where the material is statistically
weakest.

Why a one-sided notch, rather than two symmetric notches? The reason is that a bifurcation
of the equilibrium path would have to be expected to occur, according to the analysis in Bažant
and Cedolin (1991, Sec. 12.5). Symmetric growth of two interacting kink bands would surely
represent an unstable path. The stable path is a one-sided growth of one kink band even if
there are two notches.

Notches that are orthogonal to the surface have normally been used in fracture testing.
At the beginning of this study, however, such notches were found to engender failures that
begin by an axial splitting-shear crack (Figure 1(b)), which is only later followed by the
development of an out-of-plane kink band. Such a band typically has a transverse inclination
(such inclination was previously observed by Fleck et al. (1996), Sutcliffe and Fleck (1994),
Kyriakides et al. (1995)). For this reason, the starter notch has been made inclined (Figure 1(c),
2) with the same angle as the out-of-plane kink band. This inclination was found by trial tests
to be 25.4◦. It made it possible to eliminate in most tests the axial splitting-shear cracks and
thus obtain pure kink band failures.

The test specimens, shown in Figure 1(a,c) and 2, are scaled in two dimensions. the thick-
nessb in the third dimension being constant. The specimen dimensions and the notch depths
of the specimens of different sizes are scaled in the ratio 1:2:4. The notch of lengtha0 = 0.3 D,
where D is the specimen width, is machined with a diamond bladed band saw up to 95 percent
of its length. Then the notch is sharpened at the tip by a cut whose depth is 5 percent of the
notch depth. The cut is machined with a 0.2 mm diameter diamond-studded wire, and thus
the crack tip radius is 0.1 mm in all the specimens. The deptha0 of the notch considered for
scaling and in the analysis includes the depth of the wire saw cut.

The content of polymer resin in the specimen (supplied by Fiberite, Inc., Orange, Cali-
fornia) was 32± 3 percent. The specimens have been molded at Northwestern University
from 100 plies of sheets 304.8 × 304.8 mm, 0.05 mm thick. The molding was carried out
under temperature 391◦C (735◦F) and pressure 0.69 MPa, using the standard time sequence
of the curing process. After the specimens had been cut from the molded sheets, they were
provided with massive end caps made of 1040 hot rod steel, to which they were glued by
epoxy. To ensure proper alignment, the end caps were glued only after the specimen had been
installed under the loading platens of the testing machine. The end plates were restrained to
prevent any rotations. All the specimens have been tested under a controlled stroke rate of
1.27× 10−4 mm/s. After the kink band had initiated at the notch tip, it was seen to propagate
stably on both the front and back sides of the specimen. On one side, the kink band was usually
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Figure 1. (a) Geometrically similar single-edge notched carbon-PEEK (poly-ether-ether-keton) specimens tested,
and scheme of loading, (b) specimen with an orthogonal notch exhibiting undesirable failure (splitting-shear
cracks), and (c) transversely slanted notches used in present tests (Figures 3 and 4), achieving pure kink band
failure.

206427.tex; 11/05/1999; 11:04; p.5
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Figure 2. Photo of three of the specimens after the test, showing the out-of-plane kink band.

slightly longer than on the other side, but only at the beginning of propagation. The shorter
band on one side would soon catch up with the longer band on the opposite side.

As usual, the nominal strength of the specimen, which represents a parameter of the
maximum load having the dimension of stress, is defined as

σN = P/bD, (2)

in whichP =maximum load measured,b = specimen thickness (12.7 mm (0.5 in)), andD =
specimen width (chosen as the characteristic dimension). Figure 3 shows the individual test
results in the form of the plot of logσN versus logD.

Figure 4 further shows for the individual specimens the diagrams of the measured average
stress over the ligament,σL = σND/(D − a0), versus the average axial strainε determined
as the stroke of the piston divided by the length between the platens. All these load-deflection
diagrams exhibit a post-peak stress drop rather than a horizontal yield plateau at peak load.
This fact alone suffices to demonstrate that a fracture-type approach (or a nonlocal damage
approach) is required. Furthermore, these diagrams reveal the existence of a terminal yield
plateau, which confirms the existence of a finite residual stress across the kink band.

If there were no size effect, as currently assumed in design and exhibited by the existing
formulae for the maximum load expressed in terms of stress or strain, the plot in Figure 3
would have to be horizontal. Every theory based on plasticity or on some critical values of
stress or strain predicts a horizontal plot. However, the trend is clearly seen to be downward.
The downward slope is quite steep and closer to the slope−1

2 corresponding to LEFM than
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Figure 3. Results of the present tests of nominal strength of carbon-PEEK specimens (data points) and their
optimum fit by equation (14).

Figure 4. Load-deflection diagrams of carbon-PEEK specimens tested.

to the horizontal line for the strength theory. So, despite a relatively ductile PEEK matrix, the
size effect for these large, albeit not extremely large, specimens is strong.

One of the small specimens, corresponding to the upper left data point in Figure 3, did not
develop a kink band but failed by a vertical shear crack that started from the notch tip and
produced axial splitting. Argued though it could be that this data point should be excluded, it
has nevertheless been retained in the data set, because

(1) it is the highest point in the data set, and
(2) the load that would cause the kink band failure of this specimen must have been at least

as high as this point.

In other words, the size effect could not be milder than it is when this point is included in the
analysis.

The test results exhibit considerable random scatter. This is, however, typical of compres-
sion failure of fiber composites (because of their strong sensitivity to fiber misalignment;
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Fleck 1997, Budiansky 1983). For this reason, the size effect would not have been revealed
clearly if the size range were less than 1:4. The present size range of 1:4 appears just about
the minimum for being able to clearly demonstrate the size effect. To reduce the ratio of the
inevitable scatter band width to the range of sizes, the ratio of the sizes of the smallest and
largest specimens should be at least 1:8 in future testing. For concrete, tests with size ranges
up to 1:32 have been made (Bažant and Planas 1998). For sea ice, tests of a size range of
1:162 have been carried out by Dempsey’s team in the Arctic Ocean (Dempsey et al., 1999),
providing a clear picture of the size effect despite strong random scatter.

Compared to the loading through a pin, which would allow free rotations at the ends, the
present boundary condition of restraint against rotation complicates a little bit the test eval-
uation because an unknown bending moment develops at the ends causing the compression
resultant to shift laterally during kink band propagation. However, the end restraint has the
advantage that the test becomes much more stable. This has made it possible to

(1) demonstrate that a stable propagation of a long kink band is possible (which has so far
been doubted by most experts),

(2) observe the post-peak deformations well beyond the peak load, and
(3) approach the residual stress plateau and observe the residual stress (Figure 4).

3. Simple size effect analysis viaJ -integral

We analyze a specimen (Figure 5(a)) with unidirectional (axial) fiber reinforcement. The kink
band has lengtha which can be long or short compared to the specimen widthD taken as
the characteristic dimension. The width of the kink band, considered to be small, is denoted
asw, and its inclination asβ (Figure 5(a), 6). Although tractable, the bending stiffness of
the fibers is neglected, for the sake of simplicity. The loading is assumed to produce cohesive
shear cracks that are parallel to the fibers and have a certain characteristic spacings. The
axial normal stress transmitted across the kink band (band-bridging stress) is denoted asσ

(Figure 6). Although Figure 5(a) depicts an in-plane fiber inclination, the behavior is similar
for the out-of-plane fiber inclination in the test specimen used because what matters for the
analysis is the reduction of axial stress across the kink band, which is the same for both cases.

The diagram of the shear stressτ transmitted across the shear cracks versus the slip dis-
placementηf r on these cracks must exhibit post-peak softening (Figure 7 top left). This is
confirmed by two important recent experimental findings. First, Fleck and Shu (1995) placed
strain gauges at the flanks of the kink band and, as the kink band grew, observed the strain
in the gages to decrease, rather remain constant (see also Fleck, 1997). Second, Moran et
al. (1995) recently discovered the phenomenon of band broadening (see also Sutcliffe et al.,
1996), which implies that the relative displacement across the band increases as the band
grows, and thus indicates that the kink band plays a role similar to a crack (whose opening
width grows with the distance from the front and the transmitted stress decreases), rather
than to a dislocation line (on which the relative displacement as well as the transmitted stress
remains constant).

For the sake of simplicity, the stress-displacement diagram of the axial shear cracks is
considered to be bilinear, as shown in Figure 7 (top right) whereτp = peak stress or shear
strength = shear stress parallel to fibers at which the cohesive crack initiates, andτr = the
residual shear strength, representing the final yield plateau. According to the analysis of mode
II slip bands by Palmer and Rice (1973), the area of the diagram above the yield plateau is
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Figure 5. (a) Idealized kink band of widthw in a notched specimen, with a fracture process zone of effective
lengthcb; (b) path ofJ -integral, with energy release (stress relief) zones OFGO, OBCO; (c) fracture process zone
of equivalent cohesive crack.

