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Energetic-Statistical Size Effect in Quasibrittle Failure at

Crack Initiation
by Zdenék P. Bazant and Drahomir Novak

The size effect on the nominal strength of quasibrittle structures fail-
ing at crack initiation, and particularly on the modulus of rupture of
plain concrete beams, is analyzed. First, an improved deterministic
Jormula is derived from the energy release due to a boundary layer of
cracking (initrating fracture process zone) whose thickness is not neg-
ligible compared to beam depth. To fit the test data, a rapidly con-
verging iterative nonlinear optimization algorithm is developed. The
Jormula is shown to give an excellent agreement with the existing test
data on the size effect on the modulus of rupture of plain concrete
beams. The data range, however, is much too limited; it does not cover
the extreme sizes encountered in arch dams, foundations, and retain-
ing walls. Therefore, 1t becomes necessary to extrapolate on the basis
of a theory. For extreme sizes, the Weibull type statistical effect of ran-
dom material strength must be incorporated into the theory. Based on
structural analysis with the recently developed statistical nonlocal
model, a generalized energetic-statistical size effect formula is devel-
oped. The formula represents asymptotic matching between the deter-
manistic-energetic formula, which is approached for small sizes, and
the power law size effect of the classical Weibull theory, which is
approached for large sizes. In the limit of infinite Weibull modulus,
the deterministic-energetic formula is recovered. Data fitting with the
new formula reveals that, for concrete and mortar, the Weibull mod-
ulus m = 24 rather than 12, the value widely accepted so far. This
means that, for extreme sizes, the nominal strength (modulus of rup-
ture) decreases, for two-dimensional similarity, as the -1/ 12 power of
the structure size, and for three-dimensional similarity, as the ~1/8
power (whereas the -1/4 power has been assumed thus far). The coef-
Sicient of variation characterizing the scatter of many test results for
one shape and one size is shown not to grve the correct value of
Weibull modulus because the energetic size effect inevitably intervenes.
The results imply that the size ¢ffect at fracture initiation must have
been a significant contributing factor in many disasters (for example,
those of Malpasset Dam, Saint Francis Dam, and Schoharie Creek
Bridge.)

INTRODUCTION

There are basically two simple types of the deterministic-
energetic size effect in quasibrittle materials, obeying different
laws (Bazant and Chen 1997; Bazant and Planas 1998; Bazant
1997a,b, 1999): 1) the size effect in structures with notches or
large cracks formed before the maximum load (BaZant 1984),
typical of reinforced concrete structures; and 2) the size effect
in structures failing at the initiation of fracture from a smooth
surface, typical of the modulus of rupture test (Hillerborg et al.
1976; Bazant and Li 1995). This study is concerned only with
the latter, which is important; for example, for safe design of
very large unreinforced concrete structures such as arch dams,
foundations, and earth-retaining structures.

Prior to the 1990s, it was commonplace in design to assume
the maximum load of such structures to be governed by the
strength of the material, and sometimes the possibility of a
purely statistical, classical size effect of Weibull (1989) was
admitted, but no attention was paid to the possibility of a deter-
ministic size effect. More than two decades ago, however, the
finite element calculations with the cohesive (or fictitious)
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crack model by Hillerborg et al. (1976) revealed the necessity
of a strong deterministic size effect engendered by stress redis-
tribution within the cross section due to softening inelastic
response of the material in a boundary layer of cracking near
the tensile face. A detailed finite element analysis of the size
effect on the modulus of rupture with the cohesive crack model
was presented by Petersson (1981). He numerically demon-
strated that the deterministic size effect curve terminates with
a horizontal asymptote and also observed that, for very deep
beams, for which the deterministic size effect asymptotically
disappears, the classical Weibull-type statistical size effect must
take over.

As test data accumulated, various empirical formulas were
proposed (for example, Rokugo et al. 1995). A simple deter-
ministic formula giving good agreement with test data was
theoretically derived in BaZant and Li (1995) and refined in
Bazant and Li (1996a). Bazant and Li (1996b) rederived this for-
mula by energy arguments of fracture mechanics that made it
possible to capture the structure geometry effect on the coeffi-
cients in terms of the energy releasé function.

Because concrete is a highly random material, the statistical
size effect must, of course, get manifested in some way. An early
study of the stress analysis in presence of random strength was
published by Shinozuka (1972). Sophisticated numerical simu-
lations by finite elements, discrete elements, and random lattice
models followed (for example, Breysse 1990; Breysse and
Fokwa 1992; Breysse et al. 1994; Breysse and Renaudin 1996;
and Roelfstra et al. 1985). These simulations usually assumed
random strength following the normal or lognormal
probability distribution.

Prediction of failure and size effect, however, calls for
extreme value statistics using the Weibull probability
distribution that is the basis of Weibull's classical theory
(1989). This theory has been extremely successful for fatigue~
embrittled metals, but for quasibrittle materials characterized
by significant stress redistribution with the consequent energy
release before the maximum load, this theory is inapplicable
(Baiant et al. 1991; BaZant and Planas 1998; Planas et al. 1995).
A nonlocal generalization, which was originally developed only
for specimens with notches or structures with large cracks
formed before the maximum load, is required (Bazant and Xi
1991; Bazant and Planas 1998).

