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Proposal for Standard Test of Modulus of Rupture of
Concrete with Its Size Dependence

by Zdené¢k P. Bazant and Drahomir Novak

Recently accumulated test data on the modulus of rupture, as well
as analytical studies and numerical simulations, clearly indicate
that the flexural strength of concrete, called the modulus of rup-
ture, significantly decreases as the beam size increases. This paper
proposes a method to incorporate this size effect into the existing
test standards, and focuses particularly on ASTM Standards C 78-
94 and C 293-94. The proposed method is based on a recently
established size effect formula that describes both the determinis-
tic-energetic size effect caused by stress redistribution within the
cross section due to finite size of the boundary layer of cracking at
the tensile face of beam, and the classical Weibull-type statistical
size effect due to the randomness of the local strength of material.
Two alternatives of the test procedure are formulated. In the first
alternative, beams of only one size are tested (as is recommended
in the current standard), and the size effect on the mean modulus of
rupture is approximately predicted on the basis of the average of
existing information for all concretes. In the second alternative,
beams of two sufficiently different sizes are tested. The latter is
more tedious but gives a much better prediction of size effect for
the concrete at hand; it allows for the estimation of size effect on
not only the mean but also the coefficient of variation of the modu-
lus of rupture (particularly, its decrease with increasing size).
Numerical examples demonstrate the feasibility of the proposed
approach.
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INTRODUCTION AND RESEARCH BACKGROUND

The flexural strength of concrete beams, known as the mod-
ulus of rupture, has long been experimentally studied (Lindner
and Sprague 1956; Nielsen 1954; Reagel and Willis 1931;
Roceo 1995, 1997; Rokugo et al. 1995; Sabnis and Mirza 1979;
Walker and Bloem 1957; Wright 1952; Koide, Akita, and To-
mon 1998, 2000), numerically studied (Hillerborg, Modéer,
and Petersson 1976; Petersson 1981), and analytically studied
(Zhu 1990, BaZant and Li 1995; BaZant and Planas 1998). One
result of all this research has been the finding that the modulus
of rupture decreases with increasing beam size. This, however
is not yet reflected in the current testing standards.

The cause of the size effect on the modulus of rupture is,
for all but the largest-sized specimens, deterministic, stem-
ming from the quasibrittle nature of the material, and partic-
ularly the stress redistribution and energy release caused by
fracture with a large fracture process zone. For extremely
large beam sizes, an additional cause is statistical, stemming
from the randomness of local material strength as described
by Weibull’s (1939) classic theory.

Prior to the 1990s, few structural designers paid any atten-
tion to the statistical size effect and none was paid to the de-
terministic size effect, which is usually much more
important. It was commonplace to consider the tensile
strength of the material as a constant.
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A quarter century ago, however, finite element calcula-
tions with the cohesive (or fictitious) crack model by Hiller-
borg, Modéer, and Petersson (1976) revealed the
inevitability of a strong deterministic size effect engendered
by stress redistribution within the cross section, due to the
strain-softening inelastic response of the material. Petersson
(1981) numerically calculated the curve of flexural strength
versus the beam depth. He also argued that, for extremely
deep beams, an additional statistical Weibull-type size effect
that cannot be captured by the deterministic cohesive crack
model ought to be taken into account.

As test data accumulated, various empirical formulas were
proposed (for example, Rokugo et al. 1995). A simple deter-
ministic formula yielding good agreement with the existing
test data was proposed in Bazant and Li (1995) and then re-
fined in BaZant and Li (1996a). This formula was derived on
the basis of stress redistribution within the cross section
caused by softening in a boundary layer of cracking near the
tensile face. The layer was assumed to have a constant (size-
independent) thickness, dictated by the size of the inhomo-
geneities (chiefly the maximum aggregate size). Bazant and
Li (1996b) rederived this formula by energy arguments of
fracture mechanics, which made it also possible to capture
the effect of the geometry of structure and loading in a sim-
ple manner, namely, in terms of the derivatives of the energy
release function (or stress intensity factor) of an initiating
crack with respect to its depth.

