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Size Effect on Flexural Strength
of Fiber-Composite Laminates
The size effect on the flexural strength (or modulus of rupture) of fiber-polymer lam
beams failing at fracture initiation is analyzed. A generalized energetic-statistical
effect law recently developed on the basis of a probabilistic nonlocal theory is introdu
This law represents asymptotic matching of three limits: (1) the power-law size effe
the classical Weibull theory, approached for infinite structure size; (2) the determini
energetic size effect law based on the deterministic nonlocal theory, approached fo
ishing structure size; and (3) approach to the same law at any structure size whe
Weibull modulus tends to infinity. The limited test data that exist are used to verify
formula and examine the closeness of fit. The results show that the new ene
statistical size effect theory can match the existing flexural strength data better tha
classical statistical Weibull theory, and that the optimum size effect fits with We
theory are incompatible with a realistic coefficient of variation of scatter in strength t
of various types of laminates. As for the energetic-statistical theory, its support rem
entirely theoretical because the existing test data do not reveal any improvement of fi
its special case, the purely energetic theory—probably because the size range of th
is not broad enough or the scatter is too high, or both.@DOI: 10.1115/1.1631031#
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Introduction
A quintessential property of the classical theories of solid m

chanics, particularly plasticity and elasticity with a strength lim
is the absence of size effect. In other words, the nominal stre
sN of a structure~which is a load parameter defined asP/bD
whereb5structure width! is independent of the characteristic si
~dimension! D of the structure. During the 1980s, however, th
property has been shown to be invalid when, instead of pla
yielding, the material exhibits softening damage such as dist
uted cracking@1–6#. In that case, a strong~non-statistical! size
effect may be caused by stress redistribution causing energ
lease from an elastically unloaded zone of material at the flank
a propagating band of softening damage or large cohesive
ture, taking place before the maximum load is reached. When
deterministic size effect occurs, it normally prevails over the s
effect due to the randomness of strength, described by the cl
cal Weibull theory.

However, the existing textbooks on composites and sandw
structures, as well as the current design practice, ignore the d
ministic size effect due to the energy release. The recent
searches at Northwestern University have shown that this ca
dangerous when large structures are designed.

The recent studies have been focused on fiber-polymer la
nates which are used for the skins of sandwich structures. The
effect in sandwich shells must be well understood if the Nav
current plans to build very large ship hulls, decks, bulkhea
masts and antenna covers entirely of composites should suc
Experiments show that a laminate typically fails only after a la
damage~or fracturing! zone has developed. This causes a v
strong deterministic size effect. The first demonstration was gi
for the case of tensile~mode I! fracture of notched specimens@7#.
Subsequently, it was shown that the same is true for the comp
sion failure of fiber composites caused by the propagation o
kink band, in which the fibers undergo microbuckling@8#. For
both cases, the classical theories, based on plasticity or stre
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criteria, exhibit no size effect. This is acceptable only for ve
small structures. For the design of sandwich structures cont
plated for the construction of large ships, it is imperative that
quasibrittle cohesive fracture and scaling properties be taken
account. Only then it will be possible to extrapolate to such la
sizes on the basis of the values of material strength deduced
laboratory tests of relatively small specimens.

The previously reported experimental investigations of size
fect in unnotched laminates, however, were not evaluated ta
into account the possibility of a deterministic size effect. Only t
purely statistical classical Weibull theory was considered in eva
ating the test results. To capture the effect of stress redistribu
due to cracking and the associated energy release, this p
~which expands on a previous conference presentation@9#! uses a
newly developed energetic-statistical size effect formula@10,11#
to fit the existing test data on the flexural strength~or modulus of
rupture!. Since the size effect of the purely statistical theory is
special case of this formula, the optimum fitting of the test d
would have to converge to that special case if this classical the
were applicable and provided a unique explanation. However
will be seen, this does not occur. In fact, the formula parame
for the optimum fits are very different from the values that cor
spond to the special case of a purely statistical Weibull theory

There are two basic simple types of the deterministic energ
size effect in quasibrittle materials, which obey different law
@1,2,4–6#: ~1! The size effect in structures with notches, or wi
large stress-free~or fatigued! cracks that have formed before th
maximum load@12#; and ~2! the size effect due stress redistrib
tion engendered by a boundary layer of cracking in structures
fail at the initiation of fracture from a smooth surface. Here we a
concerned only with the latter, which is important, e.g., for sa
design of very large and thick composite structures.

Important theoretical advances in simulating the effect of str
redistribution have been achieved by introducing various lo
sharing concepts into the statistical weakest-link model@e.g.
@13,14## ~Appendix I!. These new advances, however, do not y
appear ready for practical applications to flexure of laminates

n-
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Available Experimental Evidence for Size Effect on
Flexural Strength

The size effect on the flexural strength of fiber-polymer lam
nates, which is the focus of this paper, has been the subject
host of studies during the last decade@15–19#. Wisnom@17# con-
ducted four-point bending tests and pin-ended buckling tests
unidirectional XAS/913 carbon fiber-epoxy specimens with 2
50, and 100 plies. Both types of tests showed a significant
crease in strength with increasing specimen size, scaled in t
dimensions~three-dimensional!. However, not all the specimen
failed in tension; the small ones tended to do so, but the large o
tended to fail in compression. Among 6 100-ply specimens in
four-point bending tests, only one failed in tension, doing so i
brush mode. However among the 25-ply and 50-ply specim
the tensile failures numbered 7 out of 10, and 9 out of 11, resp
tively. Fitting the data by the pure Weibull theory indicate
Weibull modulus~shape parameter! m525.4.

