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Size Effect on Flexural Strength
of Fiber-Composite Laminates

The size effect on the flexural strength (or modulus of rupture) of fiber-polymer laminate
beams failing at fracture initiation is analyzed. A generalized energetic-statistical size
effect law recently developed on the basis of a probabilistic nonlocal theory is introduced.
This law represents asymptotic matching of three limits: (1) the power-law size effect of
the classical Weibull theory, approached for infinite structure size; (2) the deterministic-
energetic size effect law based on the deterministic nonlocal theory, approached for van-
ishing structure size; and (3) approach to the same law at any structure size when the
Weibull modulus tends to infinity. The limited test data that exist are used to verify this
formula and examine the closeness of fit. The results show that the new energetic-
statistical size effect theory can match the existing flexural strength data better than the
classical statistical Weibull theory, and that the optimum size effect fits with Weibull
theory are incompatible with a realistic coefficient of variation of scatter in strength tests

Mecharical Engineering of various types of laminates. As for the energetic-statistical theory, its support remains

entirely theoretical because the existing test data do not reveal any improvement of fit over
its special case, the purely energetic theory—probably because the size range of the data
is not broad enough or the scatter is too high, or batBOl: 10.1115/1.1631031

Northwestern University,
2145 Sheridan Road (CEE),
Evanston, IL 60208

Introduction criteria, exhibit no size effect. This is acceptable only for very

A quintessential property of the classical theories of solid m&Mall structures. For the design of sandwich structures contem-
chanics, particularly plasticity and elasticity with a strength limit?/ated for the construction of large ships, it is imperative that the
is the absence of size effect. In other words, the nominal strengtiasibrittie cohesive fracture and scaling properties be taken into
oy Of a structure(which is a load parameter defined BébD  account. Only then it will be possible to extrapolate to such large
whereb = structure width is independent of the characteristic sizesizes on the basis of the values of material strength deduced from
(dimension D of the structure. During the 1980s, however, thitaboratory tests of relatively small specimens.
property has been shown to be invalid when, instead of plasticThe previously reported experimental investigations of size ef-
yielding, the material exhibits softening damage such as distrifgct in unnotched laminates, however, were not evaluated taking
uted cracking[1-6]. In that case, a strongnon-statistical size iio account the possibility of a deterministic size effect. Only the
effect may be caused by stress redistribution causing energy ;iﬁ'rely statistical classical Weibull theory was considered in evalu-

a

lease from an elastically unloaded zone of material at the flanks ng the test results. To capture the effect of stress redistribution
a propagating band of softening damage or large cohesive fr?;

ture, taking place before the maximum load is reached. When g€ © cracking and the associated energy release, this paper
deterministic size effect occurs, it normally prevails over the siz&/Nich expands on a previous conference presentg@ipruses a
effect due to the randomness of strength, described by the cla§§Wwly developed energetic-statistical size effect fornidla,11]
cal Weibull theory. to fit the existing test data on the flexural strengihmodulus of
However, the existing textbooks on composites and sandwithpture. Since the size effect of the purely statistical theory is a
structures, as well as the current design practice, ignore the detgrecial case of this formula, the optimum fitting of the test data
ministic size effect due to the energy release. The recent kgeuld have to converge to that special case if this classical theory
searches at Northwestern University have shown that this can\pere applicable and provided a unique explanation. However, as
dangerous when large structures are designed. will be seen, this does not occur. In fact, the formula parameters

The recent studies have begn focused on fiber-polymer 'arfB'r the optimum fits are very different from the values that corre-
nates which are used for the skins of sandwich structures. The s

effect in sandwich shells must be well understood if the Navy’%si)%nd o the special case of a purely statistical V\/.e|.bu.|| theory. .
current plans to build very large ship hulls, decks, bquheads_,There are two bagc_ simple tyPeS of the determ|n|_st|c energetic
masts and antenna covers entirely of composites should succé®£ effect in quasibrittie materials, which obey different laws
Experiments show that a laminate typically fails only after a largel.2,4—@: (1) The size effect in structures with notches, or with
damage(or fracturing zone has developed. This causes a vefjirge stress-freor fatigued cracks that have formed before the
strong deterministic size effect. The first demonstration was givemaximum load12]; and (2) the size effect due stress redistribu-
for the case of tensilénode ) fracture of notched specimefig].  tion engendered by a boundary layer of cracking in structures that
Subsequently, it was shown that the same is true for the comprgst at the initiation of fracture from a smooth surface. Here we are
sion failure of fiber composites caused by the propagation of8ncermed only with the latter, which is important, e.g., for safe
kink band, in which the fibers undergo microbucklifg]. For design of very large and thick composite structures.

