Continuous Relaxation Spectrum for Concrete Creep
and its Incorporation into Microplane Model M4
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Abstract: Efficient numerical finite-element analysis of creeping concrete structures requires the use of Kelvin or Maxwell chain
models, which are most conveniently identified from a continuous retardation or relaxation spectrum, the spectrum in turn being deter-
mined from the given compliance or relaxation function. The method of doing that within the context of solidification theory for creep
with aging was previously worked out by Bazt and Xi in 1995 but only for the case of a continuous retardation spectrum based on the
Kelvin chain. The present paper is motivated by the need to incorporate concrete creep into the recently published Microplane Model M4
for nonlinear triaxial behavior of concrete, including tensile fracturing and behavior under compression. In that context, the Maxwell chain
is more effective than the Kelvin chain, because of the kinematic constraint of the microplanes used in M4. The paper shows how to
determine the continuous relaxation spectrum for the Maxwell chain, based on the solidification theory for aging creep of concrete. An
extension to the more recent microprestress-solidification theory is also outlined and numerical examples are presented.
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Introduction well chain model for the solidification theory of aging creep of
concrete. An additional purpose is to show how the Maxwell

Within service stress levels, concrete creep approximately follows chain can be incorporated into Microplane Model M4.

the principle of superposition. The constitutive equation relating

stress to strain has the form of a Volterra integral equation whose

kernel is the compliance function of the material. Because the use

of an integral equation in structural analysis is computationally

inefficient, it is preferable to convert the integral-type creep law

to a rate-type form based on either the Kelvin or the Maxwell

chain models, which can be most conveniently identified from a N

continuous retardation or relaxation spectrum. R(§)= Z E.e & 1)

Because the Dirichlet series expansion of a given compliance wot
function directly leads to the Kelvin chain, the solidification leads to the Maxwell chain model in whick,, 7, =elastic

Continuous Relaxation Spectrum

The Dirichlet series expansion of a nonaging relaxation function,
which has the form

theory was formulated in terms of the retardation spect(Bax moduli and relaxation times of Maxwell chain units;
zant and Xi 1995 However, when a nonlinear triaxial constitu- &=t—t’=time lag;t=current time; and’ =age at loading. Con-
tive model for concrete such as Microplane Model NBazant sidering the limit case of infinitely many Maxwell units with con-

et al. 2000ais to be generalized for creep, the use of the Maxwell tinuously distributed relaxation times, , one may write

chain is more convenient because of the kinematic constraint of "

the microplanes. Furthermore, with the Maxwell chain, it is easier R(g):j L*(t)e &"dr 2
to trace the evolution of free energy and dissipated energy than 0

with the Kelvin chain(Jirasek 2000. _ ~ where the time lag=t—t’ is the only time variable in the case
The purpose of this paper, whose idea was briefly outlined in a of nonaging creep, and* (t) represents a continuous distribution
recent conference presentati@t and Baant 2001, is to formu- of the elastic moduli.
late a continuous relaxation spectrum corresponding to the Max- | the case of a discrete spectrum, the determination ofhpth
andE,, from test data is an ill-conditioned problem. In that case,
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_bazani@northwestern.edu determined by minimizing the quadrgtlc norm of the dlﬁgrence
z : between the approximation and the given relaxation function. Be-
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This equation can be regarded as the Laplace transformation of 1.07
function £ "L(Z™1) (e.g., Tschoegl 1989 Therefore, the func- ]
tion L(7) can be determined by the inverse Laplace transforma- 1,06 —

tion of Eq. (3). The same inversion procedure as used in the &
preceding development of the retardation spectf@azant and =

Xi 1995) may now be adopted, although several other techniques L0594
to determineL(7) exist. The inverse Laplace transformation of a .
functionf(x) is defined asymptotically as followsVidder 197): 104 v
(— 1)K 999.99 1000 1000.01 1000.02

sl el

4)
wheref®=kth derivative off. So, according to Eq$3) and(4),
the inverse transformatidn(t) of a nonaging relaxation function
is

f(x)=fooe"‘t¢(t)dt with ¢ (y)= lim———
0

k— o0

(ko) (kr) ®)