On the probabilistic side of the problem, an early study of
the stress analysis with the material strength as a random
field was published by Shinozuka (1972). Material random-
ness was simulated by finite elements (for example, Breysse
1990; Breysse and Fokwa 1992; Breysse, Fokwa, and Drahy
1994; Breysse and Renaudin 1996; Roelfstra, Sadouki, and
Wittman 1985). Random lattice models exhibiting the qua-
sibrittle size effect were presented by Bazant et al. (1990)
and Jirasek and BaZant (1995a, b).

A combination of the statistical and deterministic aspects
of the problem has recently been achieved by the probabilis-
tic nonlocal continuum model developed by BaZant and
Novik (2000a, b). They showed that this model, unlike the
previously developed stochastic finite element models, satis-
fies the condition, set forth by the classic Weibull theory size
effect must ensue as the limit when the ratio of the structure
size to the thickness of the boundary layer of cracking (or to
the maximum aggregate size) tends to infinity. They also de-
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duced a simple energetic-statistical size effect formula
(Bazant and Novédk 2000c). This new formula represents as-
ymptotic matching between the deterministic-energetic for-
mula, which is approached for small sizes, and the power-
law size effect of the classic Weibull statistical theory, which
is approached for large sizes.

The importance of this issue is underscored by recent stud-
ies showing that the size effect in flexure of plain concrete
beams must have been a significant contributing factor in
many disasters, for example, those of the Malpasset Dam
(Levy and Salvadori 1992), the Saint Francis Dam (Pattison
1998), and the Schoharie Creek Bridge (Swenson and In-
graffea 1991). The reduction of the effective material
strength due to size effect must have been in these structures
on the order of 50% (BaZant and Novik 2000c).

The test method according to the current ASTM (19944, b)
Standards C 78-94 and C 293-94 provides the value of the
modulus of rupture for one standardized beam size but does
not establish the experimental basis for predicting the flexur-
al strength of beams of other sizes. But without such infor-
mation, the size effect cannot be taken into account during
design. Remedying this situation is the goal of this paper.

ENERGETIC-STATISTICAL SIZE EFFECT
FORMULA FOR MODULUS OF RUPTURE
The concept of modulus of rupture is based on the elastic
beam theory. If the material remains linearly elastic until the
maximum load is reached, the strength values obtained by
both the flexural test and the direct tensile test will be equal
to each other (f, =f;).

The modulus of rupture f, is defined as the maximum nor-
mal stress in the beam calculated from the maximum (ulti-
mate) bending moment M, under the assumption that the
beam behaves elastically

f,= % M

where D, b = beam depth and width. Except for the asymp-
totic case of an infinitely deep beam, the whole cross section
of a concrete beam does not remain elastic up to the maxi-
mum load, and so f, represents merely the nominal strength
f, = Oy, which is a parameter of the maximum load having
the dimension of strength.

The inelastic behavior before the maximum load is caused
by the development of a sizable boundary layer of cracking
whose depth is approximately constant, dictated by the max-
imum aggregate size (Bazant and Planas 1998). The cracking
causes energy release and stress redistribution, which in-
creases the moment capacity of the cross section. Because in
a deeper beam the cracking layer occupies a smaller percent-
age of beam depth, there is less stress redistribution, and thus

o~

the nominal strength decreases with an increasing beam
depth. This represents a size effect.

The size effect on the modulus of rupture has been shown
to follow the energetic-statistical formula (BaZant and
Noviék 2000c) :

A 0 g L

where 70, Dy, r, and m are positive constants representing
unknown empirical parameters; and » is the number of di-
mensions in geometric similarity—n = 2 or 3 (D, has ap-
proximately the meaning of a boundary layer of cracking).
Because r and m can be prescribed on the basis of the infor-
mation on all concretes studied in the literature, there are
only two parameters, namely f(,) and Dy, to be identified
from tests of the given concrete. For this purpose, testing
beams of only one size while ignoring the size effect, as cur-
rently specified in standards, is insufficient. One must either
test beams of two sufficiently different sizes, or make a size
effect correction based on prior knowledge.