both cases, the classical theories, based on plasticity or Strengtn‘nportant theoretical advances in simulating the effect of stress

E—— ) ) . redistribution have been achieved by introducing various load-
Professor on leave from Institute of Structural Mechanics, Faculty of Civil En-

gineering, Technical University of Brno, 66237 Brno, Czech Republic sharing concept§ into the statistical weakest-link mofie.
Contributed by the Materials Division for publication in theurNAL oF ENGl-  [13,14]] (Appendix ). These new advances, however, do not yet
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Available Experimental Evidence for Size Effect on (E) -
M =M
Flexural Strength D, b2 =

The size effect on the flexural strength of fiber-polymer lami- Cracking Layer b -

nates, which is the focus of this paper, has been the subject of a S Microstress
host of studies during the last decdd®—-19. Wisnom[17] con-
ducted four-point bending tests and pin-ended buckling tests on
unidirectional XAS/913 carbon fiber-epoxy specimens with 25,
50, and 100 plies. Both types of tests showed a significant de-
crease in strength with increasing specimen size, scaled in three
dimensions(three-dimensional However, not all the specimensgig 1 stress redistribution in flexure caused by a boundary
failed in tension; the small ones tended to do so, but the large ongger of cracking

tended to fail in compression. Among 6 100-ply specimens in the

four-point bending tests, only one failed in tension, doing so in a

brush mode. However among the 25-ply and 50-ply specimens,

the tensile failures numbered 7 out of 10, and 9 out of 11, resp
tively. Fitting the data by the pure Weibull theory indicate
Weibull modulus(shape parametem=25.4.

The results of Wisnom and Atkinsdri8] obtained with four-
point bending of three-dimensional-scaled unidirectidaajlass/
913 specimens of 16, 32 and 64 plies also showed a clear sj
effect. The optimum value of Weibull modulus was=24.2.

Jackson[15] investigated the effects of specimen size on th
flexural response and strength by performing tests on unidir
tional, angle-ply, cross-ply and quasi-isotropic ply-level AS4/350
carbon fiber-epoxy beams in a hinged axial loading fixture, wi
all the dimensions of the specimen and the rig properly scaleg.
Apparent size effects were found for all the stacking sequenceg
Weibull modulus values of 25.5, 21.4, 11.2, and 16.8 were re-

ported for unidirectional, angle-ply, cross-ply and quasi-isotropig, yay that has been shown accurate up to the first two terms of

laminate beams, respectively. the - o . h
h . . . power series expansion in terms dd12,6,26) is to consider
Johnson et al16] studied the size effect in the four-point ﬂex'th tf? is approximately decided by the average elastically calcu-

ural response using ply-level and sublaminate-level angle-ply a| ed 'stress within the boundary layer of thickne&,2 Conse-

quasi-isotropic scaled AS4/3502 graphite-epoxy laminate beams. ; ; : - - .
They found that the flexural strength of ply-level scaled Iaminaté’%lemly’ if the laminate is assumed to fail in tension rather than in