L(t)= I|m M =)

Therefore, when the relaxation functid(§&) is given, thekth-

Time [days]

Fig. 1. Example of tangential approximatioh,(t) of compliance
function J(t,t") with single Maxwell unit fort’=1,000 days, and
Ten=10min

narrower spectrum. A previous stud{Bazant et al. 2000a
showed how the long-range compliance functib,t’) for con-
crete creep can be replaced by an approximately equivalent

order approximate spectrum is optained by using a finitg value of nonaging linear compliance functiaky,(¢) corresponding to a
k (k=1). Same as shown previously, for the retardation spec- tangentially equivalent single Maxwell uniwith modulusE.,

trum, the third-order approximation af(t) is found to give suf-
ficient accuracy for practical purposes.

and viscosityrn.,) whose relaxation timer,=E.,/mq, corre-
sponds to the characteristic duratibg of the dynamic event.

For practical implementation, the continuous spectrum must Approximately, T,=t/2 (Fig. 1). This yields the conditions

be approximated by discrete values corresponding to a discretey (1 )= 1/E .+t /7,

Maxwell chain model for a given relaxation time span (ry).
The moduli of Maxwell units in Eq(2) for the chosen relaxation
times are unambiguously determined by

E,=L(7,)In10A(logT,)=2.303(7,)
A(logT,)=1.0 (6)

The E, values corresponding to the given, values are
unique, but they of course depend on the spacing ofvhile
being independent of the choice of. To minimize the discreti-
zation error, one should add to Eg) one more spring of modu-
lus E., that is not coupled to any serial dashpét, corresponds
to a Maxwell unit with infinite relaxation time. Note th&t, does
not affect the transformation relatids) becaus&k=1; adding a
constant taR(&) has no effect on the resukE., is obtained from

N

the minimization of the error
[ J RE)dE+ Y, By e :f] (7)
T p=1

The final form of the approximation by the Maxwell chain is
N
R(E)=2 E,e 9+E, 8)
p=1

when

E.=

TNT T1

Note again that the determination Bf, is similar to the de-
termination of inverse modulus, corresponding to a Kelvin unit
with zero retardation time; viz.

™
] €)

Simplification for Rate Effect in Structural Dynamics

Ap=

TNTT1

N
fNC(g)dg—E AT, e Em
T1 n=1

from

(dDE), = Jer(Ter) = Lhep

which

1 1

n=—, E=

T (10)
Jch Jch+ tchJch

Amalgamation with Model B3

Partial Moduli of Maxwell Chain in Solidification
Theory

For basic creep, the total strain rate in Model B3 for creep of
concrete(Bazant and Baweja 1995, 20p@onsists of an elastic
strain rate, aging viscoelastic strain rate, aging viscous flow rate,
and inelastic strain rat@=ig. 2). The aging viscoelastic strain rate
is obtained by dividing the nonaging viscoelastic strain rate by the
current load-bearing volume fractiar(t).

Y 44
oM n(t)
where s, =elastic strain rateg,=aging viscoelastic strain rate,
with the aging mechanism being caused by the growth of the solid
volume fraction due to solidification in the pores of the hardened
cement paste in concretBazant and Prasannan 198%;=flow
strain rate; eo=inelastic strain rate;y=nonaging viscoelastic
strain rate of the solidifying materiat|; and q,=empirical ma-
terial parameters; and(t) =current stress. The rateat constant
stresso is defined as

y=0C(§), C(§)=0zIN[1+(&/No)"] 12)

where g,=empirical constant; n=0.1; Ay=1 day; and
C(&)=nonaging compliancéBazant and Prasannan 1989; Bar
and Xi 1995; Baant et al. 199Y which was approximated in

e=gete,teiteg=00+ ——+——0c(t)+gy, (11)