A recent study of Bazant and Novik (2000a,b) resulted in a
statistical structural analysis model that takes into account the
postpeak strain softening of the material and calculates the fail-
ure probability from the redistributed stress field using the
nonlocal Weibull approach of BaZant and Xi (1991), represent-
ing an extension of deterministic nonlocal damage theory
(Pijaudier and Bazant 1987; BaZant and Planas 1998). They
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demonstrated a good agreement with the existing test results
on the modulus of rupture of concrete. Their model, however,
1s numerical and not reducible to a simple formula for the size
effect on modulus of rupture incorporating both the determin-
Istic-energetic and the statistical causes. Development and ver-
ification of such a formula is the principal objective of this
study.

ENERGETIC SIZE EFFECT DUE TO LARGE
FRACTURE PROCESS ZONE

The modulus of rupture of plain concrete beams of a rec-
tangular cross section is defined as

-_— 6Mu

f’_bD2

(1)

where M, = maximum (ultimate) bending moment; D = char-
acteristic size of the structure, chosen to coincide with the
beam depth; and b = beam width. £, would represent the value
of the actual maximum stress in the beam if the beam was elas-
tic up to the maximum load. The beam is not elastic, however,
and thus, f] represents merely the nominal strength, Jr= 0
which is a parameter of the maximum load having the dimen-
sion of strength.

A fracture process zone, represented by a boundary layer of
distributed cracking that has a certain non-negligible thickness
[, may be assumed to develop at the tensile face of beam before
tji\e maximum load is attained. Under this assumption, and
assuming further the cross sections to remain plane and the
postpeak softening stress-strain diagram of a characteristic
volume of the material to be linear, Bazant and Li (1995) calcu-
lated the stress redistribution in the cross section caused by
this boundary layer. This led to the following approximate formula

o

!
f’=1+2é (2)

where D = beam depth; and f] = standard direct tensile
strength, assumed to coincide with the modulus of rupture of
very deep beams.

A more general and fundamental derivation of (2), which
automatically gives also the structure geometry (shape) effect,
can alternatively be given on the basis of energetic aspects of
fracture mechanics. Using the approach of equivalent linear
elastic fracture mechanics (LEFM), one can approximate a
cracked structure with a large fracture process zone by a struc-
ture with a longer sharp crack whose tip is placed approxi-
mately in the middle of the fracture pressure zone (the exact
location being determined by the condition of compliance
equivalence).

At first, one might think that fracture mechanics cannot be
applied when the actual crack length o = 0. It can be applied,
however, because the equivalent LEFM crack length a= a,te
having its tip in the middle of the fracture process zone (bound-
ary layer of cracking), is nonzero. Notations: 4, = notch length
or traction-free crack length (here, a, = 0); and ¢, = effective
length of fracture process zone (roughly 1/2 of the actual
length).

As shown previously (in detail, Bazant 1997a; Bazant and
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Planas 1998), equivalent LEFM, in general, yields for the nom-
inal strength &, of the structure the general expression

EG
oy= |—t o =% (3)

Dg(oy+c,/D) ° D

in which E = Young’s modulus; G, = fracture energy of the
material; D = structure size (characteristic dimension); and g =
nondimensionalized energy release function characterizing the
structure geometry (shape). The function g should be suffi-
ciently smooth to allow expansion into a Taylor series in terms
of cf/ D, which represents an asymptotic expansion

| EG,

V D[g(a0)+ g’(oco)(cf/D) +48"(0, )(cf/D)2+. . ]

Gy =

(%)

It is important to realize that Eq. (4) describes not only the size
effect, but also the shape effect. The shape effect is embedded in
the LEFM function g{a); g(o) = [k (o)]? where % (@) is the
dimensionless stress intensity factor that is available for many
situations in handbooks (Tada et al. 1985; Murakami 1987) and
textbooks (Bazant and Planas 1998), and can be easily obtained
by linear elastic finite element analysis.

For failures at crack initiation, as is the case for the modu-
lus of rupture test, @, = 0. Because the energy release rate for
a zero crack length is zero, that is, g(0) = 0, the first term of the
series expansion in (4) vanishes and the series must be truncat-
ed no earlier than after the third, quadratic term. This yields
the asymptotic expansion

'in which the nominal strength G, is now represented by the

Gy =f,=lim |— % ___ ‘ (%)
%~ Dg(a,, +c, /D)

_ EG,
= g,(O)Cf +2L!g”(0)(.';D_l +%g’”(0)C;D_Z+.._
free
\/1‘(41/D)+(42/D)2 ~(g,/D)'+...

modulus of rupture J,»and

EGf -g"(0) 2

2
5 =cC =C
c,8'(0) q9,=¢ 9 =C

gll/(o) (6)
2080’ o

318°(0)°

frm=

_ The interest herein is not merely in the large-size asymptotic

approximation but also in a generally applicable approximate
formula of the asymptotic matching type that has admissible
behavior also at the opposite infinity (In D — —co, or D — 0)
and provides a smooth interpolation between the opposite
infinities. The asymptotic behavior of (5) for D ~» 0 is not
acceptable because it yields an imaginary value. To get a prop-
er asymptotic matching formula, (5) must be modified in such
a manner that at least the first two terms of the asymptotic
expansion of G in terms of 1/D remain unchanged. This mod-
ification can be accomplished as follows.
Equation (5) may be rewritten as

T (B 7
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where 7 is an arbitrary positive constant (that is related to the
third term in the expansion of function g(cf/D)), and

x=(q,/ D)~ (g, / D)’ +(q,/ Dy'—... (8)

Then, according to the binomial series expansion

f = f,,,.,[u["l/ 2)(-x)+("2’ 2](_x)2 +("3’ 2](—x)3+..}m(9)

r
r r(r+2) )
= 1+ —x+ +... 10
1/r
rq r+2 , 1 ,)1
= I+—=4rl——q ——q; |—+... 11
e e (1)

In contrast to (5), this formula is admissible for D — 0 it gives
for f, areal, rather than imaginary, limit value. The feature that
J, = o= is shared by the widely used Petch-Hall formula for the
strength of polycrystalline metals. One might prefer a finite
limit for £}, but this does not matter because, in practice, D can-
not be less than approximately three maximum aggregate sizes
(as the material could no longer be treated as a continuum).
The limit D ~» 0 is an abstract extrapolation.