Figure 6. Idealized microbuckling of fibers in the kink band and axial shear cracks.
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Figure 7. Top left: assumed bilinear diagram of shear stress versus slip displacement on the axial cracks of spacing
s, crossing the kink band. Top right: superposition of elastic deformation between the cracks to obtain the diagram
of shear stress versus total shear displacement accumulated over distances between cracks. Bottom: Diagram of
the axial normal stressσ versus axial displacementδ across the kink band, and area representing the kink band
fracture energyGb .

known to play the role of shear (Mode II) fracture energy,Gf (see the shaded triangle in
Figure 7 top left) (the critical valueJcr of theJ -integral also includes the rectangle below the
triangle). The fracture energy of the kink band, that is, the energy dissipated by fracture per
unit length of the band, is

Gb = Gf w / s. (3)

3.1. J -INTEGRAL CALCULATIONS

To approximately calculate the energy release due to propagation of the kink band, we use
Rice’s (1968a)J -integral, for which we consider the rectangular closed pathABCDEFGH

shown in Figure 5(b). The start and the end of this path at the crack surfaces must lie at the
boundary of the FPZ because the residual stress across the band does work (for Mode II cracks
this was shown by Palmer and Rice, 1973). The top, bottom and right sides of this rectangular
path,CDEF , are sufficiently remote from the crack band for the initially uniform stress state
to remain undisturbed.

On the left downward sides of the rectangular path,FG andBC, the distribution of the
axial stress has some curved profile sketched on the left of Figure 5(b). The precise shape
of this profile is not important but it is important that asymptotically, for large sizesD �
w, the profiles must become geometrically similar. This observation is the basic idea of the
asymptotic size effect analysis via theJ -integral.

For the sake of simplicity, we may replace this profile by the stepped piece-wise constant
profile shown, in which the stress drops abruptly from the initial stressσN to the residual stress
σr which is transmitted across the band after the band contracts sufficiently. An important
point again is that, for large enough geometrically similar specimens (D � w), the locations
of the stress steps in this replacement profile must also be similar, that is, pointsF andC,
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must lie on inclined rays of a certain constant slopek shown dashed in Figure 5(b). These
rays may be imagined to emanate from the tip of the equivalent crack of lengtha = a0 + cb
(Figure 5(b)) wherecb characterizes the length of the FPZ of the kink band and represents
approximately the distance from the center of the FPZ of kink band to the point where the
stress is reduced to its residual valueσr (Figure 7 top; the length of the FPZ is about 2cb).
Slopek depends on the structure geometry and on the orthotropic elastic constants.

The area between these rays and the kink band roughly represents the zone of stress relief
caused by the drop of axial stress transmitted by the kink band. The strain energy contained
within this area is released and is dissipated by the axial shear cracks forming at the front of
the kink band. Noting that this area, and thus the energy release, increases in proportion toD2,
while the energy dissipated at the kink band front increases linearly withD, one immediately
concludes that there must be size effect.

The zone at kink band front in which the axial shear cracks are forming represents the FPZ
of the kink band. Its lengthcb may be regarded as a material property, almost independent
of the specimen dimensions and geometry. It may be considered to be of the same order of
magnitude as the widthw. Throughout this zone, the fiber inclination increases from the initial
misalignment angleϕ up to the valueϕ+ϕ corresponding to the residual cracks. To make test
evaluation simple, the specimens must be notched and the FPZ at maximum load must still be
attached to the notch (i.e.c = cb).

Referring to the sketch in Figure 5(b), the crack band of lengtha0 + cf is approximately
equivalent to a mode I crack whose faces are imagined to interpenetrate. The length of this
crack isa0 + c wherec = cf + (w/2k), which may again be assumed to be approximately
a constant when the size is varied. Consequently, the heightFC of the rectangular path in
Figure 5b is approximately 2k(a0+ c), as labeled in the figure.

In view of these considerations, the first part of theJ -Integral may be approximately
expressed as follows∮

W dy = 2k(a0 + c)
(
σ 2
N

2Ey
− σ 2

r

2Ey

)
, (4)

in whichW = strain energy density, andy = coordinate normal to the direction of propagation
( Figure 5(b)), andEy = effective elastic modulus of the orthotropic fiber composite in the fiber
directiony (with different values for plane strain and plane stress). In (4) we have considered
that the parts of the integral over the horizontal segments are 0, and that the stress on the
vertical segmentDE may be assumed undisturbed by the kink band, i.e., equal toσN . The
portions of the integral over the crack surface segmentsGH andAB are, likewise, 0.

The second part of theJ -Integral may be calculated in a similar manner as that introduced
by Palmer and Rice (1973) for the propagation of Mode II shear fracture with residual friction;∮

σ · ∂u
∂x

dx =
∫

AB

σr
d

dx

[
1

2
δ(x)

]
dx −

∫
GH

σr
d

dx

[
1

2
δ(x)

]
dx

=
∫ a0

x=0
σr dδ(x) = σr

∫ a0

x=0
dδ(x) = σrδBG, (5)

in which σ = stress vector acting from the outside on the domain enclosed by the path,
u = displacement vector,δ = relative displacement across the band, andδBG = relative
displacement between pointsB andG. That displacement can be estimated as the difference
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between the changes of lengthED and lengthFC;

δBG = 1ED − (1FG+1BC) (6)

= 2k (a0 + c) σN
Ey
− 2k (a0+ c) σr

Ey
= 2k (a0 + c) σN − σr

Ey
. (7)

Now theJ -Integral may be readily evaluated as follows:

J =
∮ (

W dy − σ · ∂u
∂x

ds

)
= k

Ey
(a0 + c)

[
σ 2
N − σ 2

r − 2(σN − σr)σr
]

= k

Ey
(a0 + c) (σN − σr)2 (8)

The energy consumed may be calculated again with the help of theJ -Integral. Similar to
Rice (1968b) and Palmer and Rice (1973), the integration path that runs along the equivalent
crack surface and around the crack tip (Figure 5(c)) may be used;

Jcr =
∮
σ · ∂u

∂x
dx. (9)

This represents the critical valueJcr , of theJ -Integral required for propagation. This critical
value may be subdivided into two terms

Jcr = Gb + σrδr (10)

whereGb is the fracture energy, i.e., the energy required to produce the axial shear cracks
across the kink band, andσrδr , represents the plastic work that is done by the residual stresses
σr within the FPZ of the kink band and is leaving the FPZ in its wake. This work corresponds
in Figure 7 (top left) to the shaded rectangle lying under the shaded triangle. Following the
way shown by Rice (1968b) and Palmer and Rice (1973) for shear bands,Jcr may be evaluated
(Figure 5(c)) as follows

Jcr =
∮
σ · ∂u

∂x
dx

= −
∫ a0+c

x=a0

f [δ(x)] d

dx
[12δ(x)]dx +

∫ a0

x=a0+c
f [δ(x)] d

dx
[12δ(x)]dx

= −
∫ a0+c

x=a0

f [δ(x)]dδ(x)
dx

dx =
∫ δr

0
f [δ(x)]dδ(x). (11)

This means thatJcr represents the sum of the shaded triangle and shaded rectangle in the stress-
displacement diagram of Figure 7 (bottom). Therefore, according to (10), fracture energy
Gb is represented by the area under the descending stress-displacement curve and above the
horizontal line for the residual stress.
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3.2. CASE OF LONG KINK BAND

Setting (8) equal to (10), and solving for the nominal strengthσN of the specimen, we obtain

σN = σR +
√
Ey(Gb + σrδr)/kc

1+D/D0
= σR + σ0√

1+D/D0
, (12)

in which

D0 = c

α0
, σ0 =

√
Ey(Gb + σrδr)

kc
, α0 = a0

D
, σR = σr (13)

(for other geometries,σR need not be equal toσr). The resulting formula (12) has the same
form as that proposed by Bažant (1987) for the general case of quasibrittle failures with a
residual plastic mechanism, and subsequently verified for several applications to concrete
structure. This formula is valid when a long enough kink band transmitting constant residual
stressσr develops in a stable manner before the maximum load is reached. Because ofσr , such
stable propagation can happen even in specimens of positive geometry (i.e., for increasing
g(α)). Stable propagation is helped by rotational restraint of specimen ends.

Equation (12) with (13) bears some similarity to formula (1) derived by Budiansky, Fleck
and Amazigo (1997). In contrast to that formula, however, (12) with (13) describes the size
effect for geometrically similar specimens, takes into account the finiteness of the FPZ at
the front of the kink band, and involves a stress quantity of a different meaning (namely the
nominal strength, which is a parameter of the applied load) instead of the stress values in front
of the kink band and on its flanks.

3.3. FAILURE AT THE START OF KINK BAND FROM A NOTCH OR STRESS-FREE CRACK

In the case of notched test specimens (of suitable geometry), the maximum load is achieved
while the FPZ of the kink band is still attached to the notch. Except for the sign of the band-
bridging stresses, the situation is analogous to tensile fracture of notched specimens. From
experiments on concrete as well as analytical studies based on the cohesive crack model, it
is known that only a short initial portion of the softening stress-displacement curve of the
cohesive crack comes into play. It is only the initial downward slope of this curve which
matters for the maximum load (the tail of the postpeak load-deflection diagram, of course,
depends on the entire stress-displacement curve of the cohesive crack); see Bažant and Li
(1995) or Bažant and Planas (1998).