While computations of long-time response require a relaxation previous works(Bazant and Prasannan 1989; Bat and Xi
spectrum spanning many decades in the logarithm of time, the1995; Baant et al. 199Y by the retardation spectrum of a Kelvin
computation of dynamic response of concrete structure to impact,chain. In this paper, the approximation is based on the Maxwell
blast, groundshock, or earthquake can be carried out with a muchchain.
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Fig. 2. Solidification theory and Maxwell chain model

The nonaging relaxation spectrur{&), which is the counter-  times, i.e., from 0.001 day to 100 days. The initial unbounded

part of the nonaging retardation spectr@g¢), is not known. spike in the relaxation function is not reproduced because of the
Therefore, in order to determine the partial moduli of the Max- finiteness of the approximation, although one might question the
well chain, one may use the well-known identity acceptability of an infinite spike. Since Model B3 represents an
t ) addition(or serial couplingof serial strain components, the over-
R(0)C(t)+ f C(t—t")R(t))dt' =1 (13) all relaxation function is always finite even though the analytical
0 relaxation function of the solidifying part is unbounded.

The least-squares approximation of the dat&¢t) with Eq. (13) Not surprisingly, Eqs(S) and (6) are identical to Eqs(9) and
(Bazant 1975, 1982; RILEM 1988 or collocation of Eq(13) at (15 fgr the gontlnuous retardation spectruBazant and Xi
the chosen set of discrete times, leads to a linear matrix equation 1999 if R(€) is replaced by-C(€) andE, by A, .

from which the partial moduli can be solved. The discrete times

must be chosen, or else ill posedness is unavoidable. The partialQuasi-Elastic Incremental Stress-Strain Relation

moduli also depend on the choice t@f,; (Jirasek 2000, which for Creep

corresponds tde... Depending on this choice, negative values
may sometimes result for some partial moduli, which is physi-
cally unreasonabléBazant 1975; 1982; Jisek 2000.

Assuming the nonaging viscoelastic strain ratéo be constant
within each time step, one can exactly integrate the differential

Once the continuous relaxation spectruR(¢) is approxi- equation of each Maxwell unit to obtain the partial strest=ait

mately calculated fron€ (&), the partial moduli are uniquely and +1

efficiently obtained as a discrete approximationRg¢t). A good (’rl:“u“./J“(UL_“ui’)ef E, At/m, (16)
approximation of a nonaging relaxation function can be obtained L ) . o

from the nonaging compliance function simply by algebraic in- EXPressingy from this equation and substituting it into Ed.1),

version(Trost 1967; Baant and Kim 1979; Tschoegl 198%iz. one obtains a quasi-elastic incremental approximation of the con-
stitutive law (Bazant 1971; 1975

1
R(£)= o (14) Ac=E"(Ae—Ag") 17)

Therefore, for the approximation based on the third order of dif-
ferentiation, the spectrum(t) may be calculated as

o
=

73 , & 05
L(T)——W[C (31)C4(37) é 04
g0
—6C’(31)C"(31)+6C'3(37)] (15) 2 03
S8
All the steps are straightforward. In Fig. 3, the spectrum of the g 02
optimum partial modulE,, obtained from Eq(13) is compared to ’
the resulting continuous relaxation spectrum, for which the relax- Ol —T—T—T—T1T
ation times are chosen ag=0.001 day,7,=0.01 day.. ., T4 0.0010.01 01 1 10 100
=100 days. Both spectra seem to be close to each other, but the Time [days]

latter is much smoother.