The results of Wisnom and Atkinson@18# obtained with four-
point bending of three-dimensional-scaled unidirectionalE glass/
913 specimens of 16, 32 and 64 plies also showed a clear
effect. The optimum value of Weibull modulus wasm524.2.

Jackson@15# investigated the effects of specimen size on
flexural response and strength by performing tests on unidi
tional, angle-ply, cross-ply and quasi-isotropic ply-level AS4/35
carbon fiber-epoxy beams in a hinged axial loading fixture, w
all the dimensions of the specimen and the rig properly sca
Apparent size effects were found for all the stacking sequen
Weibull modulus values of 25.5, 21.4, 11.2, and 16.8 were
ported for unidirectional, angle-ply, cross-ply and quasi-isotro
laminate beams, respectively.

Johnson et al.@16# studied the size effect in the four-point flex
ural response using ply-level and sublaminate-level angle-ply
quasi-isotropic scaled AS4/3502 graphite-epoxy laminate bea
They found that the flexural strength of ply-level scaled lamina
decreased with the specimen size significantly, but
sublaminate-level scaled specimens did not show a pronou
size effect. The Weibull modulus values for the angle-ply a
quasi-isotropic specimens were reported as 50.0 and 26.7, re
tively.

Other studies considered the ratio of the nominal strength
ues measured in three-point and four-point loaded flexural test
in flexural tests and tensile coupon tests. Bullock@20# concluded
in 1974 that, as far as the inevitable scatter permits it to be jud
this ratio compared favorably with the Weibull theory~the only
theory for deviations from classical non-statistical mechanics
materials available at that time!. However, comparisons to
Weibull modulus values corresponding to the scatter, and to
size effect, which would represent much more severe tests o
theory, have not been made.

All the previous studies of flexural failure of laminates assum
a priori that the size effect is purely statistical, as described
Weibull’s statistical theory of random local material streng
@21,22#. The validity of this classical theory for fine-grained c
ramics and fatigue-embrittled metals is beyond doubt, howe
this is not the case for fiber-reinforced laminates, except for st
ture sizes far exceeding the practical range.

Energetic Size Effect on Flexural Strength of Laminates
It has been well established@10,11# that the Weibull theory is

valid only ~1! if the structure has a positive geometry~i.e., the
energy release rate is increasing, rather than decreasing, wit
crack extension!, and ~2! if the failure of one macroscopic sma
material element causes the whole structure to fail, as descr
by the weakest link model@23–25# and Weibull distribution@23#.
The first condition excludes certain structural geometries, in
pendently of the type or material. The second condition is ge
ally not satisfied for heterogeneous quasibrittle materials, fib
reinforced composites included, except in the infinite size lim
30 Õ Vol. 126, JANUARY 2004
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@6#. For such materials, the energy release caused by the s
redistribution due to the growth of fracture is a potent source
size effect which overwhelms the statistical size effect on
mean strength.

For the sake of simplicity, we consider the laminate cross s
tion to be homogeneous, in which case the elastic bending s
diagram is linear~Fig. 1!. As a crucial point of our analysis, we
note that the peak bending momentM0 is not reached when the
elastically calculated bending stress at tensile face reaches
material strengthf t . Rather, before reaching the peak moment
boundary layer of a certain finite thickness 2Db that is a property
of the fiber composite develops at the tensile face, causing s
redistribution and energy release.

The simplest way to take the boundary layer into considera
~a way that has been shown accurate up to the first two term
the power series expansion in terms of 1/D @2,6,26#! is to consider
that f r

0 is approximately decided by the average elastically cal
lated stress within the boundary layer of thickness 2Db . Conse-
quently, if the laminate is assumed to fail in tension rather than
compression, the bending stress formula givesf r

05M0(D
2Db)/2I where D5beam depth,M05bending moment, andI
5D3/12; f r

0 represents the average tensile strength of the bou
ary layer, which is considered to be constant. The flexural stren
~or modulus of rupture! of a laminate,f r , chosen to represent th
nominal strengthsN , is defined as the elastically calculated max
mum stress in the beam,f r5sN5M0D/2I . Therefore,

sN5 f r
0S 12

Db

D D 21

(1)

This formula gives a negativesN for small enoughD, and so it is
usable only for large enough sizesD@Db . This limitation is not
surprising because our derivation has been correct only up to
first two terms of the asymptotic series expansion in terms of
powers of 1/D @27#. Therefore, any other formula that exhibits th
same first two asymptotic terms in 1/D is equally justified as~1!.

This observation suggests the use of asymptotic matching.
is a technique to obtain an approximate solution for hard proble
in which two opposite asymptotic behaviors are much easie
solve than the intermediate behavior. This technique, borrow
from fluid mechanics@28–31#, can be regarded as an interpolatio
between the opposite asymptotic solutions, corresponding he
D→0 andD→`. In this spirit, formula 1 needs to be modifie
such that the first two terms of the large-size asymptotic exp
sion remain unaffected while a realistic small-size asymptotic
havior is matched.

