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Continuous Relaxation Spectrum for Concrete Creep
and its Incorporation into Microplane Model M4

Goangseup Zi1 and Zdeněk P. Bažant2

Abstract: Efficient numerical finite-element analysis of creeping concrete structures requires the use of Kelvin or Maxwel
models, which are most conveniently identified from a continuous retardation or relaxation spectrum, the spectrum in turn bei
mined from the given compliance or relaxation function. The method of doing that within the context of solidification theory for
with aging was previously worked out by Bazˇant and Xi in 1995 but only for the case of a continuous retardation spectrum based
Kelvin chain. The present paper is motivated by the need to incorporate concrete creep into the recently published Microplane M
for nonlinear triaxial behavior of concrete, including tensile fracturing and behavior under compression. In that context, the Maxw
is more effective than the Kelvin chain, because of the kinematic constraint of the microplanes used in M4. The paper show
determine the continuous relaxation spectrum for the Maxwell chain, based on the solidification theory for aging creep of conc
extension to the more recent microprestress-solidification theory is also outlined and numerical examples are presented.
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Introduction

Within service stress levels, concrete creep approximately foll
the principle of superposition. The constitutive equation relat
stress to strain has the form of a Volterra integral equation wh
kernel is the compliance function of the material. Because the
of an integral equation in structural analysis is computationa
inefficient, it is preferable to convert the integral-type creep l
to a rate-type form based on either the Kelvin or the Maxw
chain models, which can be most conveniently identified from
continuous retardation or relaxation spectrum.

Because the Dirichlet series expansion of a given complia
function directly leads to the Kelvin chain, the solidificatio
theory was formulated in terms of the retardation spectrum~Ba-
žant and Xi 1995!. However, when a nonlinear triaxial constitu
tive model for concrete such as Microplane Model M4~Bažant
et al. 2000a! is to be generalized for creep, the use of the Maxw
chain is more convenient because of the kinematic constrain
the microplanes. Furthermore, with the Maxwell chain, it is eas
to trace the evolution of free energy and dissipated energy
with the Kelvin chain~Jirásek 2000!.

The purpose of this paper, whose idea was briefly outlined
recent conference presentation~Zi and Bažant 2001!, is to formu-
late a continuous relaxation spectrum corresponding to the M
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well chain model for the solidification theory of aging creep
concrete. An additional purpose is to show how the Maxw
chain can be incorporated into Microplane Model M4.

Continuous Relaxation Spectrum

The Dirichlet series expansion of a nonaging relaxation functi
which has the form

R~j!5 (
m51

N

Eme2j/tm (1)

leads to the Maxwell chain model in whichEm , tm5elastic
moduli and relaxation times of Maxwell chain units
j5t2t85time lag; t5current time; andt85age at loading. Con-
sidering the limit case of infinitely many Maxwell units with con
tinuously distributed relaxation timestm , one may write

R~j!5E
0

`

L* ~t!e2j/tdt (2)

where the time lagj5t2t8 is the only time variable in the cas
of nonaging creep, andL* (t) represents a continuous distributio
of the elastic moduli.

In the case of a discrete spectrum, the determination of bothtm

andEm from test data is an ill-conditioned problem. In that cas
tm must be properly chosen. A uniform distribution oftm in the
logarithmic scale of time is a good choice~Bažant and Prasannan
1989!. The values ofEm corresponding to the chosentm may be
determined by minimizing the quadratic norm of the differen
between the approximation and the given relaxation function.
causeEm depends on the choice and spacing oftm , the discrete
spectrum ofEm as a function of the discrete relaxation timestm is
not unique.