The analytical nonaging compliance and relaxation functions
are compared to their Maxwell chain approximations in Fig. 4.
Both show a good match within the given range of the relaxation

Fig. 3. Comparison of partial modulE, determined from same
compliance function using classical least-squares mefldaghed
line) and present continuous spectrum metksalid line)
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§° 1.0 wherem(S)=1/lcpS~1; S=microprestress; and=material pa-
2 rameter. The evolution of microprestress is obtained from the
0O F—T—TTTT equation
0.0010.01 0.1 1 10 100 1000 . .
t+7, [days] St+ceSP=p (23)

wherecy=2c/q, and w=chemical potential of evaporable pore
water=—Kk4[ T In h+ (w4 /ky)]. Here,kq, . =material parameters;
T=absolute temperature; ahe-humidity. Eq.(23) represents the
relaxation of microprestress. SinSsdecreases very rapidly near
t=tqy, where ty=initial time, an explicit Eulerian integration
scheme does not work. Iteration is necessary to obtain the next
microprestressS' * with desired accuracy. This iteration, which
At |1 is not cheap, can easily be avoided. Assumir{p, T) to be con-
stant within each time step, one can obtain an exact solution of
Eq. (23) within the time step. With the initial conditior8=S' at

Fig. 4. Comparison of curves of analytical relaxation and compli-
ance functiongsolid lineg with curves of their Maxwell chain ap-
proximations(data points determined from relaxation functioii4).
Top: For nonaging relaxation function; bottom: For nonaging com-
pliance function.

1
E"=|qg,+ MES Ty +Q42n|+1

A" At t=t' (alwaysp>1, and in the theorp=2)
AS”: ;m+q4n—m—]_2+A80 (18) 1 p“i 1/p
i+1_ Ll
where S CoAt+(S)LP +(co) (24)

N 1N The adjustments that need to be made to the aforementioned
D= 2 E\,+E. andAy'= 5 E "LAVMM (19) algorithm are relatively simple and may be stated as follddjs:
w=1 w=1 calculate or read the change of the chemical poteptidPR) cal-
with culate S ** using (24); and (3) calculate the corresponding vis-
cositym'"t=1/(2cS™Y).

A —EuAt—At' N _1—e*AVu (20)
Vi jm Tw ’ . Ayu
The changes of the internal variables are then obtained from  Incorporation into Microplane Model
Ao =E. \ (A_"Jrv”) —ol Ay A (1) In Microplane Model M4, which has recently been developed at
L W V) poSRTE Northwestern University (Bazant et al. 2000a; Caner and

Bazant 2000, the constitutive law is formulated in terms of the
stress and strain vectors on each microplane. The strain vectors
are kinematically constrained to the strain tensor. Because of this
constraint, the Maxwell chain is more convenient for creep cal-
culations than the Kelvin chaifif a static constraint were used,
the Kelvin chain model would, of course, be more convenight
brief summary of the basic relations of the microplane model is
attached in the Appenditor the details, see Bant et al. 2000
Generalization to Microprestress-Solidification Theory On each microplane, the strain vector is decomposed into the

As a further refinement of the original solidification theory, the Volumetric strain, deviatoric strain, and shear strain. The trial
microprestress-solidification theory has been formuldRabant ~ Stress of each component is computed from the uniaxial elastic
et al. 1997; Baant 200). In this theory, the following replace- const|tut|ye law(33). T_he Maxyvel_l chain is |mplement_ed simply
ment is made in Eq11): by replacing the elastic constitutive 1a®3) for each microplane

by the viscoelastic constitutive law given by E@7). The incre-
Q4 (t)ait) 22) ments of the volumetric, deviatoric and shear stress components
n(t) N n(S) may be written as

Eqgs.(17)—(21) are the same as those obtained in various other
ways by Baant and Prasanna(l989 and Carol and Bamt
(1993. SettingAo=1 only for the first step and\a=0 for the
subsequent steps, one can compute from(Eg.the aging com-
pliances. They are compared to the analytical compliances in Fig.
5, which demonstrates a good match.
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The modulus of each unit in a discrete Maxwell model is