Through a power series expansion in 1/D, one may check that
by making the replacement (12Db /D)21'(11rD b /D)1/r ~r be-
ing any positive constant signifying a transition slowness para
eter!, the first two terms of the asymptotic expansion in terms
1/D are not affected while, at the same time,sN , becomes posi-
tive, finite and monotonically decreasing through the entire ra
of D. With this replacement,~1! leads to the size effect formula
@2,26#:

Fig. 1 Stress redistribution in flexure caused by a boundary
layer of cracking
Transactions of the ASME
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sN5 f r5 f r
0q~D !, q~D !5S 11

rD b

D D 1/r

(2)

where q(D) is a positive dimensionless decreasing function
sizeD having a finite limit forD→`.

A more realistic starting hypothesis is to consider that, up to
maximum load, the cracking remains distributed~the discrete
crack being formed only at, or after, the maximum load!, and that
the cracking is described by some effective stress-strain diag
characteristic of the fracture process zone~the size of which, re-
lated toDb , is a material constant, the characteristic length!. For
the sake of simplicity, we consider a bilinear stress-strain diag
with postpeak strain-softening characterized by some tan
modulusEt . The distributed cracking at maximum load is a
sumed to occupy a boundary layer at the tensile face of lamin
having a certain fixed thickness denoted byl f . The corresponding
stress distribution is sketched in Fig. 1. The result of such a
culation @6,27# is a formula that coincides withsN5 f r

0(1
2Db /D)1/r up to the second term of the asymptotic expansion
sN as a power series in 1/D, provided that one setsl f5Db/2,
differences being found only in the third and higher order term

A more general and more fundamental approach, pursue
@10,11,27#, is an asymptotic analysis based on expanding the
ergy release functiong(a) of fracture mechanics (a5relative
crack length!. As far as the first two terms of the asymptot
expansion of the size effect are concerned, the result of s
analysis happens to be again the same, except that a slight e
of specimen geometry is brought about through functiong(a).

As a further improvement,~2! may be modified as follows:

sN5 f r
0q~D !, q~D !5S 11

rD b

D1rsDb
D 1/r

(3)

where s is a non-negative constant@2,26#. This modification
achieves that, unlike~2!, the size effect formula gives a finit
strength forD→` while remaining, for large sizes, asymptot
cally equivalent to the original formulasN5 f r

0(12Db /D)21 up
to the second term of power series expansion in 1/D. One can
verify it by the following approximations, which are accurate
to the second term of the asymptotic power series in terms oj,
with j5Db /D;

f r
0

sN
5S 11rsj

11r ~s11!j D 1/r

'
11sj

11~s11!j
'~11sj!@12~s11!j#

'12
Db

D
(4)

Combined Energetic-Statistical Size Effect on Flexural
Strength of Laminates

Because the local strength of material elements is random
the minimum of random strength encountered in the structure
creases with the structure size, the Weibull statistical size ef
must also play some role. A general and fundamental approac
the combined energetic-statistical size effect is the nonlo

Weibull theory @2,10,11,32–34#—a theory in which the material e
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failure probability at a given point of the body depends not on
stress at that point~as in the classical Weibull theory! but on the
weighted average of strain within a certain characteristic volu
of material surrounding the point. This theory has been used
numerical studies of flexural failure@10,11,34#, which confirmed
that the size effect for very thin plates is almost totally energe
~deterministic! and for very thick plates almost totally statistica
of the classical Weibull type. These two asymptotic conditio
may be satisfied by the following simple size effect formula:

sN5 f r
0F S rD b

D1rsDb
D rnd /m

1
rD b

D1rsDb
G1/r

(5)

wherend5number of spatial dimensions in which the structure
scaled (nd51, 2 or 3!, m5material constant5Weibull modulus.
For lack of test data of broad enough size range, the values
cannot be determined experimentally and, therefore, we ass
s50. Note that for m→` ~and s50) Eq. ~5! becomessN

5 f r
0(11rD b /D)1/r , which coincides with the foregoing energet

~deterministic! formula 2; ForD@Db , or Db50 ~ands50), Eq.
~5! becomes

sN5 f r
0~Db /D !nd /m (6)

and thus one recovers the classical formula for Weibull size ef
as the limit case~experience with concrete, however, showed th
the statistical part of the size effect on flexural strength is
significant except for extremely thick structures such as a
dams!.

A detailed derivation of the deterministic and energet
statistical size effect formulas can be found in@2,10,11#.

Reinterpretation of Previous Experimental Studies of
Size Effect in Laminates

To check and calibrate the energetic-statistical theory of fl
ural strength of laminates, a systematic study of the numerous
data that exist in the literature@15–18# has been initiated. The
specimen dimensions and stacking sequences are listed in T
1–3 ~in which the scale factor represents the ratio of the char
teristic dimensions of the scaled specimen and the full-size~larg-
est! specimen!. The corresponding mean values of flexur
strengthf r for different test data are summarized in Table 4. The
are two points that need to be explained.

First, in Wisnom’s@17# four-point bending test, only the failure
strains were reported~as listed in Table 4!. Nevertheless, the
present analysis can use the strains rather the stresses becau
material behaves almost linearly up to the peak load, i.e.,
nonlinear effects which cause deviation from the elastic stre
strain curve may be neglected. Consequently, the stress at fa
can be inferred from the reported strain.