Data fitting with the new formula (2) reveals that, for con-
crete and mortar, the Weibull modulus m = 24 rather than 12,
the value currently accepted (BaZant and Novdk 2000c). This
means that, for extreme sizes, the nominal strength (modulus
of rupture) decreases for two-dimensional (2D) similarity (n
= 2), as the —1/12 power of the structure size, and for three-
dimensional (3D) similarity, as the ~1/8 power (in contrast to
the —1/6 and —1/4 powers that have generally been assumed
so far). Fitting by this formula to the main test data sets avail-
able in the literature showed an excellent agreement, with a
rather small coefficient of variation of errors of the formula
compared to the test data. Furthermore, the new formula was
verified by numerical simulations with the nonlocal Weibull
theory (Bazant and Novak 2000a, b).

PROPOSAL FOR SIZE EFFECT EXTENSION OF
CURRENT STANDARD TEST

The entire procedure of the standard test method can be re-
tained. Only the size effect consideration needs to be added.
Two levels of size effect consideration are proposed: 1) test-
ing with only one specimen size and taking the size effect
into account based on prior knowledge, and 2) testing with
two specimen sizes. The latter is more accurate but involves
more work. For both levels, the values

m=24, r=114, n=2 3)

which have been shown to be suitable for all concretes on the
average (Bazant and Novédk 2000c), should be used.

Testing with only one specimen size and crude
estimate of Jy

1. When the ease of testing is important, one specimen size
suffices; at least D; = 76 mm (3 in.) should be used, but it is
better to use D; = 305 mm (12 in.). The uncertainty of the test
results depends on the size selected, as numerically verified
by nonlocal Weibull theory (BaZant and Novdk 2000a, b).
The scatter is much higher for smaller sizes; for example, the
coefficient of variation of deviation of the formula from test
data, ®= 0.3 for D; = 76 mm, while @ = 0.1 for D =305 mm).
Therefore, more specimens are desirable if the smaller size
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is used, but generally it is recommended that the number of
specimens of one size should be no less than six.

2. Using the existing formula in the ASTM standards C 78-
94 and C 293-94, the modulus of rupture can be determined
as the mean value f; (in MPa) corresponding to the selected
size Dy.

3. The parameter D), of the size effect formula (2) is then
approximately estimated as a function of the characteristic
length [y

015+ (Ip/1))

D,=8,10 , O =1mm, [;= 53mm (4

(Justification of this formula will be given later.) The char-
acteristic length /y is usually not known, and a rough esti-
mate may then be obtained as

ly~d,(d,/8)"7, 8 =1mm (5)

where d,; is the maximum aggregate size. (It is convenient,
albeit not required, to give aggregate size in mm.)
4. Knowing Dy, one can estimate

m=n3) R ©

All the parameters of the energetic-statistical formula (2)
for size-dependent prediction of modulus of rupture are
thus determined. For any size D, modulus of rupture f, can
be easily calculated.

Testing with two specimen sizes
1. When more accurate results are desired, two specimen
sizes need to be used, for example

D;=76mm (3in.) and D, =305 mm (12 in.) O]

Two other sizes can also be selected, but note that the sizes
selected must not be very close (such as D; =76 mm and D,
= 100 mm). If the sizes are not very different, the problem of
identification of material constants tends to be ill-posed, and
the experimental scatter tends to cause significant uncertain-
ty (Bazant and Li 1996b; Planas, Guinea, and Elices 1995;
Bazant and Planas 1998). The number of specimens should
be chosen as previously discussed.

2. According to the existing formula in ASTM standards
C 78-94 and C 293-94, the values of the modulus of rupture
are calculated for each individual size: f; for size Dy, and f,
for size D,.

3. The unknown parameters fO and D, of the size effect for-
mula (2) are then solved from the following system of two
nonlinear equations that follows from wntmg the formula (2)
for D= D; and D = D,, and solving f° » from each

f0 - f [(Db)rn/m . %D:z]-l/r ®
=7, [G)TZ)M/M . %]-1/r ©
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Equating the last two expressions yields a formula for D,

1/p
Db = (f{Dlug_ﬁDﬁ’DZJ , p= T_r'nf_l (10)

r(fyD, - f1Dy)

4. Parameter f 9 is then evaluated from Eq. (8) or (9). The en-
ergetic-statistical formula (2) for size-dependent prediction of
the modulus of rupture is thus completely determined. For any
size D, the modulus of rupture f, can be easily calculated.