A similar situation must be expected for kink bands in notched specimens. Since the shape
of the softening stress displacement curve of the cohesive crack model is irrelevant for the
maximum load, except for the initial downward slope of the curve, the maximum load must
be the same as that for a linear stress-displacement diagram, shown by the descending dashed
straight line shown in Figure 7 (bottom).

It follows that in this case the residual stressσr should be disregarded and the fracture
energyGB that mathematically governs the kink band growth at maximum load of a notched
specimen corresponds to the entire area under the extended descending straight line in Fig-
ure 7. Obviously,GB > Gb if σr > 0. Consequently, settingδr = 0 in (13) and replacingGb

byGB , we have the size effect law

σN = σ0√
1+D/D0

, (14)
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with

D0 = c0

α0
, σ0 =

√
EyGB

kc0
, c0 = cb + w

2k
. (15)

This coincides with the approximate size effect law proposed in Bažant (1983, 1984); Figure 8
(left, for σR = 0).

From experience with other materials, the length (at maximum load) of the crack band up
to the beginning of the FPZ,a0, may often be considered to be roughly proportional to the
specimen sizeD, within a certain range of sizes. In other words, the ratioD/a0 at maximum
load of geometrically similar structures is often approximately constant. So is the value ofD0

in (14), provided that the specimens are geometrically similar.

3.4. FURTHER CONSIDERATIONS AND GENERALIZATION

The foregoing analysis is generally valid for any type of distributed or concentrated load
applied on the top and bottom boundaries of the specimen, provided they are sufficiently
remote. For the special case of a uniform load, the results can be more directly obtained by a
simpler procedure that is based on the principle of superposition. As illustrated in Figure 9,
the solution for a specimen with residual stress in the kink band consists of the solution of a
specimen in which the distributed load at the top and bottom boundaries is equal to the residual
stress (in which case the stress state is uniform,σ = σr) plus the solution of a specimen with a
mode I stress-free crack loaded at top and bottom boundaries byσN−σr. In that case it suffices
to take theJ -integral only along the pathBCDEFG, that is, omit the segmentsAB andHG
along the crack surface. In such an approach, (5) vanishes. This leads directly to an expression
of the type (14), but withσN − σr on the left-hand side, which is evidently equivalent to (12).

In a complete analysis of the boundary value problem, the values ofδc and of the kink
band length are determined by the condition that the total stress intensity factor caused by the
applied load and by the band-bridging stresses must vanish. As shown by Palmer and Rice
(1973), by writing this conditions for the limiting case of an infinite body, an estimate of the
length of the FPZ of the kink band can be obtained from the slope of the stress-displacement
law of the cohesive shear cracks and their spacings. From that length and the spacing, vice
versa, one can obtain an estimate of the slope of the stress-displacement diagram.

Instead of expanding into Taylor series functiong(α), it is equally justified to expand a
power ofg(α) as a function of a power ofα. In this way (same as in Bažant 1997 or Bažant
and Planas 1998, Eq. 9.1.34), one can show that (12) may be replaced by the following more
general formula (Figure 8(a,b)):

σN = σR + σ0

[
1+

(
D

D0

)r]−1/2r

. (16)

Exponentr, a constant, controls the curvature of the size effect plot in Figure 8 (left). The
optimal value ofr needs to be determined either experimentally or by some more refined
theory (for concrete it is close to 1).
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Figure 8. (a) Size effect law (solid curve) for specimens with a long kink band or notch (Eq.14) and asymptotic
formulas (dashed curves). (b) Same but withσN instead of logσN as the ordinate). (c) Size effect law whenPmax
occurs at kink band initiation.

3.5. RESIDUAL STRENGTH OF SPECIMENS WITH NOTCH OR LONG KINK BAND

The residual stress in the kink band may be estimated by a simple extension of the formula
presented by Budiansky (1983). From the moment equilibrium condition of an element of the
kink band between two adjacent shear cracks (shaded, in Figure 6), we have(σ s)(w sinϑ) =
(τw)s, which expresses the second-order nonlinear geometric effect of buckling. Assum-
ing the fiber inclinationθ at the onset of the slip plateau to be small, we thus have the
approximationsσ = τ/ϑ andσr = τr/ϑ .

The total rotation of the fibers in the kink band may be expressed as

ϑ = ϕ + ϕ + δ
s
= ϕ + τr

Gxy

+ δf
s
, (17)

in which φ = initial inclination angle of the fibers (an imperfection),Gxy = elastic shear
modulus for planes parallel to the fibers,δf = slip displacement of the axial (shear) cracks
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118 Zdeněk P. Bažant et al.

Figure 9. Application of principle of superposition to kink band with residual stressσr (the stress field in the
middle specimen is uniform,KI = 0).

at the onset of the yield plateau (Figure 7), andφ = rotation of the fibers due to elastic shear
deformation of the matrix in the kink band. From (17) it follows that

σr = τr

ϑ
= τr

ϕ + τr
Gxy
+ δf

s

= Gxy

1+ ϕ+(δf /s)
ϕ

. (18)

The last expression is the same as that obtained by Budiansky (1983) except for the additional
term δf /s, which expresses the increase of the shear angle due to crack slip. Budiansky’s
formula of course refers to the maximum load (of a plastic kink band without fractures),
whereas the present formula applies to the residual stress in the kink band after fracturing.

3.6. CASE OF KINK BAND INITIATION FROM SMOOTH SURFACE

If there is no notch, the maximum load may often occur when the crack band initiates from
a smooth surface. However, unless the size of the specimen is very large, a sizable FPZ, of a
certain effective lengthcb (Figure 10), must form at the kink band front before the maximum
load is reached. This must evidently cause significant stress redistribution, which may be seen
as the source of the size effect.

This type of size effect, observed in the bending tests of the modulus of rupture, is well
documented and well understood for concrete and rocks. It can also be explained on the
basis of energy release. In this case, however, one must take into account the second-order
derivatives of the energy release rate because the energy release rate for an initiating crack or
kink band, still infinitely short, is 0. The present simple approach is not accurate enough for
determining these higher-order derivatives. Therefore, the size effect can be more conveniently
and perhaps more instructively explained and quantified by analyzing the stress redistribution
(as already done for concrete in Bažant and Li, 1995).
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Figure 10. Kink band initiation from a smooth surface in a stress field with a stress gradient.

The size effect at crack initiation is known to occur only if the stress distribution has a
significant stress gradientσ,x and reaches its maximum at the surface (Figure 10). The stress
distribution near the surface is considered in the form

σ = σ1− σ,xx = σN(1+ η)− 2ησN
x

D
, (19)

in which x = distance from the surface;σ1, σ,x = values of the stress and its gradient at the
surface (x = 0) before the kink band has formed. If the stress distribution is calculated from
the theory of bending and is caused by axial loadP = σNbD of eccentricitye, thenη = 6e/D
(dimensionless stress gradient).

A simple solution may proceed as follows. Based on the experience with the analysis of
size effect on the modulus of rupture in other quasibrittle materials (Bažant and Li 1995), the
stress under maximum load at the front of the FPZ, lying at distancex = cb from the surface
(Figure 10), may be assumed to be equal to the strength limitσ0 at which the kink band begins
to form, which corresponds to the maximum stress point on the diagram of band-bridging
stress versus contraction of the band;[σ ]x=cb = σ0 or

σN = σ∞/(1−Db/D), (20)

in which

Db = 2cbη/(1+ η), σ∞ = σ0/(1+ η). (21)
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Equation (20) cannot be applied forD 6 Db. But it so happens that the large-size ap-
proximation(1 − Db/D)

−1 ≈ 1 + Db/D produces a formula that has the same large-size
asymptotic behavior yet its behavior is also acceptable for the entire range ofD

σN = σ∞
(

1+ Db

D

)
, (22)

(Figure 8(c)). The values ofσ∞ andDb are constants, the latter representing the thickness
of the boundary layer in which the kink band damage takes place. For a vanishing stress
gradient or a vanishing load eccentricity, one hasη = 0, and the (deterministic) size effect
then disappears.

Equation (22) is of the same form as previously derived for concrete (Bažant and Li, 1995,
Bažant and Planas, 1997). One can also obtain the same equation by a more sophisticated
analysis in which the stress redistribution due to the kink band is actually calculated and the
maximum load is determined from the redistributed stresses (similar to Bažant and Li, 1995).
Such an analysis could also be applied here, but it is more complicated. A still more rational
approach is an asymptotic analysis based on the energy release functions of LEFM, which is
outlined next.