Second, in Jackson’s experiments@35#, the testing method was
convenient but the maximum bending moment was not measu
Very slender laminate strips were loaded by axial force caus
them to buckle, and the deflections were so large~on the average
about 40 percent of the specimen length! that the laminate was
almost under pure bending~the maximum compressive and tensi
strains almost equal!. The axial shortening and the axial forc
Table 1 Jackson’s „1992… AS4Õ3502 beam-column test

Scale factor Beam dimension~mm! Unidirectional Angle-ply Cross-ply Quasi-isotropic

1/6 1312.73127 @0#8T @452 /2452#S @02/902#S @245/0/45/90#S
1/4 1.5319.53190.5 @0#12T @453 /2453#S @02/903#S -
1/3 2325.43254 @0#16T @454 /2454#S @04/904#S @245s/02/452/902#S
1/2 3338.13381 @0#24T @456 /2456#S @06/906#S @2453/03/453/903#S
2/3 4350.83508 @0#32T @458 /2458#S @08/908#S @2454/04/454/904#S
3/4 4.5357.153571.5 @0#36T @459 /2459#S @09/909#S -
5/6 5363.53635 @0#40T @4510 /24510#S @010/9010#S @2455/05/455/905#S
6/6 6376.23762 @0#48T @4512 /24512#S @012/9012#S @2456/06/456/906#S
JANUARY 2004, Vol. 126 Õ 31



32 Õ Vol. 126,
Table 2 Wisnom’s „1991,1997… four-point bending test

Scale factor

Unidirectional,E glass/913 Unidirectional, carbon XAS/913

Beam dimension~mm! Stacking sequence Beam dimension~mm! Stacking sequence

1/4 235345 @0#16 3.1753103102 @0#25
2/4 4310390 @0#32 6.3503203204 @0#50
4/4 83203180 @0#64 12.703403408 @0#100
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were measured but the maximum deflection was not. Fortuna
this is not too serious a problem because, from the str
deformation curve reported by Jackson@35#, it may be inferred
that the specimens behaved almost linearly up to failure. In
case, the deflection curve must have been the well-known ‘‘e
tica’’ ~Fig. 5!, for which the exact ordinates are given by ellipt
integrals according to a classical solution due to Kirchhoff@e.g.,
@36##. Buckling in the form of elastica was previously introduce
for laminate testing by Bazˇant and Skupin@37,38#,2 and a table of
this curve computed by them can be used here~Table 5! and
exploited to calculate the maximum bending moments in Ja
son’s bent strips from the reported maximum axial forces a
relative end displacements~i.e., shortenings of the chord!. The
deformation is assumed to be nearly elastic up to the peak l
From the bending moment, the flexural strengthsN is calculated
for each specimen tested.

2In these works, the table of elastica was used for developing a very simple te
method of long-time~multi-year! stress relaxation in polymeric laminates in variou
aggressive environments. In this method, a laminate strip is strongly bent and its
are supported on a fixed base that keeps the chord length of the arc constant. D
stress relaxation, the shape of the deflection remains approximately constant, be
of the linearity of viscoelastic behavior. At periodic intervals, the axial force
measured as the force needed to effect a very small increase of the shortenin
placement between the ends. This method has been widely used in Czech Re
since the 1960s to measure the differences in environmental degradation be
stressed and unstressed laminates of various types.
JANUARY 2004
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The efficient Levenberg-Marquardt nonlinear optimization
gorithm has been applied to fit the test data by minimizing
sum of squared errors of the formula. First, the energetic~deter-
ministic! formula ~2! is fitted to test data, separately for each
the data sets listed in Table 4. This yields the optimum values
constantsDb and f r

0 for each case. Then the relative strengt
sN / f r

0 ~or f r / f r
0) are plotted versus the relative sizeD/Db , where

the optimum values off r
0 and Db , different for each case, ar

used. It is seen that these data agree with the optimized ener
formula quite well; see Fig. 2~a!, in which v is an unbiased esti-
mate of the coefficient of variation corresponding to the stand
error of regression, i.e.,v5@S i(yi2 ŷi)

2/(n22#1/2/ ȳ, where ŷi

are the ordinates of measured data points (i 51,2, . . .n), yi are
the corresponding formula predictions, andȳ5S i ŷi /n.

Subsequently the same fitting procedure is repeated with
more general energetic-statistical formula~5!. The resulting opti-
mum fit is shown in Fig. 2~b!. As seen from the values ofv
indicated in the figures, the more general formula yields no
ticeable improvement of the fit this data set. In view of the pre
ous experience with concrete, as well as the fact that Wei
theory must theoretically apply forD→`, the lack of improve-
ment is doubtless due to the fact that the size range is too lim
in comparison to the width of the scatter band. A broadening

ting
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Table 3 Johnson’s „2000… AS4Õ3502 four-point bending test

Scale factor Beam dimension~mm! Angle-ply Quasi-isotropic Cross-ply

1/4 235345 @45/245/45/245/#2s @45/245/0/90#2s @90/0/90/0#2s
2/4 4310390 @452 /2452/452 /2452#2s @452 /2452/02/902#2s @90/0/90/0#4s
4/4 83203180 @454 /2454/454 /2454#2s @454 /2454/04/904#2s @90/0/90/0#8s