Keeping only the first two terms, one obtains from (11) the
final deterministic-energetic size effect formula

f= fm(1+’g] (12)

in which D, has the meaning of the thickness of the boundary
layer of crackmg

D, =<‘T;g((§—)°)> (D,>0) (13)

In the last expression, the signs (...}, denoting the positive part
of the argument, have been inserted [(X) = Max(X, 0)]. The
reason is that g ( )/g’(0) can sometimes be positive, in which
case there is no size effect, and this is automatlcally achieved by
setting I, = 0. In the modulus of rupture test, g"(0)/g’(0) <
and D, > O

Note that for uniform tension (zero stress gradient, as in the
direct tensile test), there is no deterministic size effect accord-
ing to Eq. (18) because g”(0) = 0 or D, = 0.

Formula (12) with (13) and (6) for r = 1 coincides with Eq.
(2), but generalizes it by introducing, through function g(o),
the effect of geometry. The special case of the present fracture
mechanics derivation for r = 1 was presented first at a confer-
ence (BaZant 1995) and in more detail in Bazant (1997a). The
general form with r was proposed without derivation in Bazant
(1999), and the fracture mechanics derivation for r = 2 was
given in Bazant (1998).

For r = 1, (12) yields as a special case formula (4).

For r=2¢,
A,}_ 14
f,=GN=\)A1+3 (1)

ACI Materials Journal/May-June 2000

in which

EG
I (15)

["fgl(o)]
A= frm‘h 2f,.D,=-

A =fr?m =

EG,g"(0

2¢ [ (O)]3

Formula (14) was proposed and used to describe some size
effect data by Carpinteri et al. (1994, 1995). These authors
named this formula the multifractal scaling law (MFSL) and
tried to justify it by fracture fractality using, however, strictly
geometric (non-mechanical) arguments. This name, though,
seems questionable because, as shown in Bazant (1997 b, c), the
mechanical analysis of fractality leads to a formula different
from (14) (this is the case whether one considers the invasive
fractality of the crack surface or the lacunar fractality of micro-
crack distribution in the fracture process zone). No logical
mechanical argument for the size effect on o, to be a conse-
quence of the fractality of fracture has yet been offered.

EXPERIMENTAL VALIDATION OF ENERGETIC
FORMULA

To check the validity of formula (12) and calibrate its coef-
ficients, 10 data sets obtained in eight different laboratories
(Lindner and Sprague 1956; Nielsen 1954; Reagel and Willis
1931; Rocco 1995 and 1997; Rokugo et al. 1995; Sabnis and
Mirza 1979; Walker and Bloem 1957; Wright 1952) were used.
These data, consisting of 42 values summarized in Table 1, rep-
resent all the relevant test data on modulus of rupture of plain
concrete beams that could be found in the literature. The deter-
ministic energetic character of formula (12) made it possible to
adopt a simplified approach in which only the mean value of the
measured f, for each size was considered in checking the for-
mula. This approach helped convergence and stability of the
fitting algorithmy; it also avoided the need of choosing different
weights of data points to take into account different numbers of
data points within various sets and different sizes, different
numbers of sizes in each set, and different size ranges of vari-
ous sets. The details of all the experiments were presented in
Bazant and Novak’s (2000b) study of a nonlocal Weibull theory.

The efficient Levenberg-Marquardt nonlinear optimization
algorithm was used with all the strategies of fitting. First,
direct fitting of all data provided the values of parameters Jr oo
r, and D, of formula (12). The merit function to be mlmmlzed
was con51dered in the form

(D y < rl ;wmula - f;{i:m ’ _ M (16)
2 —————— | =MIn
=t j=1 -fr i

where N = number of all data sets (N = 10) n, = number of all
data points within data set number z Joi = mean value of all
the data points (the mean of means is considered herein for the
sake of si Ehmty) of data set z The total number of all the data
points is X | n,= 42.

The result of this straightforward fitting is shown in Fig. 1.
The optimum values of parameters obtained by this simultane-
ous fitting of all the data aref = 3.27 MPa; r = 1.30; and
D, = 21.57 mm. Note that the optimum value of r differs from
the value of 1 that resulted from the simplified analysis of
Bazant and Li (1995), but is closer to 1 than to the value of 2
used in Carpinteri’s formula (14).

The scatter of the data in Fig. 1, however, is high, with coef-
ficient of variation ® = 0.2, and therefore, the result is
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Table 1—Means of modulus of rupture for various test data

used in study

Size D, mm |

Size D, mm | Mean, MPa Mean, MPa
Reagel and Willis (1981), 4 -point bending Walker and Bloem (1957), 4-point, da =1in.