JUSTIFICATION OF D, ESTIMATE FOR ONE-SIZE
TESTING

For one-size testing, an estimate of unknown parameter D,
is needed. For this purpose, all the well-documented relevant
test data available in the literature, consisting of 10 data sets
from eight different laboratories, were analyzed (Lindner
and Sprague 1956; Nielsen 1954; Reagel and Willis 1931;
Rocco 1995, 1997; Rokugo et al. 1995; Sabnis and Mirza
1979; Walker and Bloem 1957; Wright 1952). The values of
the parameters of the energetic-statistical formula (2) for
each individual data set were obtained by fitting the test data.
The results and all data points are plotted in Bazant and
Novik (2000c). The aim was to obtain a prediction formula
for Dy, as a function of some simple characteristics of con-
crete—at least a rough approximate prediction, based, for
example, on the maximum aggregate size. Although a very
good prediction seems impossible, the following procedure
has led to useful results.

The boundary layer thickness D, may be assumed to be af-
fected by the basic fracture characteristics of concrete, such
as the fracture toughness, the fracture energy, the effective
length of fracture process zone, or the characteristic length.
Therefore, the size effect method (BaZant and Planas 1998)
has been utilized to determine these characteristics for each
individual data set considered, exploiting the relation

__Kl_c_ an
JDk(ay+ cf/D)

y =

Here, K is the fracture toughness and cris the fracture pro-
cess zone length, whose values for each data set have been
obtained by nonlinear fitting of the size effect data (plot of f,
versus D) for that set using, for example, the Levenberg-
Marquardt algorithm: k(0g + ¢;/D) is the dimensionless
stress intensity factor (depending on the structure geometry)
as a function of relative crack length & = 0y + ¢;/D at the
start of crack propagation (which triggers failure); and 0y, is
the relative notch length, which is zero in this case of un-
notched specimens. For three-point and four-point bending,
the values of k(o) can he obtained, for example, from Tada,
Paris, and Irwin’s (1985) handbook.

Once K, and c¢for each data set had been obtained by data
fitting with Eq. (11), then the characteristic length /, was cal-
culated for each set as

Iy = (K, /f)° (12)

where f} is the direct tensile strength of concrete. The direct
tensile strength values were not reported and thus were esti-
mated from the reported splitting tensile strength or the com-
pression strength. The plot of log Dy, versus [, for all the data
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Fig. 1—(a) Dependence of log Dy, on material characteristic
length 1 determined for various data sets; and (b) depen-
dence of 1y on maximum aggregate size d,.

sets is shown in Fig. 1(a). In spite of a large scatter, one can
discern a trend. The trend may be expressed in the form of
Eq. (4), shown as the solid line in Fig. 1(a). Plotting the char-
acteristic length versus the maximum aggregate size for each
data set results in Fig. 1(b), where the trend of the data,
shown as the solid line, is expressed by Eq. (5).

PROBABILISTIC PREDICTION

Statistically, what the energetic-statistical formula (2) pre-
dicts is the mean size effect curve, because it has been devel-
oped for the means of modulus of rupture. Formulas in the
form of Eq. (2) could also be used for the medians, as they usu-
ally differ only slightly from the means. But for describing the
size effect on low or high percentiles of modulus of rupture,
formulas of such a form would be incorrect.

For small sizes, the scatter of the modulus of rupture is
generally larger than for large sizes. This fact is evidenced by
the existing test data and has also been verified by numerical
simulation with the nonlocal Weibull theory (BaZant and
Novik 2000a, b). If the energetic-statistical formula were
used to fit, for example, the 5 and 95 percentiles for each data
set, the resulting curves could even intersect for large sizes,
which would be conceptually wrong. Therefore, a different
approach is necessary to predict the statistical scatter.
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Fig. 2—Dependence of coefficient of variation w of {, on
beam size (depth) D, obtained by numerical simulation with
nonlocal Weibull theory.