Table 4 Means of flexural strength for various test data used in study

SizeD, mm Mean, MPa SizeD, mm Mean, MPa « f SizeD, mm Mean, MPa « f

Jackson, unidirectional Jackson, angle-ply Jackson, cross-ply

1 1886 1 215 1 1858
1.5 2044 1.5 198 1.5 1514
2 1729 2 154 2 1523
3 1751 3 99 3 1060
4 1882 4 84 4 932

4.5 1923 4.5 83 4.5 801
5 1785 5 69 5 763
6 1534 6 62 6 546

Jackson, quasi-isotropic Johnson, quasi-isotropic Johnson, angle-ply

1 777 2 566 2 1772
1.5 - 4 547 4 1339
2 634 8 342 8 902
3 619
4 511

4.5 -
5 471
6 452

Johnson, cross-ply Wisnom,E glass/913 Wisnom, carbon XAS/913

2 2814 2 198 4.395% 3.175 83 1.848%
4 2736 4 190 4.221% 6.350 77 1.703%
8 2674 8 167 3.711% 12.70 71 1.582%
Transactions of the ASME



Table 5 Geometrical properties of elastica „after Baž ant and Skupin †29,30‡…

l 0 /r D( l 0 /r) f / l 0 l / l 0 u0 d( l / l 0)/d( l 0 /r) l 0 /r l / l 0 f / l 0 u0 d( l / l 0)/d( l 0 /r)

1.000 0.204 0.100 0.975 18.20 0.050 5.100 0.3772 0.480 87.80 0.157
1.207 0.207 0.120 0.963 20.94 0.061 5.355 0.3842 0.440 91.65 0.158
1.418 0.211 0.140 0.948 25.75 0.072 5.608 0.3899 0.400 95.37 0.158
1.634 0.216 0.160 0.932 29.63 0.082 5.860 0.3945 0.360 98.99 0.157
1.856 0.222 0.180 0.912 33.60 0.091 6.116 0.3981 0.320 102.57 0.155
2.086 0.230 0.200 0.891 37.69 0.100 6.382 0.4007 0.280 106.20 0.151
2.325 0.239 0.220 0.866 41.91 0.108 6.649 0.4023 0.240 109.75 0.148
2.575 0.250 0.240 0.838 46.30 0.115 6.921 0.4030 0.200 113.25 0.145
2.839 0.264 0.260 0.806 50.89 0.120 7.202 0.4027 0.160 116.75
3.121 0.282 0.280 0.772 55.48 0.128 7.498 0.3988 0.120 120.32
3.427 0.306 0.300 0.734 60.94 0.125 8.445 0.3913 0.000 130.72
3.765 0.338 0.320 0.692 66.58
4.148 0.383 0.340 0.648 72.85
4.602 0.454 0.360 0.602 80.11
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the size range to much thicker laminates, or a reduction of sca
or both, would be needed to see any significant improvemen
data fit with the more general theory.

Finally, the same data are optimally fitted using the purely s
tistical Weibull size effect formula,sN5 f r5 f r

0(Db /D)nd /m; see
Fig. 2~c,d!. It is found that the complete data set cannot be fit
well using the same value of Weibull modulusm ~shape param-
eter! for all the tests. For some tests, the optimum fit is obtain
with Weibull modulus,m55 ~column c!, and for others with 30
~column d!. It is seen that the match of the purely statistic
Weibull theory with the complete data set is quite poor if them
value is kept the same for all the test. Each of the twom-values is
suitable just for some part of the data and not for the rest.

Figure 3 presents the optimum fits of various theories to n
individual size effect data for various types of laminates, obtain
in different laboratories. The data are the same as those sh
~and listed in the same sequence! in Fig. 2; column a pertains to
the purely energetic theory, column b to the energetic-statist
theory, and columns c and d to the purely statistical Weib
theory. The valuem55 was found to give the optimum fit o

Fig. 2 Optimum fits of existing test data on modulus of rup-
ture versus relative size, in dimensionless coordinates, by „a…
deterministic energetic formula; „b… energetic-statistical for-
mula; „c… Weibull size effect formula with mÄ5; and „d… Weil-
bull size effect formula with mÄ30
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some tests~cases c2, c3 and c5 in Fig. 3! while m530 of some
other tests~cases c1, d8, d9!, and therefore both values are used
columns c and d to fit all the data.

Comparing columns and b in Fig. 3, note that, similar to Fig.
the fits in these two columns are about equally good. This c
firms again that the existing test data do not suffice to docum
any advantage of the energetic-statistical theory over its spe
case, the purely energetic theory. The likely reason is that the
range of the existing data is not broad enough in relation to
scatter band width, causing that the different curvatures of
energetic and energetic-statistical formulas in the logarithmic p
~Fig. 2 top! cannot be distinguished due to data scatter within
limited size range. The energetic-statistical theory so far rests
tirely on theoretical arguments.

Because laminates with various ply arrangements are ma
scopically different materials, there is, in principle, no reason w
m, as an effective property of the laminate, could not be differ
for each. Even though the cross-ply and angle ply laminates m
be identical, they are loaded in different directions, and this cou
in theory, also cause differences inm becausem can depend on the
loading direction in anisotropic materials. However, the diffe
ences in the optimumm-values seen in Fig. 2 are irrational, fo
two reasons:

1. First, the strength of an angle-ply laminate depends stron
on the polymeric matrix~and its bond to fibers!, while the
strength of an axially loaded unidirectional laminate depen
mainly on the fibers. Since the failure of fibers is mo
brittle than the failure of matrix, one would expect for
unidirectional laminate thatm530 should give a better fit
than m55 but the opposite is seen in Fig. 3, cases c1,
c8, d8, c9 and d9. Likewise, for an angle-ply laminate, o
would expect a higher optimumm value than for a cross-ply
laminate, but the opposite is seen comparing cases c6,
c7, and c8 in Fig. 3.