SettingL* (t)5L(t)/t andz51/t, Eq. ~2! becomes

R~j!5E
2`

`

L~t!e2j/td ln t5E
0

`

z21L~z21!e2jzdz (3)

-
e
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This equation can be regarded as the Laplace transformatio
function z21L(z21) ~e.g., Tschoegl 1989!. Therefore, the func-
tion L(t) can be determined by the inverse Laplace transform
tion of Eq. ~3!. The same inversion procedure as used in
preceding development of the retardation spectrum~Bažant and
Xi 1995! may now be adopted, although several other techniq
to determineL(t) exist. The inverse Laplace transformation of
function f (x) is defined asymptotically as follows~Widder 1971!:

f ~x!5E
0

`

e2xtf~ t !dt with f~y!5 lim
k→`

~21!k

k! S k

yD k11

f ~k!S k

yD
(4)

wheref (k)5kth derivative off. So, according to Eqs.~3! and~4!,
the inverse transformationL(t) of a nonaging relaxation function
is

L~t!5 lim
k→`

~2kt!k

~k21!!
R~k!~kt! (5)

Therefore, when the relaxation functionR(j) is given, thekth-
order approximate spectrum is obtained by using a finite valu
k (k>1). Same as shown previously, for the retardation sp
trum, the third-order approximation ofL(t) is found to give suf-
ficient accuracy for practical purposes.

For practical implementation, the continuous spectrum m
be approximated by discrete values corresponding to a disc
Maxwell chain model for a given relaxation time span (t1 ,tN).
The moduli of Maxwell units in Eq.~2! for the chosen relaxation
times are unambiguously determined by

Em5L~tm!ln 10D~ logtm!52.303L~tm! when

D~ logtm!51.0 (6)

The Em values corresponding to the giventm values are
unique, but they of course depend on the spacing oftm while
being independent of the choice oft1 . To minimize the discreti-
zation error, one should add to Eq.~1! one more spring of modu
lus E` that is not coupled to any serial dashpot.E` corresponds
to a Maxwell unit with infinite relaxation time. Note thatE` does
not affect the transformation relation~5! becausek>1; adding a
constant toR(j) has no effect on the result.E` is obtained from
the minimization of the error

E`5
1

tN2t1
H E

t1

tN

R~j!dj1 (
m51

N

Emtme2j/tmUt1

tNJ (7)

The final form of the approximation by the Maxwell chain

R~j!5 (
m51

N

Eme2j/tm1E` (8)

Note again that the determination ofE` is similar to the de-
termination of inverse modulusA0 corresponding to a Kelvin uni
with zero retardation time; viz.

A05
1

tN2t1
H E

t1

tN

C~j!dj2 (
m51

N

Amtme2j/tmUt1

tNJ (9)

Simplification for Rate Effect in Structural Dynamics

While computations of long-time response require a relaxa
spectrum spanning many decades in the logarithm of time,
computation of dynamic response of concrete structure to imp
blast, groundshock, or earthquake can be carried out with a m
1332 / JOURNAL OF ENGINEERING MECHANICS / DECEMBER 2002
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narrower spectrum. A previous study~Bažant et al. 2000a!
showed how the long-range compliance functionJ(t,t8) for con-
crete creep can be replaced by an approximately equiva
nonaging linear compliance functionJch(j) corresponding to a
tangentially equivalent single Maxwell unit~with modulusEch

and viscosityhch) whose relaxation timetch5Ech/hch corre-
sponds to the characteristic durationtch of the dynamic event.
Approximately, tch5tch/2 ~Fig. 1!. This yields the conditions
Jch(tch)51/Ech1tch/tch, (dJ/dj)tch

5 J̇ch(tch)51/hch from
which

h t5
1

J̇ch
, Et5

1

Jch1tchJ̇ch
(10)

Amalgamation with Model B3

Partial Moduli of Maxwell Chain in Solidification
Theory

For basic creep, the total strain rate in Model B3 for creep
concrete~Bažant and Baweja 1995, 2000! consists of an elastic
strain rate, aging viscoelastic strain rate, aging viscous flow r
and inelastic strain rate~Fig. 2!. The aging viscoelastic strain rat
is obtained by dividing the nonaging viscoelastic strain rate by
current load-bearing volume fractionv(t).