2 easily and uniquely determined from the continuous relax-

ation spectrum when the relaxation times are suitably cho-

sen. The Maxwell chain model may be generalized for aging

elk according to the solidification theory to yield a complete
incremental quasi-elastic constitutive law;

3. The present model can also be introduced into the
microprestress-solidification theory, which provides for
aging and drying creep a simpler and more fundamental
characterization than the original solidification the@Ba-

G/Ek‘

| Horizontal boundary zant et al. 199, An efficient algorithm to calculate the evo-
lution of microprestress is presented. The incremental rela-
Fig. 6. Stress-strain boundary of microplane model M4 and stress tions are based on the exact solution of the evolution of
drop to boundary when trial stress exceeds boundaherek; is a microprestress under the assumption that the rate of chemi-
dimensionless scaling parameter cal potential of evaporable pore water is constant within each
time step; and
4. The one-dimensional creep model may be naturally extended
_gr AL e AL to three dimensions. To extend the creep formulation to non-
Aoy=Ey(Aey=Aey), Aop=Ep(Aep—Aep) (25) linear triaxial behavior, the model may be combined with the
Acor=Ej(Aer—Acef (25h) microplane model. The kinematic constraint used in Mi-

croplane Model M4 makes the Maxwell chain model more

The inelastic behavior of concrete is, in Model M4, character- convenient than the Kelvin chain model. In the viscoelastic

ized by the so-called stress-strain boundarigssain-softening generalization, the elastic constitutive law for each mi-
yield limits) for the volumetric, deviatoric, and shear behaviors. croplane is simply replaced by the incremental quasi-elastic

according to aging viscoelasticity. If the value of a stress exceeds
the associated boundary, the stress value in each time step is made
to drop at a constant strain to the value of the boundary. Acknowledgments
The algorithm of computation in each time stAp may be
summarized as follows(1) first compute the trial stresses from
Eq. (25) (Point 2 in Fig. 6; (2) compare all the stress values to
the corresponding boundaries; if they exceed the boundaries, cor
rect them(Point 3 in Fig. 6; (3) obtain the final stress increment,
Ao=053—0; (Fig. 6); and(4) update all internal variablegar-
tial stressesin Eq. (21) using the finalAo. Appendix: Basic Relations of Microplane Model
Finally, it must be emphasized that the aging viscoelastic be-
havior modeled in this paper is only one of two mechanisms of . . ) )
the time (or rate dependence. The other is the timer rate Formulation of Kinematic Constraint
dependence of the opening of cracks or microcracks. That mechaqn the formulation of kinematic constraint, the nornaaj and the
nism can be described by a rate-dependent formulation of theshear microstrains, ande), are the resolved components of the
softgning stress-separation curve of the cohesive crack modelmacroscopic strain tensar; (where the subscripts,=1, 2, 3,
(Bazant et al. 2000k which is highly nonlinear and was derived  refer to Cartesian coordinateg. The orientation of a microplane

from the activation energy theory for the rupture of bonds. Alter- s characterized by its unit normal,. The component of the
natively, the crack band model or nonlocal model may be used for strain vectors" on any microplane i8] = &N (Bazant and Prat

Partial financial support under Grant Nos. CMS-9732791 from
the National Science Foundation and DE-FG07-98ER45736 from
the Department of Energy, both to Northwestern University, is
gratefully acknowledged.

this purpose, as shown in Baat et al.(20000. 1988. The normal strain vector and its magnitude are
The crack opening rate mechanism is very important for short-
time creep and dominates the nonlinear fracturing behavior in the EN, = NiNjNKe ji (26)

range of dynamic loading. But it might be unimportant for long-
time creep, although experimental evidence in this regard is lack-
ing. Itis, of course, irrelevant for all the time-dependent response whereN;; = n;n; (the repeated Latin lowercase subscripts indicate
in the absence of fracturing, which occurs at low-stress levels if summation over 1, 2,)3
no drying takes place. The shear strain components in two orthoga(saitably cho-
sen directionsm; andl; tangential to the microplangormal to
n;) areey=m;(e;;n;) ande, =I;(g;;n;). Because of the symme-
Conclusions try of gj;