2. Second, unlike the energetic and energetic-statistical th
ries, the purely statistical Weibull theory is characterized
a unique relationship between the size effect exponent
the coefficient of variationvW of the random scatter of the
strength values for identical specimens~Appendix 2!. This
relationship is given by the well-known formula

vW5A G~112/m!

G2~111/m!
21 (7)

@e.g., 6#. In principle, laminates of different layups could, o
course, exhibit differences in scatter, corresponding to
ferent v and m. However, the values for the optimumm
obtained by data fitting with formula~7! differ far too much:

vW522.8 percent for m55 (8)

vW54.18 percent for m530 (9)
Although the standard deviation of the strength tests has
JANUARY 2004, Vol. 126 Õ 33
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Fig. 3 Optimum fits of individual data sets by different formulas. „a… deter-
ministic energetic size effect formula; „b… energetic-statistical size effect for-
mula; „c… Weibull theory for mÄ5; and „d… Weibull theory for mÄ30. Numbers
from 1 to 9 correspond to the data sets showed in Fig. 2.
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been reported for the test data considered, such huge d
ences in scatter go against all experience and are imposs
Were the statistical Weibull theory applicable, the coefficie
of variation of scatter for the angle ply laminate would ha
to be about 23 percent and for the unidirectional lamin
about 4 percent, but this is not the case. The angle-ply la
nate, due its greater ductility~lower brittleness!, would be
expected to give a somewhat smaller scatter~largerm! than
the unidirectional, cross-ply or quasi-isotropic laminate, b
the opposite is systematically noted in Fig. 3 by compar
case c2 with d1 and c6 with d5 and d7.

Therefore, the classical hypothesis that the size effect is pu
statistical is untenable.

Similar observations can be made by returning to the overall
Y 2004
ffer-
ible.
nt
e
te

mi-

ut
ng

rely

fits

in Fig. 2~c,d!. It is seen that the small-size and large size data
well fitted by Weibull statistical theory withm55 and m530,
respectively. This implies that the coefficient of variation wou
be 22.8 percent for small sizes and 4.16 percent for large si
Such a huge difference is not verified by experiments. Anyw
the purely statistical theory could be valid only if the coefficie
of variation of strength were independent of the size.

Noting that Weibull theory is well established for flexure
fine-grained ceramics, which are very homogeneous, one m
suspect whether a different conclusion might result if one wo
specifically take into account the fact that, according to the la
nation theory, the stresses change discontinuously between
lamina and have different nonlinear distributions for different la
ups. However, exponent2n/m of Weibull size effect is inde-
Transactions of the ASME
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pendent of the stress distribution across the laminate, as lon
the stress distributions across the laminates of different th
nesses are similar~which is assured because the lay-ups in Ja
son’s tests were similar!; see Appendix 2 where a proof of thi
point is given.

The ambiguity of data interpretation due to scatter and limi
size range may be clarified by Bazˇant and Nova´k’s study of simi-
lar but much more extensive data for concrete@10,11#. It docu-
ments how the fitting of individual data can yield wide-rangi
results. Instead of separate fitting of each data set for one
crete, one must simultaneously optimize the fit of the combina
of all the available data in one plot while the value of Weib
modulusm is forced to correspond to a common asymptotic va
for very large sizes (D/Db→`). In the energetic-statistical for
mula, the quasibrittle behavior implies a decrease of the mod
of rupture with the size, while the pure statistical Weibull si
effect line of slope2nd /m is approached asymptotically~as in
Fig. 2~b!!. Such apparent Weibull modulusm represents the large
size asymptotic Weibull modulus. It was shown that its value m
be considered as common for all the data sets for concrete. T
in the overall plot of the data, the individual data sets are po
tioned in the relative size range ofD/Db corresponding to their
‘‘individual’’ apparent Weibull modulus—those with a small ap
parentm-value in the individual Weibull fit will be close to the
small-size asymptote, while those with a large apparentm will be
close to the large-size asymptote in the overall combined
effect plot such as Fig. 2~b!.

Because the available data are mainly limited to the range
small sizes, the automatic iterative fitting procedure that was u
for concrete@11# to identify parameterr could not be applied here
To avoid the arbitrary guessing ofr and of the asymptotic Weibul
modulusm, we choose a set ofm values, namely 5, 15, 25, 30
which include the~so far! widely accepted value of 25 for carbo
fiber composites and 15 for glass fiber composites, and a setr
values, namely 0.6, 0.8, 1.0, 1.2. After comparing the coeffici
of variationv of regression errors for different combinations ofr
andm, the values

r 51, m530 (10)

appear to be optimum. Because of limited data, no definite c
clusion can be made about the coefficient of variation.

Is is not clear whether the failure of Jackson’s specimens
initiated by tension or compression. However, the Weibull as w
as the energetic theories are valid for either case. The only co
tion it that small and large specimens should fail in the sa
manner.