Information obtained from one-size testing does not suf-
fice to predict the decrease of scatter with the size of a spec-
imen. Therefore, testing with at least two (significantly
different) specimen sizes is necessary for predicting the scat-
ter of the modulus of rupture.

Statistical information on the scatter can be obtained from
the two data sets corresponding to the two sizes selected. The
coefficients of variation o of the modulus of rupture are cal-
culated for each individual size in the standard statistical
way (the standard deviation divided by the mean): ® for size
D, and o, for size D,. They characterize the variability of
test results in a relative manner.

Normally, ; = @,. If not, it is likely that the tests were not
performed properly—human errors, an insufficient number
of specimens, specimen sizes not sufficiently different, inad-
equate test control, and poor measuring devices could all be
factors. The case ®; < ®, can occur for statistical reasons. Its
treatment would require linking the quality of estimate and
the number of tests, which is beyond the scope of this paper
and destroys the simplicity of scatter prediction. Therefore,
it is recommended that in such cases the probabilistic predic-
tion be skipped. A scatter increasing with the specimen size
is simply not realistic.

The aim is to predict @ for any size as information addi-
tional to the mean size effect curve described by the energet-
ic-statistical formula (2). The general trend of ® versus size
D needs to be identified for this purpose.

Numerical simulations with the nonlocal Weibull theory
(Bazant and Novdk 2000a, b) revealed an almost linear rela-
tionship between log @ and log D, as shown by the solid line
in Fig. 2. Deviations in the logarithmic scale can be observed
only for very large sizes, but the scatter for these sizes is gen-
erally so small that the error of a linear relationship between
log ® and log D can be neglected. The linear dependence of
log ® on log D may be written as

_ logw, —logm,

logw =
o8 logD, —logD,

logD + (13)

logw,logD, —logw,log D,
logD, - logD,
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Fig. 3—Modulus of rupture prediction using Rocco’s data: (a) dependence of f, on beam size (depth) D, according to ener-
getic-statistical formula (2) obtained on basis of either all Rocco’s data or his data for two sizes only; (b) f obtained on basis
of one-size testing only; (c) error of using test data for two sizes and one-size data only; (d) estimation of coefficient of varia-

tion @; and (e) probability bounds (5 and 95 percentiles).

Then, considering the normal probability distribution for
modulus of rupture to be acceptable, one can easily estimate
any percentiles of probability cut-off. For example, the 5 and
95 percentiles are calculated for normal distribution as
(mean f,)(1 = 1.645w). Despite the heuristic basis of this pre-
diction, reasonable results are achieved in comparison with
tests, as shown in the following section.

NUMERICAL EXAMPLES

To demonstrate the procedure, two sets of data will be con-
sidered. First, consider Rocco’s (1995, 1997) data, which rep-
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resent excellent data on the modulus of rupture, with five
different sizes spanning the broadest size range among all the
available data. Suppose that only two specimen sizes were
used in these tests, Dy =75.28 mm (= 3 in.) and D, = 304.8 mm
(12 in.). The mean values of the modulus of rupture for these
individual sizes are: f; = 5.60 MPa for size Dy, and f, = 4.67
MPa for size D,. The number of specimens tested for each size
is only four in this case. According to the foregoing procedure,
two unknown parameters of the energetic-statistical formula
(2) are determined: f° = 6.36 MPa and D, = 5.55 mm.

Qn
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w; and (e) probability bounds (5 and 95 percentiles).