101.6 5.94 101.6 4.70
152.4 514 152.4 4.50
203.2 5.45 2038.2 4.25
254 5.26 254 4.27

Wright (195¢), 3-point bending ‘Walker and Bloem (1957), 4-point, da =2in,
76.2 4.13 101.6 4.68
101.6 3.82 152.4 4.34
152.4 2.96 208.2 4.15
203.2 2.76 254 3.74

‘Wright (1952), 4-point bending Sabnis and Mirza (1979), 4-point bending
76.2 3.21 10 8.8
101.6 2.94 19.1 6.9
1524 2.60 381 5.6
2038.2 2.31 76.2 4.8

_ — 152.4 4.3

Nielsen (1954), 8-point bending Rokugo (1995), 4-point bending

100 8.57 50 4.35
150 3.16 100 4.04
200 3.80 200 3.66

— — 300 3.46

— — 400 3.30

Lindner and Sprague {1956), 4-point bending Rocco (1997), 3-point bending

152.4 4.48 17 7.04
228.6 4.07 37 6.52
304.8 3.93 75 5.60
457.2 3.79 150 5.12

— — 300 4.67

--©-- Nielsen 1954
--#-- 3point Wright 1952
--4A-- 4point Wright 1952
--®-- linch Walk&Bloem 1957
--X-- 2inch Walk&Bloem 1957,

- Reagel&Willis 1931 A A

- Sabnis&Mirza 1979 S ha
-- Rokugo 1995 ."A

-- Rocco 1995 -

-- Lindner 1956
—Determuustlc formula a

+ia¢¢

2 . R T S SR S S . I S S W N

10 : 100 D [mm] 1000

Fig. 1—Optimum fit of existing test data by various investigators on
modulus of rupture £ versus beam size (depth) D by deterministic
energetic formula (12).

unconvincing. It must be realized that the individual test data
sets are contaminated by different initial assumptions for size
effect testing as well as other uncertainties. Consequently, a
more suitable alternative approach to fitting should be adopt-
ed. Furthermore, because the scope and range of each individ-
ual data set is too limited, the data sets must be combined and
analyzed jointly to extract more useful information from the
data that exist.

It is reasonable to assume that what varies most from one
concrete or one testing approach to another are the values of
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Jr and Dy, while the exponent should be approximately the
same for different concretes and test series. The following
improved two-step iterative algorithm for optimizing the fit of
the combined data sets, which considerably reduces the scatter
by alternating the fitting of individual data sets with the fitting
of overall data, has been devised:

* An initial value of 7 is chosen (typically, r = 1);

* Step 1—The individual data sets are fitted separately by
Eq. (12) using the same constant parameter r, optimizing only
parameters f,_ and D,, allowed to have different values for each
data set;

* Step 2—The combined set of all the data is then analyzed
in one overall plot (Fig. 2) in which the logarithms of the nor-
malized values, log( f,/ '), are plotted versus the values of
log(D/ D,) of each data point. Different normalizing factors s Jroo
and D,, as determined in Step 1, are used for the data points
from each different set. With the help of the Levenberg-
Marquardt algorithm, the fit of these normalized data is then
in this plot optimized considering as unknown the overall val-
ues of three parameters Jreor Dy, and 7 for one overall size effect
curve (Fig. 2). This yields the values of these three parameters,
and especially an improved value of r, which is the whole pur-
pose of the second step; and

* Steps 1 and 2 are then iterated always using, in Step 1, the
last improved value of r as fixed, and optimizing only the
values of f, _ and D, separately for each data set. The iterations
are terminated when the change of the r value from one itera-
tion to the next becomes negligible (according to a chosen
tolerance).

The iterative algorithm converged rapidly. In the fourth
iteration, the change of r from the previous iteration was less
than 0.001. The results are shown in Fig. 2 in which the data
points of each set are plotted using the values Jroo of Dy
obtained in Step 1 individually for that data set. The corre—
sponding optimum overall parameter values are Srw =
2.98 MPa, r = 1.47, and D, = 28.49 mm. The normalized means
of the individual data sets are now very close to the fitted
curve. The coefficient of variation of the errors of the formula
curve, compared to the data points, is very low; ® = 0.0269.
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© Nielsen 1954

A 3point Wright 1952

4point Wright 1952

linch Walker&Bloem 1957
2inch Walker&Bloem 1957
Reagel&Willis 1931
Sabnis&Mirza 1979
Rokugo 1995

Rocco 1995

Lindner 1956

== Deterministic formula

.

t/14 .,
+e0D0M*en

1 —
0.1 1

Ly L 1

D/D,

[N W L
T

10 100

Fig. 2—Optimum fit of existing test data by various investigators on
modulus  of rupture f_versus relative size D/D, by deterministic
energetic formula (12).

Figure 8 further shows the plots of each individual data set
using the overall optimum exponent r = 1.47, but the values of
parameters f, _ and D, optimized separately for each data set. It
is this figure, rather than Fig. 2, that should be seen as a visu-
al check on the goodness of fit of the present formula. The opti-
mization of the fit in Fig. 2 is necessary to obtain the overall
optimum value of r, although visually, this figure conveys an
exaggerated impression of the quality of fit.

AMALGAMATION OF ENERGETIC AND
STATISTICAL SIZE EFFECTS

The large-size asymptote of the deterministic energetic size
effect formula (12) is horizontal; f./f, _ = 1. The same is true
of all the existing formulas for the modulus of rupture; refer to,
for example, BaZant and Planas (1998). But this is not in
agreemernit with the results of Bazant and Novdk’s (2000) non-
local Weibull theory as applied to modulus of rupture in which
the large-size asymptote in the logarithmic plot has the slope -
n/m corresponding to the power law of the classical Weibull
statistical theory (Weibull 1939).