Equation (22) is accurate only up to the first two terms of the asymptotic power series
expansion ofσN in 1/D. This means that other formulae whose asymptotic expansion in 1/D

coincides up to the first two terms with that of (22) are equally justified; for example

σN = σ∞
√

1+ 2Db

D
or σN = σ∞

(
1+ qDb

D

)1/q

, (23)

with any positive constantq.

4. LEFM of orthotropic materials

For an orthotropic material, the stress intensity factor of a sharp crack with a negligibly small
FPZ may always be written in the form

KI = σN
√
πDα F(α) (α = a/D), (24)

whereσN = nominal stress, considered here at maximum load,D = characteristic dimension,
a = crack length,α = relative crack length, andF(α) = function characterizing structure
geometry and material orthotropy.

The energy release rateG may be related toKI using Bao et al.’s (1992) generalization of
Irwin’s (1958) relation for orthotropic materials

G = K2
I

Ē
= D

Ē
σ 2
Ng(α), g(α) = πα[F(α)]2, (25)

whereg(α) = dimensionless energy release function, characterizing the structure geometry
and material orthotropy, and

Ē = 1

Y (ρ)2

(E2/E1)
1/4

√
(1+ ρ)/2E1E2

, with ρ =
√
E1E2

2G12
−√ν12ν21, (26)

Y (ρ) = [1+ 0.1(ρ − 1)− 0.015(ρ − 1)2 + 0.002(ρ − 1)3][(ρ + 1)/2]−1/4. (27)
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Subscripts 1 and 2 refer to Cartesian axesx1 ≡ x andx2 ≡ y; x2 coincides with the fiber
direction;E1, E2,G12, andν12 are the orthotropic elastic constants; and parametersE2/E1

andρ characterize the degree of orthotropy. The formula is valid when the crack propagates
in the directionx1 orthogonal to the fibers, but it is used here as an approximation even for
propagation directions forming a small angle withx1.

For fracture specimens in the form of long notched strip or slender notched beams, function
g(α) or F(α)may be taken approximately the same as for isotropic specimens.

5. Asymptotic size and shape effect laws via equivalent LEFM

5.1. CASE OF LONG KINK BAND OR LONG NOTCH

Following a procedure analogous to Bažant (1997), we will now try to express the coefficients
of the size effect law (12) in terms of the energy release functions of LEFM. This will further
allow us to capture the effect of structure geometry (shape). Assuming that the FPZ at the
kink band front is not so large as to spoil linearity, the stress intensity factorKI at the tip of
a Mode I crack equivalent to the kink band may be expressed according to the principle of
superposition as follows

KI = KP
I −Kr

I , (28)

in which

KP
I = σN

√
Dg(α), Kr

I = σr
√
Dγ (α) (α = a/D). (29)

Herea is the length of the equivalent LEFM crack, whose tip is expected to lie roughly in the
middle of the FPZ;KP

I orKr
I are the LEFM stress intensity factors caused by loadP acting

alone (whereP can represent not only one applied load but also the parameter of a system of
loads), or by a uniform normal tractionσ = σr applied on the crack faces (but not the notch
faces; Figure 5(a));g(α) andγ (α) are dimensionless LEFM energy release functions of the
orthotropic specimen.

When the kink band is propagating,G = Gb = fracture energy of the kink band. Its
meaning, when a residual stress is present, is

Gb = Jcr− σrδr =
∫
δ

σdδr − σrδr =
∫
δ

(σ − σr)dδr (30)

Thus, in view of (25) and (28) with (29), we haveKP
I − Kr

I = σN
√
Dg(α)− σr√Dγ (α) =√

ĒGb (= KIb = stress intensity factor of kink band). From this,

σN =
√
ĒGb + σr√Dγ (α)√

Dg(α)
. (31)

This formula, however, is not acceptable for small sizes of notched specimens; it yieldsσN →
∞ for D→ 0 because limg(α) = g(α0) > 0.

If there is no notch,a0 represents the length of the portion of the kink band length along
which the normal stressσ transmitted across the band has already been reduced to the residual
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valueσr . This is the distance from the notch mouth or from the beginning of the kink band to
the beginning of the FPZ (Figure 5(a)).

By cutting geometrically similar notches of deptha0 in specimens of suitable geometry
with a suitable type of loading, one can achieve that the FPZ at maximum load be still attached
to the notch tip. In that case,α0 = a0/D = constant for all the specimen sizesD, which is
convenient for evaluating test data.

A basic question is what is the value ofa − a0 at the maximum load,Pmax. In view of
extensive experimental evidence and finite element results for other quasibrittle materials
(Bažant and Planas 1998), it is reasonable to introduce the following simplifying hypothesis:
The effective lengthcb = a−a0 of the FPZ of the kink band atPmax (Figure5) is approximately
constant, governed essentially by the microstructure.

5.1.1. Large-size asymptotics
To deduce the large-size asymptotic behavior, we writeg(α) = g(α0+θ) andγ (α) = γ (α0+
θ) where

θ = cb/D, α = α0+ θ (32)

and expand functionsg andγ into a Taylor series as powers ofθ , centered at pointα0 (or
D →∞). Then we truncate each series after the second (linear) term. So, we may introduce
into (31) the large-size approximations

g(α) ≈ g0+ g′θ, γ (α) ≈ γ0+ γ ′θ, (33)

in which g0 = g(α0), γ0 = γ (α0), and the primes denote the derivatives with respect toα;
g′ = dg(α)/dα, γ ′ = dγ (α)/dα at α = α0. With these approximations, one obtains the
following size effect law for failures occurring only after a long stable kink band growth
(Figure 8(a,b)))

σN =
√
ĒGb + σr√γ ′cb + γ0D√

g′cb + g0D
, (34)

or, upon further algebraic rearrangement

σN = σ0+ σY√1+D/D1√
1+D/D0

, (35)

in which

D0 = cb g
′

g0
, D1 = cb γ

′

γ0
, σ0 =

√
ĒGb

cbg
′ , σY = σr

√
γ ′

g′
. (36)

Formula (35) has the following asymptotic values

for largeD: σN = σY
√
D0

D1
= const.= σr γ0

g0

√
g′

γ ′
, (37)

for smallD: σN = σ0+ σY = const. (38)
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The size effect curve of log(σN − σY ) versus logD represents a smooth bridging between the
size effect of plasticity (i.e. the case of no size effect, corresponding to a horizontal line) and
the size effect of LEFM (i.e. the case of the strongest possible size effect, corresponding to
a straight line of downward slope−1

2). The fact that the small-size asymptote is horizontal
agrees with the fact that the strength theory or plasticity ought to be a good approximation for
small sizes because the failure cannot localize.

SizeD0, called the transitional size, represents the intersection of the power scaling laws
for plasticity and LEFM and characterizes the transition from plastic to brittle behavior. The
ratio

β = D/D0 (39)

is a hypostatic characteristic called the brittleness number of a structure (Bažant and Planas
1998). Forβ → 0, the structural behavior is perfectly ductile (plastic), and forβ →∞ with
σR = 0, the behavior is perfectly brittle, described by LEFM. Note that the shape effect on
structural brittleness is included through functiong(α) used to calculateD0.

If the FPZ of the kink band is still attached to the tip at maximum load,γ0 = 0 in (33), and
so, for any structure geometry, the near-tip asymptotic behavior of functionγ (α) for α → α0

is (see Appendix III)

γ (α) = γ ′θ, with γ ′ = 8/π, γ ′ = γ ′(α − α0). (40)

Thus (33) becomes a one-term linear approximationγ (α) ≈ γ ′θ for D → 0. This might
not be sufficiently accurate for smallerD. For a broader range of sizes including smallD,
one must use at least a two-term approximation,γ (α) ≈ γ ′θ + 1

2γ
′′θ2, or even better, not

to replaceγ (α) by an approximation. Thus, for notched specimens, the following formula
should have a broader range of accuracy than (34)

σN =
√
ĒGb + σr√Dγ (α)√

g′cb + g0D
(FPZ at notch), (41)

although it cannot be used if the structure is so small thatα = α0 + cb/D corresponds to a
point that lies outside the structure or near its surface.

With the one-term linear approximationγ (α) = γ ′θ , (31) and (34) reduce to the classical
size effect law derived in 1984 for notched Mode-I (tensile) fracture specimens of positive
geometry (i.e., those withg′ > 0)

σN =
√

ĒGB

g′cb + g0D
= σ0√

1+D/D0
(FPZ at notch), (42)

where

GB = (Kb + σr
√
γ ′cb )2 / Ē with Kb =

√
ĒGb, γ ′ = 8/π (43)

HereKb is the fracture toughness of the kink band, andGB must be the same as in (15),
representing the total fracture energy including the energy dissipation byσr . The value ofγ ′ is
independent of the structure geometry. Equation (42) is the special case of (35) forD1→∞.
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Since functionsg(α) and γ (α) capture the effect of structure geometry, the foregoing
formulae give not only the effect of size but also the effect of shape.