Taking all five sizes of Rocco’s data into account, Bazant
and Novik (2000c) obtained, by nonlinear fitting of the en-
ergetic-statistical formula, the values f(r) =6.78 MPa and Dy,
= 3.25 mm as the best possible estimates. From the compar-
ison shown in Fig. 3(a), one can now see that the differences
between the result based on all the sizes and the result based
on only two sizes are negligible. Figure 3(b) shows the hy-
pothetical results of one-size testing considering either of the
two sizes. Based on maximum aggregate size d, = 5 mm, the
characteristic lengths /j = 8.55 mm and D;, = 2.05 mm were
estimated according to the formulas, Eq. (4) and (5). The er-
ror may be defined as the difference between the value of the

QA

modulus of rupture measured for each size and the value pre-
dicted on the basis of the data either for the two chosen sizes
or for the chosen single size, and expressed as a percentage
of the mean. A plot of this percentage error versus the size,
shown in Fig. 3(c), shows a good enough agreement. For
normal cross-section dimensions used in the concrete indus-
try, the error is in this case below 4% of the mean. The pre-
diction of the coefficient of variation ® versus size D
according to the formula (13) is plotted in Fig. 3(d), for
which ®; = 0.04 and w, = 0.01. The 5 and 95 percentile
curves (that is, the limits having probabilities exceeding 0.05
and 0.95) are shown in Fig. 3(e).
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Fig. 5—Sensitivity analysis—dependence of predicted mod-
ulus of rupture on level of accuracy of means f; and f,.

Second, consider Lindner and Sprague’s (1956) data, for
which the scatter of test results is much larger; see Fig. 4(a).
Suppose that only two specimen sizes are used in the analy-
sis of these tests, particularly the sizes Dy = 152.4 mm (6 in.)
and D, = 457.2 mm (18 in.), for which the values of the
means are f] = 4.48 MPa and f, = 3.79 MPa. The number of
specimens was 17 for the first size and eight for the second
size. Then one obtains f0 = 4.77 MPa and D, = 16.3 mm
(while the fitting of all the data sets combined yields f(,) =
4.61 MPa and Dy = 17.89 mm).

The one-size testing is again considered for each size
(Fig. 4(b)). The characteristic length /j = 74.66 mm and the
thickness Dy, = 36.20 mm were estimated on the basis of the
maximum aggregate size, d, = 25.4 mm. The errors for the
one-size testing are, in this particular case, much better bal-
anced than those obtained for the single-size testing. The plot
also indicates that the larger the size used in the one-size test-
ing, the more reliable the results. Figure 4(d) shows the plot
of o versus size D, and Fig. 4(e) shows the 5 and 95 percen-
tile curves (0 = 0.13, w, = 0.10).

To illustrate the sensitivity of prediction of the modulus of
rupture on the level of accuracy of the means f; and f;, Fig.
5 shows how an error in the estimation of the means, such as
+5% perturbations, influences the size effect curve in the
case of Rocco’s data. This small error can influence the esti-
mates of Dy and f 9 significantly (the minimum and maxi-
mum values for the four possible combinations of the
perturbed values are Dy, = 1.04 and 11.4 mm, and /0 = 5.56
and 7.83 MPa). But the overall prediction of the size effect
on the modulus of rupture is not overly affected, especially
for larger sizes that are used in the concrete industry.

The examples show that, with a proper testing procedure,
two sufficiently different specimen sizes suffice to achieve
the same test result as does using many specimen sizes. Thus
it transpires that two-size testing can adequately characterize
the statistical variability of modulus of rupture, particularly
the decrease of scatter with size.

SPREADSHEET FORM FOR PROPOSED
STANDARD TEST
To make the determination of the energetic-statistical size
effect formula parameters particularly easy, a spreadsheet
form, available from the authors, has been developed for a
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common computer software program. One needs to open the
computer file, “FSCtest.xls” and type input parameters
(highlighted in yellow). The output parameters (parameters
of the size effect formula) are calculated automatically
(highlighted in red). The illustrative size effect figures are
plotted automatically when the input parameters are
changed, with the important points being highlighted.

SUMMARY AND CONCLUSIONS

1. It is proposed that the existing ASTM standards C 78-
94 and C 293-94 for the modulus of rupture test be extended
by testing for the size effect. The proposed method includes
both the deterministic (energetic) and statistical size effects.
Two alternatives of the test procedure are formulated.

2. In the first alternative, the size effect on the mean mod-
ulus of rupture is approximated on the basis of the existing
information for all concretes on the average.