In view of this theoretical evidence, there is a need to
amalgamate the energetic and statistical theories, despite the
fact that the agreement in Fig. 2 is excellent and looks very
convincing. Such amalgamation will be important, for example,

13 Nielsen, 1954 _
le) Three point bending
O Test data (means for every size)
o]
o Fitted deterministic formula (r = 1.47)
®=0.039
1 1 [
4 6 8 3 2
31'3 Walker and Bloem, 1957 Wright, 1952 Wright, 1952
= Four point bending Three point bending Four point bending
2
oh
=)
= 2
8
s |d=timch  ©
= [0}
= ®©=0.012 ©=0.034
= Coy oy N | 12 L !
4 6 8 10 0.4 1 1 2
3 1. 1.6 -
Sabnis and Mirza, 1979 ¢ Walker and Bloem, 1957 Reagel and Willis, 1931
Four point bending Four point bending Four point bending
2 O
O
®=0018 ® = 0.028 ol |e=001s
nm S W WE T2 B ! 11t L1
1 10 2 3 4 5 4 6 8 10
13 ™Lindner and Spragae, 1956 | Rokugo, 1995 L7 Roceo, 1995
Three point bending Four point bending Three point bending
. O
O
© =0.008 ® = 0.032 11— o =0.057 o
1 I N A B S I R Cl ol o9 L1 Litil L1
2 4 6 8 10 2 1 10 40

10 25
D/D, (log. scale)

Fig. s—Optimum fits of individual data sets by deterministic formula (12).
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for analyzing the size effect in vertical bending fracture of arch
dams, foundation plinths, or retaining walls.

A statistical generalization of formula (12) may be deduced
as follows. According to the deterministic-energetic model,
A"=(f/f,«) - rDy/ D = 1, which is the value of the large-size
horizontal asymptote. From the statistical viewpoint, this dif-
ference, characterizing the deviation of the nominal strength
from the asymptotic energetic size effect for a relatively small
fracture process zone (large D), should conform to the size
effect of Weibull theory D" where m = Weibull modulus, and
n = number of spatial dimensions (# = 1, 2, or 3; in the present
calculations, 2). Therefore, instead of A = 1, one should set
A =(D/D,)™™. This leads to the following Weibull-type sta-
tistical generalization of the energetic size effect formula (12)

tr

mim
=1 (%) 2 (1)
or
nim 1-mim Lr 18
O

where f _, D;, and r are positive constants representing the
unknown empirical parameters to be determined by experi-
ments. Because in all practical cases, rn/m < 1 (in fact, << 1),
formula (17) satisfies three asymptotic conditions:

1. For small sizes, D — 0, it asymptotically approaches the
deterministic energetic formula (12)

D 1/r
fr :frwr”r(_b) o D—l/r (19)
' D

2. For large sizes, D — oo, it asymptotically approaches the
Weibull size effect

Db )"lm o DAn/m (QO)

8. For m —» oo, the limit of (17) is the deterministic
energetic formula (12).

Equation (17) is, in fact, the simplest formula with these
three asymptotic properties. It may be regarded as the asymp-
totic matching of the small-size deterministic and the large-
size statistical size effects.

Based on the conclusions of Zech and Wittmann (1977), the
value of Weibull modulus was, at first, fixed as m = 12, which
implies the final asymptote to have the slope -n/m = -1/6
(because n = 2 for most of the data). The same iterative algo-
rithm of nonlinear optimization, as already described for the
deterministic formula, was used, although the convergence was
very slow this time. The optimized parameters are
Jreo = 8.8 MPa, D; = 8.2 mm, and r = 0.9. The corresponding
optimized data fit with the energetic-statistical formula (17) is
shown in Fig. 4. The coefficient of variation of errors of this fit
is ® = 0.0275, which is low and only slightly higher than
before.

Zech and Wittmann (1977), however, based their conclu-
sions on a very limited data set, and therefore, the question of
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the value of m for concrete has been reopened. These authors
obtained the value 7 = 12 in the standard way, which was from
the coefficient of variation of strength values measured on
specimens of one size and one shape. Numerical calculations,
however, show that for m = 12, the size effect for larger sizes is
unrealistically strong. The value of m is crucial, for it has a
large effect on the size effect plot. Taking higher values of m
increases the curvature of the logarithmic plot of (17) and
decreases the downward slope of the large-size asymptote,
which improves the fit of data.

Figure 5 shows the best individual data set available to authors
at present, and the optimized size effect curves for different
choices of m. It is readily noticed that m = 12 is certainly not a
good choice for this data set. To get the optimum fit of this
individual data set, m needs to be approximately doubled.

The optimum value of m, however, will differ for each indi-
vidual data set. Therefore, it is appropriate to analyze all the
data sets again jointly to determine the optimum common
value of m. The same optimization algorithm as already
described was used for various chosen m values, particularly
m = 12, 16, 20, 25, 30, 40 and . The convergence improved
significantly as m was increased and was excellent for m > 20.
The coefficient of variation ® of the optimized fits is plotted as
a function of Weibull modulus m in Fig. 6. The lowest values of
® are between 0.0226 and 0.0230, and occur in the range of
m € (20, 25). The horizontal line in the figure represents the
deterministic formula, for which ® = 0.0269.