«̇5 «̇e1 «̇v1 «̇ f1 «̇05q1ṡ1
ġ

v~ t !
1

q4

h~ t !
s~ t !1 «̇0 (11)

where «̇e5elastic strain rate;«̇v5aging viscoelastic strain rate
with the aging mechanism being caused by the growth of the s
volume fraction due to solidification in the pores of the harden
cement paste in concrete~Bažant and Prasannan 1989!; «̇ f5flow
strain rate; «̇05inelastic strain rate;ġ5nonaging viscoelastic
strain rate of the solidifying material;q1 and q45empirical ma-
terial parameters; ands(t)5current stress. The rateġ at constant
stresss is defined as

ġ5sC~j!, C~j!5q2 ln@11~j/l0!n# (12)

where q25empirical constant; n50.1; l051 day; and
C(j)5nonaging compliance~Bažant and Prasannan 1989; Bazˇant
and Xi 1995; Bazˇant et al. 1997! which was approximated in
previous works~Bažant and Prasannan 1989; Bazˇant and Xi
1995; Bazˇant et al. 1997! by the retardation spectrum of a Kelvi
chain. In this paper, the approximation is based on the Maxw
chain.

Fig. 1. Example of tangential approximationJch(t) of compliance
function J(t,t8) with single Maxwell unit for t851,000 days, and
tch510 min



Fig. 2. Solidification theory and Maxwell chain model
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The nonaging relaxation spectrumR(j), which is the counter-
part of the nonaging retardation spectrumC(j), is not known.
Therefore, in order to determine the partial moduli of the Ma
well chain, one may use the well-known identity

R~0!C~ t !1E
0

t

C~ t2t8!Ṙ~ t8!dt851 (13)

The least-squares approximation of the data onC(t) with Eq. ~13!
~Bažant 1975, 1982; RILEM 1988!, or collocation of Eq.~13! at
the chosen set of discrete times, leads to a linear matrix equa
from which the partial moduli can be solved. The discrete tim
must be chosen, or else ill posedness is unavoidable. The p
moduli also depend on the choice oftN11 ~Jirásek 2000!, which
corresponds toE` . Depending on this choice, negative valu
may sometimes result for some partial moduli, which is phy
cally unreasonable~Bažant 1975; 1982; Jira´sek 2000!.

Once the continuous relaxation spectrumR(j) is approxi-
mately calculated fromC(j), the partial moduli are uniquely an
efficiently obtained as a discrete approximation ofR(j). A good
approximation of a nonaging relaxation function can be obtai
from the nonaging compliance function simply by algebraic
version~Trost 1967; Bazˇant and Kim 1979; Tschoegl 1989!; viz.

R~j!5
1

C~j!
(14)

Therefore, for the approximation based on the third order of
ferentiation, the spectrumL(t) may be calculated as

L~t!52
27t3

2C~3t!4 @C-~3t!C2~3t!

26C8~3t!C9~3t!16C83~3t!# (15)

All the steps are straightforward. In Fig. 3, the spectrum of
optimum partial moduliEm obtained from Eq.~13! is compared to
the resulting continuous relaxation spectrum, for which the re
ation times are chosen ast150.001 day,t250.01 day, . . . , t6

5100 days. Both spectra seem to be close to each other, bu
latter is much smoother.

The analytical nonaging compliance and relaxation functio
are compared to their Maxwell chain approximations in Fig.
Both show a good match within the given range of the relaxat
J

,

l

e

times, i.e., from 0.001 day to 100 days. The initial unbound
spike in the relaxation function is not reproduced because of
finiteness of the approximation, although one might question
acceptability of an infinite spike. Since Model B3 represents
addition~or serial coupling! of serial strain components, the ove
all relaxation function is always finite even though the analyti
relaxation function of the solidifying part is unbounded.