Fig. 4 Energetic-statistical formula of Jackson’s angle-ply
data „actual scale …
Journal of Engineering Materials and Technology
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For the sake of illustration, Fig. 4 shows the energetic-statist
size effect for angle-ply specimens in the actual linear scales.
size range of Jackson’s~1992! data is indicated in the figure.

It may be concluded that the size effect in the tests studied h
must be primarily deterministic energetic, caused by stress re
tribution within the cross section of the laminate, with the cor
sponding energy release. The influence of strength randomne
this size range of data is small, although it is likely to becom
strong for much larger sizes.

Previous Viewpoints

1. Johnson et al.@16# pointed out that the failure of a flexe
laminate may start in the second~or next! ply from the surface if
it is sufficiently weaker that the first ply. This may for example
the case for a ply with fibers in a transverse direction because
transverse tensile strength of fiber-polymer lamina is much lo
than the longitudinal strength. Such behavior, however, is no
conflict with the nonlocal theory because this theory in intended
provide only a homogenized macroscopic description of a mic
scopically irregular failure process in a heterogeneous mediu

2. Wisnom@39# listed several possible factors that may infl
ence the size effect in unnotched fiber composites:~1! material
defects;~2! free-edge effects;~3! stress gradient;~4! specimen
manufacture and preparation; and~5! testing procedure. The las
two effects cannot be covered by any material model and req
a separate consideration. The material defects are what gives
to randomness of strength in the homogenizing macroscopic
tinuum and leads to the statistical part of size effect, which
included in the present formulation. The stress gradient effec
part of the present theory and represents a simplified way to l
at the energetic size effect—simplified, because what matter
the energy release rate which depends on the entire stress fie
the structure~and thus also on the free-edge effects!, and not just
the local gradient. Referring to the classical tests of Daniel a
Weil @40# and his own@41#, Wisnom argued that the stress grad
ent effect~in our approach, the energetic effect! need not be the
primary cause of size effect. This is possible but must be quali
by structure size. Indeed, according to the present theory, the
effect in a large enough structure is governed primarily by sta
tics. Wisnom’s arguments are based on a set of mere 7 data po
which is far smaller set than the presently analyzed set of 45
points. As for@40#, it should be noted that these classical flexu
tests were made on ceramics~aluminum oxide and beryllium ox-
ide! rather than fiber-polymer composites, and that the size ra
of these tests was very limited~3.175 mm–12.7 mm!.

3. Some researchers, doubting the applicability of Weib
theory to scaled fiber-polymer laminates@16,39#, argued that the
failure modes for different sizes are not the same. This is of cou
possible, but in a certain sense it is reflected in the preced
proposed energetic-statistical formula. For the small size ran

Fig. 5 The curve of elastica used in calculations for Table 5
JANUARY 2004, Vol. 126 Õ 35
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this formula reduces to the purely deterministic formula, wh
implies the size effect to be governed by a stable spread of cr
ing. For the large size range, the size effect is due to the ran
occurrence of defects at or near the tensile face, which produ
different mode of failure—a sudden brittle collapse.

4. Johnson et al.@16# noted that the stacking sequence m
influence the size effect. This is of course valid, but all tha
means is that the value ofDb may depend on the stacking s
quence and that the distribution of local material strength ac
the laminate may have to be considered as nonuniform~see Ap-
pendix 2!. No data that would suffice to assess this effect seem
exist.

5. Jackson@15# compared the normalized failure loads to
scale factor considering either the pure statistical Weibull the
or the fracture based strength-size relation of Atkins and Cad
@42#. The former has already been commented on. The latter
not fit the test data well, which is not surprising because
strength-size relation was based on linear elastic fracture mec
ics, the applicability of which to Jackson’s experiments
questionable.

Conclusions

1. In textbooks as well as practice, the failure of fiber-polym
laminates has so far been treated according to the strength th
or plastic limit analysis, which exhibits no size effect, and all t
size effects have been considered as purely statistical. The pr
analysis of existing experimental data indicates that this appro
needs to be fundamentally revised.

2. The size effect on the flexural strength of laminates appe
to be primarily energetic~deterministic! rather than statistical, ex
cept possibly for very large thicknesses for which the statist
size effect might also be significant. This further implies that fra
ture mechanics, rather than some strength criterion~or material
failure criterion expressed in terms of stresses and strains!, needs
to be used for evaluating the strength of laminates. The frac
mechanics approach must take into account the quasibrittle~or
cohesive! nature of fracture.

3. Fitting of the existing size effect test data by the statisti
theory implies excessive and unrealistic differences in the co
cient of variation of strength tests. This experimentally dem
strates the inapplicability of that classical theory to laminates.

4. The improvement over the statistical theory that is achie
in the fitting of the existing experimental data supports the ap
cability of both the energetic theory and the energetic-statist
theory, Eq.~5!. However, the available data do not suffice to de
onstrate that the energetic-statistical theory is better than the
ergetic theory~which is a special case!. Experimental data of a
broader size range or lower scatter, or both, would be needed
that purpose. Superiority of the energetic-statistical theory so
rests only on theoretical arguments.