Even though the changes of the coeflicient of variation of
errors seen in Fig. 6 are rather small, and the test data sets are
contaminated by different uncertainties, a better assessment of
Weibull modulus can be made than in previous works. From
the joint analysis of all the data sets, and more clearly from the
best existing individual data set (namely, that of Rocco (1995)),
it transpires that the overall optimum value of the Weibull
exponent is approximately

m=24 (21)

Accordingly, the Weibull size effect for two-dimensional geo-
metrical similarity is, in the logarithmic plot, a straight line of
slope -n/m = -1/12 instead of the slope -1/6, generally con-
sidered in most previous studies and shown in Fig. 4.

In view of this conclusion, the nonlinear iterative optimiza-
tion of data fits has been repeated using m = 24. The result is
shown in Fig. 7. The corresponding coefficient of variation is
® = 0.023, and the optimum values of the parameters are
Jr 0= 3.68 MPa, D, = 15.58 mm, and r = 1.14. The figure shows
that the decrease of modulus of rupture with size is, for large
sizes, much less than that seen in Fig. 4 for m = 12. The indi-
vidual test data sets, fit with the energetic-statistical size effect
formula for m = 24, are given in Fig. 8. The fitting of the ener-
getic-statistical formula resulted in a smaller coefficient of vari-
ation in most cases, compared to sets with the deterministic
size effect in Fig. 3; for seven of those data, the coefficient of
variation is less than or equal to the coefficient of variation of
deterministic formula, and for three, is greater. In the case of
the data spanning a broad range of sizes, namely, those of
Rocco (1995), Rokugo (1995), and Sabnis and Mirza (1979), the
result of fitting is much better, which is the main evidence that
the proposed energetic-statistical formula (17) works well.

CORROBORATION BY NONLOCAL WEIBULL
MATERIAL MODEL
The existing experimental results are of a rather limited
range and do not include extreme sizes that are of the greatest
practical interest. The present theory, for example, has serious
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implications for the nominal strength in bending failure of an
arch dam, but the typical thickness of such dams, which is
approximately 5 to 10 m on top, is way beyond the range
explored experimentally. Therefore, it is important to check
and verify the theory by other means.

For this purpose, structural analysis based on the nonlocal
Weibull material model recently developed by Bazant and
Novédk (2000) is suitable because a good agreement with the
existing limited test data, the same data as used herein, has
been demonstrated. Numerical solutions of beams according to
this model have now been used to obtain both the energetic-
deterministic and the statistical asymptotic behaviors of size
effect in the modulus of rupture tests of plain concrete beams.

The Weibull integral for probability P, of structural failure
(Bazant and Planas 1998) was reformu{ated by Bazant and
Novdk in a nonlocal form. In this reformulation, the local
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versus relative size of D/D, by energetic-statistical formula (17)
withm = 24.

stresses are replaced by the nonlocal (spatially averaged)
strains multiplied by the modulus of elasticity, as proposed by
Bazant and Xi (1991). Then the multidimensional generaliza-
tion of the Weibull integral may be written as

= (5 0\ avix)
P =1—expi- iy 2 (22)
-] (0] 2

r

where 7 = number of dimensions (1, 2 or 8); 6, = Weibull scal-
ing parameter; ¥ = representative volume of material (having
the dimension of material length); 6, = principal stresses (7 =
1,..n); and an overbar denotes nonlocal averaging. The failure
probability now does not depend on local stresses 6 (), but on
the nonlocal stresses ©,(x) that are the results of some form of
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spatial averaging of strains; for details, refer to BaZant and Xi
(1991), Bazant and Planas (1998), and Bajant and Novak
(2000). In the case of an unreinforced, simply supported, sym-
metric beam with a symmetric uniaxial stress field treated as
two-dimensional, (22) becomes

2 Li2 D/2
P.=1-exp ——j J
f

vV, J, J,

where L = span of the beam, and s = shift of the neutral axis of
beam caused by distributed cracking.

Because the most meaningful numerical simulations are those
representing a combination of all the data sets rather than one
particular data set, certain average values of material parame-
ters, representing a certain average concrete, need to be adopt-
ed. They have been chosen as follows: tensile strength
Jf; = 8.3 MPa; modulus of elasticity E = 35 GPa; postpeak soft-
ening modulus E, = 25 GPa coupled with material characteris-
tic length [/ = 38d, and maximum aggregate size
d, = 23 mm, Weibull scaling parameter 6, = 0.9/, and, as
established herein, Weibull modulus m = 24.

Three-point symmetric bending of a beam with a span-
depth ratio L/D = 3 is considered. The modulus of rupture is
calculated for beam depths D spanning a very broad size range
from D = 0.01 m (which is a hypothetical value, smaller than
the maximum aggregate size assumed) to D = 10 m (which is a
size of practical interest for arch dams, and not much
larger than the thickness of some massive unreinforced foun-
dation plinths or unreinforced retaining walls). The nonlocal

o(xy) |

) dxdy (23)
60

0.95

averaging is carried out in the form found by Bazant and Novék
(2000) as the most reasonable among several alternatives. It
consists in spatial averaging of the inelastic strains over a char-
acteristic neighborhood of the given point. The calculation of
the median values (values corresponding to failure probability
0.5) of the nominal strength (modulus of rupture} of the beam
has been programmed and then used to fit the present ener-
getic-statistical size effect formula (17). The medians of the
modulus of rupture of the beam were obtained by iterating the
solutions of the beam so as to obtain failure probability 0.5 with
a prescribed accuracy. For details, refer to Bazant and Novak
(2000).