Not surprisingly, Eqs.~5! and~6! are identical to Eqs.~9! and
~15! for the continuous retardation spectrum~Bažant and Xi
1995! if R(j) is replaced by2C(j) andEm by Am .

Quasi-Elastic Incremental Stress-Strain Relation
for Creep

Assuming the nonaging viscoelastic strain rateġ to be constant
within each time step, one can exactly integrate the differen
equation of each Maxwell unit to obtain the partial stress att5 i
11

sm
i 115hmġ1~sm

i 2hmġ!e2EmDt/hm (16)

Expressingġ from this equation and substituting it into Eq.~11!,
one obtains a quasi-elastic incremental approximation of the c
stitutive law ~Bažant 1971; 1975!;

Ds5E9~D«2D«9! (17)

Fig. 3. Comparison of partial moduliEm determined from same
compliance function using classical least-squares method~dashed
line! and present continuous spectrum method~solid line!
OURNAL OF ENGINEERING MECHANICS / DECEMBER 2002 / 1333
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E95S q11
1

v i 11/2D
1q4

Dt

2h i 11D 21

D«95
Dg9

v i 11/21q4

Dt

h i 11/21D«0 (18)

where

D5 (
m51

N

Emlm1E` and Dg95
1

D (
m51

N

sm
i Dymlm (19)

with

Dym5
Em

hm
Dt5

Dt

tm
; lm5

12e2Dym

Dym
(20)

The changes of the internal variables are then obtained from

Dsm5EmlmS Ds

D
1g9D2sm

i Dymlm (21)

Eqs.~17!–~21! are the same as those obtained in various ot
ways by Bazˇant and Prasannan~1989! and Carol and Bazˇant
~1993!. SettingDs51 only for the first step andDs50 for the
subsequent steps, one can compute from Eq.~17! the aging com-
pliances. They are compared to the analytical compliances in
5, which demonstrates a good match.

Generalization to Microprestress-Solidification Theory

As a further refinement of the original solidification theory, t
microprestress-solidification theory has been formulated~Bažant
et al. 1997; Bazˇant 2001!. In this theory, the following replace
ment is made in Eq.~11!:

q4

h~ t !
s~ t !→ s~ t !

h~S!
(22)

Fig. 4. Comparison of curves of analytical relaxation and comp
ance functions~solid lines! with curves of their Maxwell chain ap
proximations~data points! determined from relaxation function~14!.
Top: For nonaging relaxation function; bottom: For nonaging co
pliance function.
1334 / JOURNAL OF ENGINEERING MECHANICS / DECEMBER 2002
.

whereh(S)51/cpSp21; S5microprestress; andc5material pa-
rameter. The evolution of microprestress is obtained from
equation

Ṡ1c0Sp5ṁ (23)

wherec052c/q4 and m5chemical potential of evaporable por
water52k1@T ln h1(m1 /k1)#. Here,k1 ,m15material parameters
T5absolute temperature; andh5humidity. Eq.~23! represents the
relaxation of microprestress. SinceS decreases very rapidly nea
t5t0 , where t05initial time, an explicit Eulerian integration
scheme does not work. Iteration is necessary to obtain the
microprestressSi 11 with desired accuracy. This iteration, whic
is not cheap, can easily be avoided. Assumingṁ(h,T) to be con-
stant within each time step, one can obtain an exact solutio
Eq. ~23! within the time step. With the initial conditionsS5Si at
t5t i ~alwaysp.1, and in the theoryp52)

Si 115
1

c0Dt1~Si !12p 1S ṁ i

c0
D 1/p

(24)

The adjustments that need to be made to the aforementio
algorithm are relatively simple and may be stated as follows:~1!
calculate or read the change of the chemical potentialm; ~2! cal-
culateSi 11 using ~24!; and ~3! calculate the corresponding vis
cosity h i 1151/(2cSi 11).