5.1.2. Small-size asymptotics
To deduce the small-size asymptotic behavior, we introduce new parameterξ = 1/θ = D/cb
and new LEFM functions

p(α0, ξ ) = ξg(α0+ ξ−1), ω(α0, ξ ) = ξγ (α0+ ξ−1). (44)

Then we substituteg(α) = p(α0, ξ )/ξ and γ (α) = ω(α0, ξ )/ξ into (31), expand these
functions into a Taylor series inξ centered at pointξ = 0 (or D → 0), and truncate the
series after the second (linear) term, i.e.

p(α0, ξ ) ≈ p0+ p′ξ, ω(α0, ξ ) ≈ ω0+ ω′ξ, (45)

wherep0, ω0, p
′, ω′ = constants. Expressingg andγ from (44) and substituting into (31), we

obtain, after rearrangements,

σN =
√
ĒGb + σr√ωcb + ω′D√

pcb + p′D . (46)

This expression can be brought to the form of the large-size asymptotic approximation (36) in
which

D0 = cb p0

p′
, D1 = cb ω0

ω′
, σ0 =

√
ĒGb

cbp0
, σY = σr

√
ω0

p0
. (47)

5.1.3. Asymptotic matching character
For large enough sizes, the original formula (31) is more accurate than its subsequent approx-
imations. But this formula is unacceptable forD → 0, giving σN → ∞. This conflicts with
the small-size asymptotic form (46) which gives a finiteσN . On the other hand, the approx-
imations (35), (34), (41)and (42) of the large-size asymptotic formula happen to have also
the correct small-size asymptotic behavior forD → 0, approaching a horizontal asymptote.
Moreover, they happen to have the same form as the small-size asymptotic approximation in
(46). This means that these approximations serve as an interpolation between the opposite
infinities (in the logD scale), generally called asymptotic matching.

There is a difference, though. In asymptotic matching, solutions that are accurate for one
and the other infinity serve as the starting point. Here, however, the small-size approximation
cannot be accurate in the limit forD → 0 because it is based on LEFM while the FPZ is in
the limit larger than the structure (properly one would need to use for the small-size limit the
nonlocal theory of damage localization, which however does not seem amenable to a simple
analytical solution). So the numerical values ofD0,D1, σ0, σ1 for the small-size approxim-
ation cannot be reliably predicted. Therefore, the asymptotic matching with the small-size
asymptotic approximation (46) can only indicate the form of the matched asymptotic formula
but not its coefficients (in particular, the horizontal asymptoteσ = σ0 could be higher or lower
than indicated by (47)). For this reason, we simply assumeD0,D1, σ0, σ1 to be the same as
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for the large-size asymptotic, and content ourselves with merely having the correct asymptotic
form forD→ 0.

Since the justification of (35) rests in the matching of the asymptotic behaviors at opposite
infinities, any smooth formula that satisfies the same small-size and large-size asymptotic
properties should be equally valid; for instance,

σN = σ0+ σY [1+ (D/D1)
r ]1/2r

[1+ (D/D0)r ]1/2r , (48)

wherer is any positive constant. This formula may be derived similarly as (35) except that
one needs to setζ = θr , g̃(α) = [g(ζ )]1/r , γ̃ (α) = [γ (ζ )]1/r , and use instead of (33) the
approximations̃g(ζ ) = g̃0 + g̃′ζ andγ̃ (ζ ) = γ̃0+ γ̃ ′ζ .

5.1.4. Length of kink band at maximum load
In the classical LEFM corresponding toσr = 0, specimens of positive geometry, i.e. those
with g′(α0) > 0, attainPmax while the FPZ is still attached to the notch. Then a sufficient
characteristic ofPmax is that G = Gb, which implies that the FPZ length 2c has grown to
its full value 2cb. If the geometry is negative,g′(α0) < 0, the kink band propagates stably,
at increasing loadP , andPmax occurs at kink band lengtha such thatg′(α) = 0. When an
R-curve,R(c), is considered, the condition ofPmax is thatG′(a) = R′(c).

These conditions, however, do not apply ifσr > 0. The total energy release rate due to
P andσr may be written asG = K2

I /Ē whereKI = [σNk(α) − σrκ(α)]
√
D; k(α) =

√
g(α)

andκ(α) =
√
γ (α) (dimensionless stress intensity factors of kink band). Under gravity load,

the kink band is stable ifG′ > 0 or dKI/dα > 0, and it is critical (i.e., the loadP = Pmax) if
dKI/dα = 0. This yields for gravity loading the conditions

k′(α) < κ ′(α)σr/σN........ stable,P growing, (49)

= ........ critical, P = max. (50)

The latter is of course the condition of maximum load for any type of loading (an equivalent
equation withoutσN and in terms ofg(α) was derived from the condition dσN/dα = 0 by Zi,
1999).

If condition (50) is violated already while FPZ is attached to the notch tip (α0 = αn), Pmax

occurs right at the beginning of kink band propagation, i.e., as soon asG =Gb. Otherwise the
value ofα0 (location of the beginning of the FPZ atPmax) along withPmax must be found by
solving equations (42) and (50), in whichα = α0+ cb/D (≈ coordinate of FPZ center).

Compared to propagation of cracks without residual stress, the range of stability of propa-
gating kink bands is wider. According to (49), it includes not only negative but also positive
valuesg′(α), up to a certain limit proportional toσr . So, a stable kink band growth can occur
even for positive geometries (which is the case of the present tests). The previous difficulties
in achieving stable pre-peak growth of a long kink band in experiments must have been due
to unsuitable specimen and loading geometries (in post-peak, a stable growth further requires
a sufficiently stiff loading).
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5.1.5. Other aspects
Formula (12), which was derived for a long rectangular strip, is a special case of the general
formula (35) for the caseD1 = D0, i.e., forγ (α) = g(α). The case of such an equivalence
of the energy release functions means that the corresponding stress intensity factors are equal.
This is immediately evident from the decomposition in Figure 10 based on the principle of
superposition; indeed, the middle specimen is in a homogeneous stress state and thus has no
stress singularity (KI = 0).

Formula (34) is of the same form as the formula derived in general for compression failures
under the assumption that the laterally propagating damage band causing compression failure
applies a uniform pressure on its boundaries (Bažant and Chen 1997, Eq. 51).

In a similar manner as shown in Bažant (1997) for cracked specimens, the foregoing ana-
lysis could be refined by considering that the kink band ought to exhibitR-curve behavior.
In other words, the critical energy release may be expected to follow anR-curve, such that
G = Rb(c) whereRb(c) is assumed to be a given function of the kink band extensionc.
The only change needed in the preceding formulation is to replace the value

√
ĒGb in (31)

by
√
ĒRb(c). In addition to this, it becomes possible to implement in the calculations the

condition of failure as a stability limit, which can be reduced to the condition of tangency of
the curve of energy release rate at constant load to theR-curve (Bažant 1997) (this condition
cannot be imposed when the critical energy release rate is constant, being equal toGb, as
assumed in the preceding).

Similar to (14), Equation (35) is accurate only up to the first two terms of the power series
expansion in(1/D). Therefore, it could be generalized in the same manner as (16).

5.2. CASE OF KINK BAND INITIATION FROM SMOOTH SURFACE

For kink bands originating from a smooth surface, one may usually assume thatPmax occurs
at the beginning of propagation, while the FPZ is still attached to the surface. Accordingly,
the initial crack length for the LEFM approximationa0 = 0 orα0 = 0. But the energy release
rate of a crack of zero length vanishes,g(α0) = γ (α0) = 0. Thus, if we truncated the Taylor
series expansion ofg(α0 + θ) andγ (α0 + θ) after the linear term, we could not capture the
size effect. Therefore we need to truncate these series only after the quadratic term. In this
manner, the large-size approximation of (31) takes the form

σN =
√
ĒGb + σr

√
γ ′cb + γ ′′(c2

b/2D)√
g′cb + g′′(c2

b/2D)
(FPZ at surface). (51)

This may be rearranged as

σN =
√
ĒGb/cb + σr√γ ′(1+ 2χ1)√

g′(1− 2χ0)
, with χ0 = − g

′′cb
4g′D

, χ1 = γ ′′cb
4γ ′D

, (52)

with the notationsg′ = dg(α)/dα, γ ′ = dγ (α)/dα, g′′ = d2g(α)/dα2, γ ′′ = d2γ (α)/dα2, all
evaluated atα = α0 = 0; χ0 is defined with a minus sign becauseg′′ is negative in bending
specimens (Bažant and Li 1996).