The result of nonlinear fitting of formula (17) by the
Levenberg-Marquardt algorithm using the nonlocal solutions
of failure probability (medians of modulus of rupture) of the
beam is presented in Fig. 9. The corresponding parameters are
Jre = 876 MPa, r = 1.28, and D, = 48.66 mm. To make the
comparison visually clear, the bilogarithmic size effect curves
from Fig. 7 and Fig. 9 are plotted together in Fig. 10. As can
be seen, both curves are very close.

This favorable comparison supports (but of course does not
prove) the correctness of the present energetic-statistical size
effect formula (17) as well as the nonlocal Weibull material
model of Bazant and Novak (2000).

COMMENTS ON ZECH AND WITTMANN’S
ANALYSIS
Zech and Wittmann (1977) used two methods to estimate
Weibull modulus m: first, using the measured strength values
for one shape and one size, they fit Weibull probability distri-
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Fig. §—Optimum fits of individual data sets by energetic-statistical formula (17).
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bution to the data (although they apparently performed no sta-
tistical test to check whether the data sample has this distribu-
tion). The fitting yielded the value of m as well as the scaling
parameter; and second, using the strength values for different
sizes, they fit to the data the Weibull size effect in terms of
specimen volume ¥ that again yielded the value of m.

When the energetic size effect is also present but is neg-
lected, however, the result of the first method must be very dif-
ferent for different specimen sizes, and the result of the second
method must be very different for different limited size ranges.
These limitations (which, of course, could not have been under-
stood in 1977) are illustrated in Fig. 11, in which the numeri-
cal results of the statistical nonlocal model (Bazant and Novak
2000b), spanning the size range almost 1:1000, are divided into
three groups for three different size ranges of breadth approx-
imately 1:10. Method 2 gives m = 24.2, 14.0, and 4.23 for the
size ranges 2 to 10 m, 0.2 to 1 m, and 0.04 to 0.10 m, respec-
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tively, as is seen from the slopes of the lines in the logarithmic
plot of Fig. 11. The middle range is the normal laboratory test-
ing range, and the value m = 14, found to fit the numerical
results best, is quite close to Zech and Wittmann’s value
m= 12,

As already mentioned, the Weibull modulus m has a signifi-
cant influence on the shape of the size effect curve and the loca-
tion of its asymptote. To illustrate this, the cases m = 12 and m
= 24 may be compared. For small enough sizes, the case m = 12
yields a higher values of modulus of rupture, but the large-size
asymptote lies lower. With an increase of m, the overall slope
of size effect curve generally decreases.

This behavior can be explained by plotting what is called,
in Weibull theory, the concentration function (for example,
Bazant and Planas 1998), ¢(0) = (6/0,)™ (Fig. 12). Scale
parameter 6, = 4 MPa is assumed for this plot. Obviously, for
m = 12, the concentration function has higher values for 6 < Op
and lower values for ¢ 2 6. Consequently, in the small-size
range, higher stresses are achieved, and thus, the effect of non-
local strain averaging is stronger. Thus, the values of the con-
centration function are smaller compared to the case m = 24
(that corresponds to a smaller concentration of defects). This
naturally leads to higher values of modulus of rupture. For
large sizes, the situation is just the opposite. In particular, the
influence of nonlocal strain averaging becomes negligible for
very large sizes. Higher values of the concentration function
for m = 12 lead to a steeper large-size asymptote than for
m= 24.

According to (20), the revised value m = 24 (instead of
m = 12) means that the large-size asymptotic size effect is, for
two-dimensional similarity, G, o< D112 (rather than D'l/G),
and/for three-dimensional similarity, 6, o< D!/# (rather than
D14,

COMPARISON WITH DETERMINISTIC COHESIVE
CRACK MODEL
For the sake of comparison, the maximum loads for beams
of various sizes have also been calculated with the cohesive
crack model, in a similar way as Petersson (1991). The results,
with model parameters set so as to optimize the fit of the pres-
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ent formula in the practical range, are shown in Fig. 13, in
which the zone outside the practical size range is cross-
hatched. The size effect curve of the cohesive crack model ter-
minates with a horizontal asymptote and has a smaller slope
than the present formula. The reason is that the statistical size
effect is not captured by the cohesive crack model (capturing
would not be easy—one would have to allow the cohesive crack
to form at various random locations and, especially for small
sizes, allow simultaneous formation of several cohesive cracks
until localization instability leads to a single crack).

REINTERPRETATION OF CAUSES OF SOME
WELL-KNOWN STRUCTURAL CATASTROPHES

The Malpasset Dam in French Maritime Alps, an arch dam
of record-breaking slenderness built in 1954, failed catastroph-
ically on its first complete filling in 1959, causing a flood that
wiped out the town of Fréjus founded by the Romans (for
example, Levy and Salvadori 1992). Almost 400 lives were lost.
The failure, which started from vertical cracks due to flexural
action in the horizontal plane, was attributed to the movement
of rock in the left abutment, magnified by a thin, clay-filled
seam. There can be no disputing that this explanation was cor-
rect, but it was incomplete.

From the perspective of this study, the size effect must have
been a significant contributing factor. The energetic size effect
was unknown in 1959, and the Weibull statistical size effect
was not yet established for concrete. Considering that the wall
thickness was D = 7 m (the minimum thickness of the dam, on
its top) and that the tensile strength was estimated from the
standard compression strength measured on specimens with
D =15 cm, and assuming that » = 1.14 and D, = 10 cm for dam
concrete, today one may conclude from (17) that the nominal
tensile strength for flexural analysis of tolerable abutment
movement must have been reduced to approximately 45% of
the value considered. (If only the energetic size effect were con-
sidered, it would be 64%, and if only the statistical one were
considered, 73%.) The abutment movement that could have
been tolerated to prevent the maximum flexural stress multi-
plied by safety factor from attaining the tensile strength limit
must have been correspondingly smaller than that estimated at
that time by the investigating committee, which was unaware
of size effect.