Incorporation into Microplane Model

In Microplane Model M4, which has recently been developed
Northwestern University ~Bažant et al. 2000a; Caner an
Bažant 2000!, the constitutive law is formulated in terms of th
stress and strain vectors on each microplane. The strain ve
are kinematically constrained to the strain tensor. Because of
constraint, the Maxwell chain is more convenient for creep c
culations than the Kelvin chain~if a static constraint were used
the Kelvin chain model would, of course, be more convenient!. A
brief summary of the basic relations of the microplane mode
attached in the Appendix~for the details, see Bazˇant et al. 2000a!.

On each microplane, the strain vector is decomposed into
volumetric strain, deviatoric strain, and shear strain. The t
stress of each component is computed from the uniaxial ela
constitutive law~33!. The Maxwell chain is implemented simpl
by replacing the elastic constitutive law~33! for each microplane
by the viscoelastic constitutive law given by Eq.~17!. The incre-
ments of the volumetric, deviatoric and shear stress compon
may be written as

Fig. 5. Curves of analytical aging compliance function of model B
~solid lines! and their Maxwell chain approximations~data points!
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DsV5EV9 ~D«V2D«V9 !, DsD5ED9 ~D«D2D«D9 ! (25a)

DsT5ET9~D«T2D«T9 ! (25b)

The inelastic behavior of concrete is, in Model M4, charact
ized by the so-called stress-strain boundaries~strain-softening
yield limits! for the volumetric, deviatoric, and shear behavio
Inside the boundaries~up to Point 1 in Fig. 6!, the stresses chang
according to aging viscoelasticity. If the value of a stress exce
the associated boundary, the stress value in each time step is
to drop at a constant strain to the value of the boundary.

The algorithm of computation in each time stepDt may be
summarized as follows:~1! first compute the trial stresses from
Eq. ~25! ~Point 2 in Fig. 6!; ~2! compare all the stress values
the corresponding boundaries; if they exceed the boundaries,
rect them~Point 3 in Fig. 6!; ~3! obtain the final stress incremen
Ds5s32s1 ~Fig. 6!; and ~4! update all internal variables~par-
tial stresses! in Eq. ~21! using the finalDs.

Finally, it must be emphasized that the aging viscoelastic
havior modeled in this paper is only one of two mechanisms
the time ~or rate! dependence. The other is the time~or rate!
dependence of the opening of cracks or microcracks. That me
nism can be described by a rate-dependent formulation of
softening stress-separation curve of the cohesive crack m
~Bažant et al. 2000b!, which is highly nonlinear and was derive
from the activation energy theory for the rupture of bonds. Alt
natively, the crack band model or nonlocal model may be used
this purpose, as shown in Bazˇant et al.~2000b!.

The crack opening rate mechanism is very important for sh
time creep and dominates the nonlinear fracturing behavior in
range of dynamic loading. But it might be unimportant for lon
time creep, although experimental evidence in this regard is la
ing. It is, of course, irrelevant for all the time-dependent respo
in the absence of fracturing, which occurs at low-stress leve
no drying takes place.

Conclusions

1. For the nonaging constituent in the solidification theory,
Maxwell chain model is equally convenient as the Kelv
chain model since the nonaging relaxation function can
obtained from the nonaging compliance function easily, a
with good accuracy;

2. The continuous relaxation spectrum of the nonaging c
stituent in the solidification theory is unique and is read
determined on the basis of the inverse Laplace transfo

Fig. 6. Stress-strain boundary of microplane model M4 and str
drop to boundary when trial stress exceeds boundary~wherek1 is a
dimensionless scaling parameter!
J

de

r-

-

l

-

.