Equation (52), however, is not acceptable for smallD → 0 because it givesσN → 0.
Therefore, it is expedient to transform it by asymptotic approximations that do not change the
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asymptotic behavior forD → ∞ while making at the same time the formula acceptable for
D → 0. Such approximations are

√
1+ 2χ1 ≈ (1+ qχ1)

1/q and 1/
√

1− 2χ0 ≈ (1+rχ0)
1/r ,

with any positive constantsr andq. For the caser = q = 1, after noting that(1+χ1)(1+χ0)

≈ 1+ χ0 + χ1 for largeD, we obtain a size effect formula identical to (22) (Figure 8(c)), in
which

σ∞ =
√
ĒGb

g′cb
+ σr

√
γ ′

g′
, (53)

Db = − cb

4σ∞

g′′
g′

√
ĒGb

g′cb
+ σr

(
g′′

g′
− γ

′′

γ ′

)√
γ ′

g′

 . (54)

A generalization in the form of (23) is also possible.
With (53), we have thus obtained a more general confirmation of (22). Note that although

the approximations that led from (52) to (53) are only first-order accurate in 1/D, (51) is first-
order accurate in 1/D as well. So, these approximations cause no loss in accuracy overall. But
(53) can be applied more widely because it has a realistic behavior also forD→ 0 while (52)
does not.

5.3. TRANSITION BETWEEN LONG AND SHORT KINK BANDS AND UNIVERSAL SIZE

EFFECT LAW

For smallα0, there must be a continuous transition between the size effect law for specimens
with a notch or long kink band and that for specimens failing at kink band initiation from a
smooth surface. A universal size effect law that describes this transition has already been de-
veloped for fracture of concrete (σr = 0; Bažant 1997). By a similar matching the asymptotic
behaviors for long and short kink bands, a similar universal size effect law can be developed
for kink bands.

6. Identification of fracture parameters from kink band tests

6.1. FPZAT NOTCH TIP

It is convenient to cut notches in the compression test specimens. The notch ensures the kink
band to start in one place (which eliminates any possible statistical effect due to random spatial
variation of local strength). Furthermore, if a suitable loading is used, it further ensures the
FPZ at maximum load to be still attached to the notch tip. This brings about an important
simplification—the value ofα0 can be controlled and thus is known.

The size effect formula for notched specimens, (14) with (43), can be used for identifying
the fracture energy of the kink band,Gb, and the FPZ length,cb, from the measurements of
size effect. The procedure may be based on determiningD0 andσ0 by fitting the formula (42)
to maximum load data for notched specimens of sufficiently different sizes; then

cb = D0
g0

g′
, GB = cb

Ē
g′σ 2

0 . (55)

If geometrically similar specimens and notches are used,α0 = constant for allD. Geomet-
rical similarity is not a requirement because the equivalent LEFM functionsg andγ capture
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the shape effect as well. Geometrical similarity, however, simplifies the evaluation of test
results and improves the accuracy because the shape effect is known only approximately and
thus introduces some additional error.

The fitting of (41) or (34) toσN data may be best accomplished the Levenberg–Marquardt
nonlinear optimization algorithm. Alternatively, by algebraic rearrangement, equation (42)
may be transformed to a linear regression plotY = AD + C for which

Y = 1

σ 2
, GB = g0

AĒ
, cb = C

A

g0

g′
. (56)

The procedure is identical to that embodied in the RILEM Recommendation for concrete
(whose statistical treatment and proper weighting is described in Bažant and Planas, 1998,
Sec. 6.3).

According to (43), the kink band fracture energy may then be calculated as

Gb = (

√
ĒGB − σr

√
γ ′cb ) / Ē, (57)

provided thatσr is determined separately.
An approximate way to estimateσr may be to measure the residual load on very large

specimens, provided that a post-peak plateau can be reached. Additional damage long after
the peak load, however, may further reduce the stress in the kink band, making it hard to
identify a plateau. An upper bound onσr is provided by the compression strength of very
small specimens with nearly uniform stress distribution at peak load.

Another way to determineσr may be to test both notched and unnotched specimens, and
use the Marquardt–Levenberg optimization algorithm to fit the maximum load data by (41)
and (51), consideringGb, cb andσr as three unknowns.

Still another way to determineσr might be to measure under uniaxial compression the post-
peak behavior of very small unnotched prismatic specimens – so small that the FPZ of the kink
band would occupy the whole cross section, thus ensuring simultaneous (nonpropagating)
failure.

It is instructive to relateGB to theJ -integral. Consider theJ -integral path starting at point
C in Figure 11 (top) of the imagined cohesive crack representing the kink band. PointC lies
immediately ahead of the tip of the notch, and so theJ integral along the path starting at
C represents the total energy flux into the cohesive crack equivalent to the kink band. When
the extension of this crack (or kink band) is sufficient to reduce the stress at pointC to the
residual stressσr , the full fracture energyGb of the kink band comes into play, and then, by a
similar derivation as that which led to (10), theJ -integral along the path starting atC, which
must be equal toGB , is Jcr = GB , GB = Gb + σrδr (Equation 10) whereδr is the normal
displacement (contraction) across the kink band at the notch tip (or the end of the FPZ), and
Gb is the fracture energy representing the cross-hatched triangular area in Figure 7 (bottom).
Knowingσr , this relation can be used to estimate the value ofδr .

The value ofδr ought to be equal to the opening displacement of the equivalent LEFM
crack at the location of the notch tip (Figure 11). This displacement may be calculated from
the parabolic asymptotic profile of the equivalent LEFM crack, whose tip lies at distancecB
from the notch tip. According to the well-known formula (e.g. Eq. 5.5.11 in Bažant and Planas
1998), one may use the approximation

δr =
√

32GBcb/πĒ. (58)

206427.tex; 11/05/1999; 11:04; p.26



Size effect on compression strength of fiber composites failing by kink band propagation129

Figure 11. Equivalent cohesive crack emanating from the notch tip (top), equivalent LEFM crack (bottom), and
J -integral paths.

6.2. FPZREMOTE FROM NOTCH AND SPECIMENS WITH END RESTRAINT

While the rotational restraint at the ends of the present carbon-PEEK specimens has made
it possible to demonstrate a long stable growth of kink band, it has slightly complicated the
analysis of test results. The restraint causes the axial load resultantP to gradually shift to the
right in Figure 1(a) as the kink band propagates, i.e., the resultant eccentricitye (Figure 1(a)
and 13) increases as a function ofα. Functione = e(α) is determined by the condition that
the relative rotation between the specimen endsφ = PCPM + MCMM + σrCMr = 0 where
M = Pe = moment of the resultant. Consequently,

e(α) = −[PCPM(α)+ σrCMr(α)]
PCMM(α)

(P = σNbD). (59)

The compliances, according to well-known LEFM relations (e.g. Bažant and Planas 1998, Eq.
3.5.18), are

CPM(α) = 2

bĒ

∫ α

0
kP (α

′)kM(α′)dα′, CMM(α) = 12L

bD3Ē
+ 2

bĒ

∫ α

0
[kM(α′)]2 dα′,

CMr(α) = 2

bĒ

∫ α

0
kM(α

′)kr(α′)dα′, (60)

whereb,L = specimen thickness and length (Figure 1(a)), and thek’s are the dimensionless
stress intensity factors for unit loading byP,M or σr ; kP = KP

I b
√
D/P , kM = KM

I bD
3/2/M

andkr =Kr
I /σr
√
D. Also,

g(α) = σ 2
ND{kP (α)+ kM(α)e(α)/D}2. (61)
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According to Tada et al. (1985),kP (α) =
√
πα(1.122− 0.231α + 10.55α2 − 21.71α3 +

30.38α4), kM(α) =
√
πα(1.122− 1.40α + 7.33α2− 13.08α3 + 14.0α4). Forkr see Appendix

IV.
If σr were 0, then the failure after a long kink band growth, observed in the present carbon-

PEEK tests, would have to be characterized byg′(α) = 0, which would require the use of
formulae based approximatingg(α + cb/D) up to the quadratic term incb/D. However,
becauseσr is not 0 (nor negligible), the formulae based on approximation up to the linear
term are appropriate.

To identify the values ofGb, cb, α0 andσr from the present carbon-PEEK tests, equation
(59) and the expressionα = α0 + cb/D must first be substituted into (42) and (50). Then the
standard library subroutine for the Levenberg–Marquardt nonlinear optimization algorithm
may be used to minimize the sum of the squares of (50) and of the deviations of (42) from the
data points.

To succeed, the tests must cover a sufficient range of brittleness numberβ = D/D0. If the
range ofβ is too limited, the fitting problem may be ill-conditioned. Then one needs to drop
σr from the set of unknown variables in the least-square fitting, and estimateσr in advance by
other means, as already discussed (e.g., from measurements of post-peak behavior), or use in
data fitting various estimated fixed values ofσr and then compare the results.

In the present study, however, the values ofe andα0 atPmax have not been calculated by
the aforementioned procedure. Rather, for the sake of simplicity, the values that were already
available from a finite element simulation with the cohesive crack model carried out earlier by
G. Zi have been used in fitting (42) to the data points in Figure 12 (top left). This furnished
the following material parameters of the carbon-PEEK composite tested

Gb = 27.9 kN/m, cb = 0.70 mm, σr/σ0 = 0.436, σ0 = 758 MPa. (62)

Figure 12 on top right shows also a comparison of the data with the size effect plot based on
the material parameters obtained with the cohesive crack model. The plot is very close to that
in Figure 12 on top left.