Similar observations can be made about Saint-Francis Dam
near Los Angeles, an arch-gravity dam that failed in 1928,
causing a loss of over 500 lives. The primary cause also was an
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excessive displacement in the rock abutment (Pattison 1998),
but the size effect must have reduced the maximum tolerable
displacement to only 40% of the strength theory prediction
based on the tensile strength of normal laboratory specimens.

Another example—an exception in the history of structur-
al engineering disasters in the sense that, in this case, the inves-
tigating committee did, in fact, recognize the size effect as a
significant contributing factor—was the 1987 failure of the
Schoharie Creek Bridge on New York Thruway, built in 1952
(Levy and Salvadori 1992). A flood scoured the river bed to a
depth of 5.5 m (18 ft) and bared approximately 1/2 of the
length of an unreinforced foundation plinth of 6.7 m (22 ft) in
depth, forcing it to act as a cantilever. Fracture of the plinth
(analyzed by finite elements by Swenson and Ingraffea in 1991)
caused the pier to sway, which in turn caused the precast pre-
stressed beams to slip out of their bearings (five cars went
down and 10 people drowned). Assuming D, = 0.05 m and r =
1.14, today one may conclude from (17) that the nominal bend-
ing tensile strength must have been reduced to 54% compared
to the standard modulus of rupture f, measured for D= 0.15 m.
(If only the energetic size effect was considered, it would be
77%, and if only the statistical one, it would be 75%.)

Many other examples exist. Further catastrophes in which
the size effect must have been a significant contributing factor
could be cited for reinforced concrete structures (for example,
Sleipner oil platform 1991; Hanshin viaduct, Kobe 1995;
Cypress viaduct, Oakland 1989; bridge columns in Los Angeles
earthquake 1994), although it was not concluded in the official
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evaluations. The size effect in these structures is generally
stronger because the load capacity of the structure is reached
only after the development of a large crack. It obeys, however,
a different law (Bazant 1984; BaZant and Chen 1997; Bazant and
Planas 1998) with a negligible statistical contribution to the
mean. Analysis of these disasters is planned for a separate

paper.
SUMMARY AND CONCLUSIONS

1. A deterministic formula (12) for the size effect on the
modulus of rupture in beam bending, or generally the size
effect for failures at fracture initiation, has been derived from
energy release caused by a large fracture process zone. Its spe-
cial cases are the formulas previously proposed by BaZant and
Li (1995, 1996b) and Carpinteri et al. (1994, 1995} (the latter
called by Carpinteri the multifractal scaling law, MFSL).

2. A rapidly converging iterative nonlinear optimization
algorithm for fitting the formula to test data has been
developed.

8. The new energetic formula gives excellent agreement
with the existing test data on the modulus of rupture of beams
of various sizes.

4. The range of these data, however, is much too limited. It
does not (and hardly ever could) cover the extreme sizes
encountered in arch dams, foundations, and earth-retaining
structures, for which: the size effect is of primary importance.
Therefore, extrapolation to such sizes must be based on
theory.

5. As confirmed by recent structural analyses based on a
new statistical nonlocal material model, the energetic formula
is inadequate for extrapolation to very large sizes because it
terminates with a horizontal asymptote in the size effect plot.
The theory must take into account the Weibull statistical size
effect, which causes that the large-size asymptote in the
logarithmic size effect plot must he inclined.

6. For extrapolation to very large sizes, a new generalized
formula (17) that amalgamates the energetic and statistical size
effects for failures at crack initiation is developed. This new for-
mula is of asymptotic matching type. Its asymptotic behaviors
for small and large sizes conform to the energetic and statisti-
cal theories, respectively, and its limit for an infinite value of
Weibull modulus is the energetic formula.

7. The correctness of the new energetic-statistical size effect
formula (17) is supported by good agreement with structural
analysis according to the recently developed statistical nonlo-
cal material model.

8. Minimization of the coefficient of variation of errors of
the energetic-statistical formula compared to the bulk of the
existing data indicates that, for concrete, the Weibull modulus
m =~ 24, rather than m = 12, which has so far been generally
accepted on the basis of the limited small-size test results of
Zech and Wittmann (1977). This means that the size effect on
the modulus of rupture at very large sizes is proportional, for
two-dimensional similarity, to D712 (rather than D~!/6), and
for three-dimensional similarity, to D~1/8 (rather than D"1/%),

9. When the size effect has both statistical and energetic
sources, which is the case for concrete, Weibull modulus m
could be determined in beam tests by the classical method (that
is, from the coefficient of variation characterizing the scatter of
many test results for one shape and one size) only if extremely
large beams (several meters deep), which are not practically
feasible, were used. For feasible beam dimensions, the smaller
the size, the lower the m value obtained by the classical method.
Likewise, estimation of m from size effect tests cannot be based
on the classical Weibull formula for size effect unless such
enormous beam dimensions could be used. For feasible dimen-
sions of laboratory beams, the Weibull modulus must be deter-
mined by fitting the present energetic-statistical size effect law
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(17) to the measured nominal strength values.

10. The results imply that the size effect at fracture initia-
tion must have been a significant contributing factor in many
catastrophic structural failures; for example, those of
Malpasset Dam, Saint Francis Dam, and Schoharie Creek
Bridge.
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