3. In the second alternative, beams of two sufficiently dif-
ferent sizes are tested. The latter is more tedious but gives a
much better prediction of size effect for the concrete at hand
and allows estimating not only the size effect on the mean
but also the size effect on the coefficient of variation of the
modulus of rupture, characterized by a decrease of the coef-
ficient of variation with increasing size.

4. Numerical examples demonstrate feasibility of the pro-
posed approach.
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APPENDIX I—PROPOSED CHANGES IN TEXT OF

ASTM STANDARDS C 78-94 AND C 293-94

The proposed standard test method can be specified as
follows: :

1. Scope (Unchanged)

2. Referenced Documents (Unchanged)

3. Significance and Use

3.1. (Proposed to add to the end of paragraph) Because
of clear experimental evidence and relevant theory that the
flexural strength of concrete, called modulus of rupture, sig-
nificantly decreases as the beam size increases, a feasible
method to determine this size dependence (size effect) is im-
plemented. It enables the use of size-dependent value of
modulus of rupture in the design process to ensure desired
reliability level of design.

3.2. (Unchanged)

4. Apparatus (Unchanged)
5. Testing—C 78-94, Test Specimen—C 293-94

5.1. (Proposed to add) One of two levels of standard testing
may be chosen: testing with only one specimen size (level one)
and testing with two specimen sizes (level two). Level one is
easier; level two is more accurate. Level one: use beam speci-
mens of depth D; =76 mm (3 in.). Level two: use specimens of
two sizes. D; = 76 mm (3 in.) and D, = 305 mm (12 in.) with
the same cross-section width and proportionally increased
spans (so as to maintain geometric similarity. The number of
specimens for each size should be no less than six. However,
for the smaller, size higher number of specimens (for example,
12) it is strongly recommended to achieve a better prediction.

5.2. (Unchanged)

6. Procedure

6.1. to 6.2. (Unchanged)

6.3. (Proposed to add) To minimize the rate effect, the
time to reach the maximum load should be approximately
the same for different sizes. This is achieved roughly when
the beam deflection rate at the load point is proportional to
the beam depth.*

7. Measurement of Specimens After Test (Unchanged)
8. Calculations

8.1 to 8.3. (Unchanged)

8.4. —-C 78-94, 8.2. —C 293-94 (Proposed) To identify
the coefficients of the energetic-statistical size effect for-
mula, the following parameters may be assumed for normal
concretes: r=1.14, m=24, and n = 2.

Level One—
The modulus of rupture for specimen size Dy is deter-
mined according to the formula in Section 7.1., and is denot-

*This would be exactly true if the flexural strength were size independent. More pre-
cisely, the deflection rate that has been increased in proportion to the size should further
be decreased in proportion to the expected size effect. But this correction is difficult tc
implement because the size effect is not yet known while being at the same time unim-
portant because only order of magnitude changes of the applied deflection rate have any
significant effect on the results. The reason that the time to maximum load should be the
same is that this ensures the strain rate at homologous points of the beams of different
sizes are the same, and in particular, the boundary layer of cracking (or the fracture pro-
cess zone) in beams of different sizes are strained at the same rate.
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ed as fi. The parameter D,, of the size effect formula is then
approximately estimated using Eq. (4) as a function of char-
acteristic length of concrete, which, if unknown, may in tum
be estimated from the maximum aggregate size. Then f S is
calculated from Eq. (9).

Level Two—

According to the formula in Section 7.1., the modulus of
rupture values are first determined as the mean values for each
individual s1ze Jfi for size D and f; for size D,. The unknown
parameters 1 » and D, of the size effect formula (2) are then
solved using Eq. (8) to (10). The size-dependent formula (2)
for the modulus of rupture is thus completely determined.
From this formula, the modulus of rupture f, may then be eas-
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ily calculated for any size D. Estimation of the expected scat-
ter in the form of coefficient of variation @ can be done using
the formula (13).

9. Report

9.1.1 t0 9.1.10. (Unchanged)

9.1.11. (Proposed) Size effect formula with all parame-
ters used and identified by procedure stated above: addition-
ally, a plot of modulus of rupture versus size would be
generally illustrative and helpful.

10. Precision and Bias (Unchanged)
11. Keywords
11.1. (Proposed to add) size effect
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