It is instructive to compare these values to those obtained by simple fitting of the data
with the size effect law (14) shown in Figure 13. They areσ0 = 779 MPa andcb = 18.5 mm.
Althoughσ0 is about the same,cb is far too large, by an order of magnitude. This demonstrates
that the differences ine/D andα0 among specimens of different sizes cannot be neglected.

6.3. TEST SIMULATION BY COHESIVE CRACK MODEL

Simulations of the present and other tests with the cohesive crack model will be reported
separately (Bažant and Zi, 1999). Two-dimensional elastic finite element analysis has been
applied to obtain the compliance matrices for forces and displacements at the specimen ends
and at the nodal points placed on the sides of the kink band. The condition that the kink
band contraction indicated by the softening stress-displacement law must be compatible with
the elastic deformation of the specimen leads to one integral equation, and the condition that
the stress intensity factor at the kink band front must vanish leads to another. Based on the
nodal point discretization, both integral equations are approximated by a system of algebraic
equations, which is then solved by incremental loading.

A computer program for calculating the values ofPmax, e(α) andα0 from any given values
of Gb, cb andσr has been written. The values ofGb, cb andσr have then been optimized so
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Figure 12. Optimum fits by size effect formulae and by numerical analysis with the cohesive crack model.

as to obtain the best possible fit of the test data. In the process, eccentricitiese have also been
determined.

The calculated subsequent stress profiles throughout the ligament, along with the corres-
ponding eccentricitiese of the load resultant, are shown in Figure 14. The optimum fit of
the test data by the cohesive crack model, with log(σN − σr) as the ordinate, is shown by
the curve in Figure 12 (bottom). The corresponding optimum value of fracture energy is
Gb = 28.2 kN/m, which is almost the same as in (62), but the length of the softening segment
(Figure 14), which is about 2.7 mm for allD, is almost twice as large as 2cb. This suggests
that the tip of the equivalent LEFM crack might not be at the center of the FPZ but farther
behind its front. The optimum fit, however, is not very sensitive tocb; this is documented by
Figure 12 (top left and right), with logσN as the ordinate, which shows the optimum fit by the
cohesive crack model (solid curve) and the results from (42) based on the optimum material
parameters obtained with the cohesive crack model. Note that the dashed curves in Figure 12
on top left and right, corresponding to rather differentcb, are not very different. To eliminate
this ambiguity, tests of a broader size range or fitting of post-peak response would be needed.
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Figure 13. Stress profiles across the ligament of the carbon-PEEK specimens before, at and after the maximum
load (note the shift of the compression resultantP which makes a stable kink band growth possible).

Figure 14. Constant-size carbon-epoxy specimen with holes of various diameters used by Soutis, Curtis and Fleck
(1993).

7. Soutis et al.’s tests of carbon-epoxy laminates with holes of various sizes

The studies of kink band failures of composites have so far not been focused on the size effect.
No data for geometrically similar specimens seem to be available in the literature. However,
since functionsg(α) andγ (α) characterize the shape effect, test data on nonsimilar specimens
exhibiting the effect of shape can also be used to check and calibrate the theory provided that
the range of the brittleness numberβ = D/D0 in (12) is sufficient. The recent test data of
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Figure 15. Soutis, Curtis and Fleck’s (1993) test results for quasi-isotropic and orthotropic carbon–epoxy lam-
inates of six different layups, with holes of various radiiR (data points) and constant widthD. Solid curves:
optimum fits by size-shape effect law in (31). Dashed curves: predictions of strength theory exhibiting no size
effect.

206427.tex; 11/05/1999; 11:04; p.31
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Figure 16. Dimensionless energy release functiong(α) for isotropic specimens with centric holes of different
radii (derived by Führing, 1973).

Soutis and Fleck (1991), Soutis, Fleck and Smith (1991), and Soutis, Curtis and Fleck (1993)
exhibit a broad enough range of brittleness numbers, attained not through a variation of the
overall specimen sizeD (which was kept constant) but through a variation ofD0.

Soutis et al. (1991) used rectangular panels of constant widthD to study how centric
holes of various radiiR affect the compressive strength of unidirectional and multidirectional
carbon/epoxy (T800/924C) laminates of different layups, labeled as L1 to L6 (Figure 14 left).
The specimens were 50 mm wide, 245 mm long and 3 mm thick, and the diameter–width
ratio 2R/D varied from 0.08 to 0.60 for each layup. The results, shown by the data points
in Figure 15, offer another possibility to check the present theory for a different geometry and
a different material, and to compare it to the classical strength theory.

The layups of laminates of Soutis et al. were either quasi-isotropic of only weakly ortho-
tropic. Thus the corrections for orthotropy are either unnecessary or almost unimportant for
these tests. In view of the fact that, for long cracked strips without holes, the same dimension-
less energy release functions can be used as for isotropic specimens (Bao et al. 1992), it is
assumed that the same can be done for specimens with holes, at least as an approximation.

Therefore, the effect of the mild orthotropy of some of the Soutis et al.’s laminate layups
is taken into account only through̄E. With this assumption, the analysis of these data is made
easy by the availability of the solution of the stress intensity factorKI (Führing 1973, and
Murakami’s 1987 handbook, p. 291) for an in finite strip with a hole, which may be used as
an approximation for a rectangular specimen with a hole (Figure 14). This solution, used here
for compressive instead of tensile loading, is shown in Figure 16 whereα = (c + R)/D. As
seen, the curve ofKI as a function ofα first quickly rises as the horizontal cracks grow from
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the sides of the hole (Figure 14 left and Figure 16 insert). But soon the slope diminishes as
this curve approximately joins the solid curve in Figure 16, which corresponds toKI(α) for a
specimen containing a centric horizontal crack (of relative depthα) instead of a hole.

By virtue of similarity transformations, the slope of the initial rise of the curve must be
the same as for a crack starting from the surface of an elastic halfspace. For such a crack,
KI = 1.12σ

√
πc, which implies thatg(α) = K2

I /σ
2D = 1.122πc/D andg′(α) = 1.122π <

∞. The formula plotted in Figure 16, however, gives an infinite (vertical) initial slope, which
means that its initial portion cannot be accurate. Because of this asymptotic inaccuracy,g′ (at
c = 0) in (51) for cracks initiating from a smooth surface is obtained, incorrectly, as infinite,
which precludes using this equation and forces us to use the original equation (31) from which
(51) was derived. Nevertheless we assume that for the present finite values ofc the formula
plotted in Figure 16 is accurate enough.

The maximum load may be expected to be reached only after the slope of the curve in
Figure 16 diminishes and the solid curve is approached, which means that the specimen
behaves roughly as a panel with a large centric crack of length 2(R + c). This is another
reason why the general original formula (31), rather than formula (51) derived from it for a
kink band initiating from a smooth surface, appears to be appropriate.

Let us now assume the FPZ of the kink band at maximum load is still attached to the hole.
In that case, the equivalent LEFM crack should have its tip roughly at the distancec = cb from
the hole. This value ofc is large enough for approaching the solid curve in Figure 16, i.e.,a

lies in Figure 16 beyond the sharp decrease of slope of the curves. But then the truncation
of the series expansion after the second term that was made in deriving (12) would not be
accurate enough. Therefore, the original formula (31) is used.

In (31), we now haveα = 2(R + c)/D ≈ 2(R + cb)/D. Functionsg(α) andγ (α) are
the dimensionless energy release functions corresponding to the case of a tensioned cracked
plate with a centric hole and a pair of cracks, loaded either at the specimen ends or along a
portion of each crack (Figure 14 right); see the Appendix. The value of the residual stressσr
needs to be considered as 0 because the FPZ of the kink band is still attached to the hole when
the maximum load is reached. ConsideringGb andcb as unknowns, Equation (31) has been
fit to the data of Soutis et al. (1993) using the Levenberg-Marquardt nonlinear optimization
algorithm. The results, shown by the solid curves in Figure 15, are quite satisfactory. The
optimum values ofGb andcb corresponding to these fits are indicated in each plot in Figure 15
(andσr = 0).

To check whether a theory capable of representing the size effect is necessary, the test
results are further compared to the simplest version of a theory that exhibits no size effect
– the strength theory in which it is assumed that the specimen fails as soon as the vertical
normal stress at the sides of the hole reaches the strength of the material. The dashed curves
in Figure 15 show the predictions of the strength theory (obtained under the assumption that
the material strength is the same as used in the kink band analysis). Obviously the trend of
those curves does not agree with the trend of the data. These comparisons provide additional
support for the present theory. They reveal that a theory exhibiting the size effect is necessary
to describe Soutis et al.’s test results well.

The reason that the last data points on the right of the plots for specimens L1, L3 and L4 in
Figure 15 systematically deviate slightly upwards from the solid curves for the present theory
could be that (31) is not acceptable for large holes (because the cracks at maximum load are
not long enough for approaching the solid curve in Figure 16).
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8. Conclusions
(1) Transverse slanting of the notch in test specimens of carbon-PEEK laminate can achieve

pure out-of-plane kink band failure, not contaminated by shear splitting cracks.
(2) Restraining specimen ends against rotation helps to stabilize kink band growth and

makes it possible to demonstrate the possibility of a stable growth of long kink bands before
the peak load.