The modulus of each unit in a discrete Maxwell model
easily and uniquely determined from the continuous rel
ation spectrum when the relaxation times are suitably c
sen. The Maxwell chain model may be generalized for ag
according to the solidification theory to yield a comple
incremental quasi-elastic constitutive law;

3. The present model can also be introduced into
microprestress-solidification theory, which provides f
aging and drying creep a simpler and more fundamen
characterization than the original solidification theory~Ba-
žant et al. 1997!. An efficient algorithm to calculate the evo
lution of microprestress is presented. The incremental r
tions are based on the exact solution of the evolution
microprestress under the assumption that the rate of che
cal potential of evaporable pore water is constant within e
time step; and

4. The one-dimensional creep model may be naturally exten
to three dimensions. To extend the creep formulation to n
linear triaxial behavior, the model may be combined with t
microplane model. The kinematic constraint used in M
croplane Model M4 makes the Maxwell chain model mo
convenient than the Kelvin chain model. In the viscoelas
generalization, the elastic constitutive law for each m
croplane is simply replaced by the incremental quasi-ela
constitutive law characterizing creep increments.
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Appendix: Basic Relations of Microplane Model

Formulation of Kinematic Constraint

In the formulation of kinematic constraint, the normal«N and the
shear microstrains«L and«M are the resolved components of th
macroscopic strain tensor« i j ~where the subscripts,i 51, 2, 3,
refer to Cartesian coordinatesxi). The orientation of a microplane
is characterized by its unit normalnk . The component of the
strain vector« j

n on any microplane is« j
n5« jknk ~Bažant and Prat

1988!. The normal strain vector and its magnitude are

«Ni
5ninjnk« jk (26)

«N5nj« j
n5njnk« jk5Ni j « i j (27)

whereNi j 5ninj ~the repeated Latin lowercase subscripts indic
summation over 1, 2, 3!.

The shear strain components in two orthogonal~suitably cho-
sen! directionsmi and l i tangential to the microplane~normal to
ni) are«M5mi(« i j nj) and«L5 l i(« i j nj). Because of the symme
try of « i j

«M5Mi j « i j , «L5Li j « i j (28)

whereMi j 5(minj1mjni)/2 andLi j 5( l inj1 l jni)/2 ~Bažant and
Prat 1988!.

Static Equivalence

Since the foregoing kinematic constraint relates the strains on
microplanes to the macroscopic strain tensor, the static equ
OURNAL OF ENGINEERING MECHANICS / DECEMBER 2002 / 1335
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lence can be enforced only approximately. This is done by
virtual work theorem which is written for the surface of a un
hemisphere~Bažant 1984!.

2p

3
s i j d« i j 5E

V
~sNd«N1sLd«L1sMd«M !dV

5E
V

~sNNi j 1sLLi j 1sMMi j !d« i j dV (29)

The normal stress and strain are split into their volumetric a
deviatoric parts, and if Eq.~29! is written separately for the volu
metric and deviatoric components, one has

s i j 5sVd i j 1s i j
D (30)

s i j
D5

3

2p E
V
FsDS Ni j 2

d i j

3 D1sLLi j 1sMMi j GdV (31)

The elastic increments of the stresses in each microplane ove
time step~or load step! are written as

DsV5EVD«V , DsD5EDD«D , and DsT5ETD«T
(32)

where EV5E/(122n), ED55E/(213h)(11n), ET5hED ;
andh5parameter that can be chosen, the best choice beingh51
~Carol et al. 1991; Bazˇant et al. 1996; Carol and Bazˇant 1997!.

The volumetric-deviatoric split makes it possible to reprodu
the full range of Poisson’s ratio21<n<0.5 in elastic analysis
The term 2d i j /3 in Eq. ~32! ensures skk

D 50 even when
*VsDdVÞ0. The integration is conducted numerically accordi
to an optimal Gaussian integration formula for a spherical s
face, characterized by discrete directionsm51, . . . , Nm and the
corresponding weightswm

s i j 5
3

2p
si j '6(

m51

Nm

wmsi j
~m! (33)

where si j 5*V(sNNi j 1sLLi j 1sMMi j )d« i j dV and Nm5the
number of the microplanes.
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