— n_ —
8N—nj81—njnk8]‘k—Nij8ij (27)

1. For the nonaging constituent in the solidification theory, the em=Mijeij, eL=Lijej (28)
Maxwell chain model is equally convenient as the Kelvin whereM;;=(m;n;+m;n;)/2 andL;;=(I;n;+1;n;)/2 (Bazant and
chain model since the nonaging relaxation function can be Prat 1988.
obtained from the nonaging compliance function easily, and
with good accuracy;

2. The continuous relaxation spectrum of the nonaging con-
stituent in the solidification theory is unique and is readily Since the foregoing kinematic constraint relates the strains on the
determined on the basis of the inverse Laplace transform. microplanes to the macroscopic strain tensor, the static equiva-

Static Equivalence
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lence can be enforced only approximately. This is done by the
virtual work theorem which is written for the surface of a unit
hemisphergBazant 1984.

27

Q

:JQ(O-NNH+ULLij+UMMij)8£ide (29)

The normal stress and strain are split into their volumetric and
deviatoric parts, and if Eq29) is written separately for the volu-

metric and deviatoric components, one has
O'ij:()'vaij'f‘O'ﬁ (30)

3

o5 0 dQ

+0—LLij+0-MMij (31)

Sij
Op N”_?

analysis and design of concrete structures—model B3LEM Rec-
ommendation Mater. Struct.,28, 357-365; with Errata, Vol. 29
(March 1996, p. 126.

Bazant, Z. P., and Baweja, $2000. “Creep and shrinkage prediction
model for analysis and design of concrete structures: Model B3—
short form.” Adam Neville Symposium: Creep and Shrinkage-
Structural Design EffectfsACI SP-194, A. Al-Manaseer, ed., Ameri-
can Concrete Institute, Farmington Hills, Mich., 85—100.

Baznt, Z. P., Caner, F. C., Carol, I., Adley, M. D., and Akers, S. A.
(20003. “Microplane model M4 for concrete. I: Formulation with
work-conjugate deviatoric stress). Eng. Mech.126(9), 944-953.

Baznt, Z. P., Caner, F. C., Adley, M. D., and Akers, S. (R000D.
“Fracture rate effect and creep in microplane model for dynamigs.”
Eng. Mech. 126(9), 962-970.

Baznt, Z. P., Hauggaard, A. B., and Baweja(897. “Microprestress-
solidification theory for concrete creep. II: Algorithm and verifica-
tion.” J. Eng. Mech.12311), 1195-1201.

Bazant, Z. P., and Kim, S. S1979. “Approximate relaxation function
for concrete.”J. Struct. Div. ASCE10512), 2695—-2705.

The elastic increments of the stresses in each microplane over théazant, Z. P., and Prasannan, 3989. “Solidification theory for con-

time step(or load step are written as

AO'V: E\/ASV, AO'D:EDASD, and AO'T:ETAST

(32)

where Ey,=E/(1-2v), Ep=5E/(2+3m)(1+v), Ey=nEp;
andrm=parameter that can be chosen, the best choice be#lg
(Carol et al. 1991; Bant et al. 1996; Carol and Bamt 1997.

The volumetric-deviatoric split makes it possible to reproduce
the full range of Poisson’s ratie-1<v<0.5 in elastic analysis.
The term —§;;/3 in Eq. (32) ensures oR=0 even when
JaopdQ#0. The integration is conducted numerically according
to an optimal Gaussian integration formula for a spherical sur-
face, characterized by discrete directiqus1, ..., N, and the
corresponding weighte/,,

Nm
Uij:Z_ﬂSijmezl WMSi(jM) (33)
where Sij ZIQ(UNNij +0'|_Lij +0'MM |J)88|JdQ and Nm:the
number of the microplanes.
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