(3) Compression tests of notched carbon-PEEK specimens show that the nominal strength
of geometrically similar notched specimens failing purely by kink band propagation exhibits
a strong (non-statistical) size effect.

(4) The size effect observed is transitional between the asymptotic case of no size effect,
which is characteristic of plasticity or any theory whose failure criterion is expressed solely
in terms of stress or strain, and the asymptotic case of size effect of linear elastic fracture
mechanics, which is governed by energy release.

(5) The results of the present carbon-PEEK tests roughly agree with the approximate
general size effect law proposed by Bažant (1983, 1984) and derived recently by asymptotic
analysis of energy release (Bažant 1997).

(6) The present theory gives not only the effect of size but also the effect of shape. The
theory is found to agree with the recent shape effect tests of Soutis et al. (1993), which utilized
constant-size carbon epoxy specimens with centric holes of different diameters.

(7) The nominal strength of specimens failing at the initiation of a kink band from a smooth
surface is also predicted to exhibit a size effect. A simple size effect formula is derived for
this case, too. This formula is the same as that previously derived for the size effect on the
modulus of rupture measured in bending tests of notch-free specimens.

(8) In addition to previous derivations, the size effect law for specimens with notch of long
kink band can also be derived by J-integral analysis of energy release, as well as from the
recently proposed nonlocal LEFM.

(9) The size effect law for notched specimens permits the fracture energy of the kink band
and the length of the fracture process zone at the front of the band to be easily identified solely
from the measurements of maximum loads.

(10) The results suggest that the current design practice, in which the compression failure
is predicted on the basis of strength criteria (or plasticity), thus inevitably missing the size
effect, is acceptable only for small specimens or structural parts. In the interest of safety, it
should be revised for large structural parts.

Remark on statistical size effect.According to the arguments in Bažant and Planas (1991,
ch. 12), this size effect, not addressed here, is overpowered by the present energetic size effect.
It is significant only for

(1) very small notched specimens for which the FPZ involves most of the cross section;
(2) unnotched specimens so large that the energetic size effect approaches its horizontal

asymptote (Figure 8(c)), and
(3) uniformly stressed specimens with negligible FPZ reaching peak load at fracture inititi-

ation (probably relevant to Kyriakides and Ruff, 1997).
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Appendices

I. KI FOR ISOTROPIC PANEL WITH HOLE AND CRACKS

The stress intensity factor for an isotropic panel with a circular hole and two cracks (Figure 14
and 16) may be written asKI = σ

√
Dk(α) (e.g. Bažant and Planas, 1998, Sec. 5.1) where

k(α) = function of α. Theng(α) = k2(α). The solution ofKI for a cracked rectangular
panel with a centric hole (Figure 14 and 16 insert) was obtained by Führing (1973) (see also
Murakami, 1987, p. 291). With the notationsα = a/D, ᾱ = πα, δ = b/R, γ = 2R/D,
β = (2α − γ )(1− γ ), one getsg(α) = 2παF 2(α) whereF(α) = φψ and

φ = 1

π − 1

{
π

√
1

ᾱ
tanᾱ + g sin(2ᾱ)

(
1+ ε

2(2− ε2)

1− ε
)
+√1+ 2g

}
, (63)

ψ = ξ
(
3β2P/3− 2βP

√
ξ
)
. (64)

Hereg = 0.13
[
(2/π)arctanδ

]2
, ε = (α/π)arctan(0.6 3

√
δ), P = log(ξ−3/2)/ log(β∗), β∗ =

γ δ/[γ (2δ − 1)+ 1] andξ = 1+ (2/π)arctan(1.5
√
δ).

II. KI FOR ISOTROPIC PANEL WITH A HOLE LOADED ON A PORTION OF CRACK LENGTH

The stress intensity factor for an isotropic panel in which the crack lips are subjected to a
distributed load of resultantP in each crack was calculated by Newman (1982). With the
notationsR = radius of the hole,a = crack length,α = a/D, λ = R/a, β1 = b1/a, β2 = b2/a,
b1 orb2= distance between the initial or terminal points of the loaded crack segment (Figure 14
right), respectively,

γ (α) = (8/π)α(arcsinβ2− arcsinβ1)F3F4, (65)

where

F3 = G(β, λ)

arcsinβ2− arcsinβ1
, F4 = arcsinB2− arcsinB1

arcsinβ2− arcsinβ1

√
secπα, (66)

G(β, λ) =
[(

1+ A1

1− λ +
3A2

2(1− λ)2
)

arcsinβ

+
(
A1

1− λ +
(4− β)A2

2(1− λ)2
)√

1− β2

]β2

β1

, (67)

with A1 = −0.02λ2+0.558λ4 andA2 = 0.221λ2+0.046λ4, andB1 = sin(πb1/D) / sinπα,
B2 = sin(πb2/D) / sinπα.

III. PROOF OF EQUATION(40)

Equation (40) is proven by noting that the stress intensity factorKI caused byσr whenc =
cb � a0 is the same as for a crack of length 2a in an infinite body, loaded on the crack faces
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by σr over distancecb � a from one tip. By superposition of a well known formula (e.g. Tada
et al., 1985) used to derive Dugdale model

KI =
∫ a

a−c
kP (x)(σrdx) ≈ σr

√
8c

π
, kP (x) = 1√

πa

√
a + x
a − x ≈

√
2

π(a − x) , (68)

wherekP (x) = Green’s function for the effect onKI of a concentrated crack-face load pair at
distancex from the crack center. Thenγ = K2

I /σ
2
r D ≈ (8/π)c/D.

IV. STRESS INTENSITY FACTOR DUE TOσr

By superposition of the solution for crack-face concentrated load pair in infinite edge-cracked
strip (Tada et al., 1985)

kr(α) =
∫ α

αnotch

(1− α)−3/2 (1− t2/α2)−1/2
4∑
n=1

gn(α)(t/α)
n−1 dt, (69)

g1(α) = 0.46+ 3.06α + 0.84(1− α)5+ 0.66α2(1− α)2,
g2(α) = −3.52α2,

g3(α) = 6.17− 28.22α + 34.54α2 − 14.39α3 − (1− α)3/2

−5.88(1− α)5− 2.64α2(1− α)2,
g4(α) = −6.63+ 25.16α − 31.04α2 + 14.41α3 + 2(1− α)3/2

+5.04(1− α)5+ 1.98α2(1− α)2.

V. COMMENT ON APPLICATION OF NONLOCAL LEFM

All the size effect equations presented here, along with their large-size and small-size asymp-
totic forms, can alternatively be derived from nonlocal fracture mechanics – a new general
model (Bažant 1998b) proposed as a simpler alternative to the cohesive crack model and
equivalent to it asymptotically for large sizes. This model is based on the smeared-tip su-
perposition method (Bažant and Planas 1998, Sec. 7.5.6) in which the stress tensorσ (x, a)

and displacement vectorv(x, a) at any point of coordinate vectorx in a body with the FPZ
centered at crack lengtha (kink band length) is represented as a superposition of LEFM
solutions for crack (kink band) tips within the FPZ corresponding to loadsPq(ζ )dζ , i.e.

σ (x, a) = σN

∫ 1

−1
S(ξ , α + ζc/D) q(ζ )dζ,

v(x, a) = σN
D

Ē

∫ 1

−1
V (ξ , α + ζc/D) q(ζ )dζ. (70)

HereαD = a = length of crack equivalent to kink band at FPZ center,αD + ζc = crack
(kink band) lengths at various points along the FPZ; the crack (kink band) lengths in FPZ
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occupy the interval(a − c, a + c) corresponding toζ ∈ (−1,1); q(ζ ) = dimensionless load
distribution function such that

∫ 1
−1 q(ζ )dζ = 1. The dimensionless functionsS(ξ , α′) and

V (x, α′) represent the stress tensor and displacement vector at relative coordinate vectorξ =
x/D in a body with crack (kink band) lengtha′ = α′D, calculated by LEFM forσN = 1 (or
for loadP = bD). The half-length,c, of FPZ is taken as the smaller ofcb and the distance
from FPZ center to the notch tip or the surface of the body. In the smeared-tip method, the
stresses and displacements on the crack line expressed from (70) are substituted into the stress-
separation function of the cohesive crack model, which yields a singular integral equation for
q(ζ ). To solve the size effect from that equation is not easy. Therefore it was proposed to
avoid prescribing a functional relation between the crack-bridging stress and the crack opening
(separation), and introduce instead thehypothesisthat the FPZ propagation is decided by the
average ofg(α) over the FPZ, i.e., by the condition

σ 2
N

E
D g(α) = Gb, with g(α) =

∫ 1

−1
g(α + ζc/D) q(ζ )dζ. (71)
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