Appendix 1

Relation to Weakest-Link Statistical Models with Load-
Sharing. To capture the interplay of stress-redistribution a
statistical size effects, another, more classical, avenue of
proach, aiming from an opposite side of the problem toward
same objective, has been pursued in theoretical research. It
sists of a generalization of the extreme value statistics of
weakest link model by introduction of various phenomenologi
hypotheses about load-sharing in some critical cluster, the s
plest prototype of which is Daniels’ fiber bundle model@43#.

The theory as well as massive Monte Carlo simulations sh
that the composite strength distribution deviates from Weibull’s
a concave curvature in Weibull probability paper and that the
parent~effective! Weibull modulus increases with the critical clu
ter size, which are features resembling those of the nonlo
Weibull theory. Although this avenue of approach, pursued by
Leigh Phoenix and co-workers@e.g.,@13,14## and others@44–46#,
36 Õ Vol. 126, JANUARY 2004
ch
ck-
om

ce a

y
it
-
oss

to

a
ory
dell
did
he
han-
is

er
eory
e
sent
ach

ars

cal
c-

ure

al
ffi-
n-

ed
li-

cal
-
en-

for
far

d
ap-

the
con-
the
al
im-

ow
by
ap-
-
cal
S.

might seem to retain a purely statistical description of the s
effect, the load-sharing hypotheses of one kind or another in ef
produce stress redistribution associated with energy release.

Rigorous treatment of statistics in these works has proven to
mathematically very challenging and has led to high mathemat
sophistication. Although valuable mathematical results have b
achieved for the statistical distribution of strength in tension
parallel structural systems such as ropes, cables, yarns or
strands with statistical variation of strength, this avenue of
proach has not yet made it possible to deal specifically with
load-sharing properties governed by cohesive fracture mecha

In particular, it is not yet clear how various load-sharing co
cepts could be generalized to capture the multi-dimensionality
stress redistribution caused by fracture and its fracture pro
zone, and how they could capture the disparity between the en
release and energy dissipation rates, which is the physical so
of energetic size effect—particularly the fact that the energy
lease rate grows with increasing structure size roughly quad
cally while the energy dissipation rate grows roughly linearly.

For practical applications, it thus seems more profitable to
proach the problem of stress redistribution from the opposite s
as a probabilistic generalization of the energetic size effect the
@47#.

The size effect has also recently been analyzed on the bas
a nonlocal continuum model enhanced by weakest-link statis
@47#.

Appendix 2

Independence of Size Effect Exponent of Stress Distribu-
tion. The size effect exponent2nd/m is not affected by the fact
that the lamination theory predicts a discontinuous nonlin
stress distribution for various lay-ups. To prove it, consider
well-known derivation of Weibull size effect in geometricall
similar structures of various sizesD in which the stress distribu-
tion S(j) is independent ofD (j5x/D5relative coordinates of
material points,x actual coordinates!. The structure is considere
as an assembly of smallest elementary volumesV0 for which the
concept of stress makes sense. DenotePk5failure probability of
the k-th elementary volume (k51,2, . . . ,N) and Pf5failure
probability of the structure. If the failure of one small elementa
volumeV0 is assumed to cause the whole structure to fail, then
probability of survival of the structure is the joint probability o
survival of all its small elementary volumes, i.e.,

12Pf5~12P1!~12P2!¯~12PN! (11)

or ln~12Pf !5(
k51

N

ln~12Pk!'2(
k51

N

Pk (12)

where we took into account the fact normallyPk!1. The basic
idea of Weibull@21,22# was that the tail of the cumulative distri
bution of strength must be a power law, i.e.,Pk5@s(xk)/s0#m

wheres0 andm are material constants called the scale param
and Weibull modulus~shape parameter!, ands(x) is the positive
part of the maximum principal stress at pointx. Substituting this
into ~12! and making a transition from a discrete sum to an in
gral over structure volumeV, one gets the well-known Weibul
probability integral:

2 ln~12Pf !5E
V
@s~xk!/s0#mdV~x!/V0 (13)

Geometrically similar structures of different sizesD are identical
in dimensionless coordinatesj5x/D, and because their stres
fields must be similar, one may sets(x)5sNS(j) where sN
5nominal stress andS(j)5dimensionless stress distribution
which is independent ofD. Substituting this and dV(x)
5DndV(j) into ~13! ~where nd5number of spatial dimension
in which the structure is scaled,n51, 2, or 3!, we get, after
rearrangements,
Transactions of the ASME
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2 ln~12Pf !5~sN /S0!mDn where

S0
2m5s0

2mE
V
Sm~j!dV~j!/V0 (14)

or Pf~sN!512e2~sN /S0!mDn
(15)

which is the Weibull cumulative distribution of nominal strengt
From ~14!,

sN5C0D2n/m, C05S0@2 ln~12Pf !#
1/m (16)

This equation, in whichC0 is independent ofD, gives the scaling
of nominal strength for a fixed failure probability~e.g., the median
sN for Pf50.5). Using~15!, one gets the scaling of the mea
nominal strength

s̄N5E
0

1

sNdPf5E
0

`

sN

dPf

dsN
dsN5S0GS 11

1

mDD2n/m

(17)

The standard deviationdN is similarly obtained as dN
2

5*0
1sN

2 dPf2s̄N
2 . The coefficient of variation of strength is the

v5dN /s̄N , which gives formula~7!.
The point to be noted is that the power law exponent in~17! is

independent of the stress distribution across the laminate as
as this distribution is the same for different sizes. The same is
for v.
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