decreased with the specimen size significantly, but tHf@MPression, the bending stress formula gives=Mo(D
sublaminate-level scaled specimens did not show a pronounce®)/2! vghereD=beam depthMo=bending moment, and
size effect. The Weibull modulus values for the angle-ply and D*/12; f; represents the average tensile strength of the bound-
quasi-isotropic specimens were reported as 50.0 and 26.7, resgg¥-layer, which is considered to be constant. The flexural strength
tively. (or modulus of ruptureof a laminatef, , chosen to represent the
Other studies considered the ratio of the nominal strength vatlominal strengtfry , is defined as the elastically calculated maxi-
ues measured in three-point and four-point loaded flexural tests a¢m stress in the bearh, = oy=M,D/2l. Therefore,
in flexural tests and tensile coupon tests. Bullp2R] concluded
in 1974 that, as far as the inevitable scatter permits it to be judged, Dp| 7t
this ratio compared favorably with the Weibull theaithe only D
theory for deviations from classical non-statistical mechanics of
materials available at that time However, comparisons to This formula gives a negativey for small enougtD, and so it is
Weibull modulus values corresponding to the scatter, and to theable only for large enough sizBs>Dy,. This limitation is not
size effect, which would represent much more severe tests of #@prising because our derivation has been correct only up to the
theory, have not been made. first two terms of the asymptotic series expansion in terms of the
All the previous studies of flexural failure of laminates assumegbwers of 1D [27]. Therefore, any other formula that exhibits the
a priori that the size effect is purely statistical, as described yme first two asymptotic terms inOlis equally justified ag1).
Weibull's statistical theory of random local material strength This observation suggests the use of asymptotic matching. This
[21,22. The validity of this classical theory for fine-grained ceis a technique to obtain an approximate solution for hard problems
ramics and fatigue-embrittled metals is beyond doubt, howevés, which two opposite asymptotic behaviors are much easier to
this is not the case for fiber-reinforced laminates, except for strugelve than the intermediate behavior. This technique, borrowed
ture sizes far exceeding the practical range. from fluid mechanic$28—-31], can be regarded as an interpolation
between the opposite asymptotic solutions, corresponding here to
. . . D—0 andD—-¢e. In this spirit, formula 1 needs to be modified
Energetic Size Effect on Flexural Strength of Laminates gch that the first two terms of the large-size asymptotic expan-
It has been well establishgd0,11] that the Weibull theory is sion remain unaffected while a realistic small-size asymptotic be-
valid only (1) if the structure has a positive geometiye., the havior is matched.
energy release rate is increasing, rather than decreasing, with th&hrough a power series expansion ifD1/one may check that
crack extensiop and(2) if the failure of one macroscopic small by making the replacement (1D, /D) ~*~(1+rD, /D) (r be-
material element causes the whole structure to fail, as describieg any positive constant signifying a transition slowness param-
by the weakest link mod¢R3—25 and Weibull distributior{23].  ete, the first two terms of the asymptotic expansion in terms of
The first condition excludes certain structural geometries, ind&/D are not affected while, at the same tinag,, becomes posi-
pendently of the type or material. The second condition is gengive, finite and monotonically decreasing through the entire range
ally not satisfied for heterogeneous quasibrittle materials, fibeaf D. With this replacement(l) leads to the size effect formula
reinforced composites included, except in the infinite size limf2,26]:

D/D,

8]. For such materials, the energy release caused by the stress
edistribution due to the growth of fracture is a potent source of
size effect which overwhelms the statistical size effect on the
mean strength.

For the sake of simplicity, we consider the laminate cross sec-
fh to be homogeneous, in which case the elastic bending stress
diagram is linear(Fig. 1). As a crucial point of our analysis, we
fote that the peak bending momeMt, is not reached when the

astically calculated bending stress at tensile face reaches the

aterial strengtH,. Rather, before reaching the peak moment, a
undary layer of a certain finite thicknesB 2that is a property
the fiber composite develops at the tensile face, causing stress
distribution and energy release.

The simplest way to take the boundary layer into consideration

n=td[1- @
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rDy\ Y failure probability at a given point of the body depends not on the
on="1,=1q(D), q(D)= ( 1+ T) (2) stress at that poirtlas in the classical Weibull theorjput on the
weighted average of strain within a certain characteristic volume
where q(D) is a positive dimensionless decreasing function aif material surrounding the point. This theory has been used in
size D having a finite limit forD —cc. numerical studies of flexural failufg0,11,34, which confirmed
A more realistic starting hypothesis is to consider that, up to thkat the size effect for very thin plates is almost totally energetic
maximum load, the cracking remains distributétie discrete (deterministi¢ and for very thick plates almost totally statistical,
crack being formed only at, or after, the maximum Ipahd that of the classical Weibull type. These two asymptotic conditions
the cracking is described by some effective stress-strain diagramy be satisfied by the following simple size effect formula:
characteristic of the fracture process zdtiee size of which, re- g /m
lated toD,,, is a material constant, the characteristic lengfor rD—b) rD_b (5)
the sake of simplicity, we consider a bilinear stress-strain diagram D+rsDy D+rsDy

with postpeak strain-softening characterized by some tanggffteren, = number of spatial dimensions in which the structure is
modulusE,. The distributed cracking at maximum load is asg.gjaq 6y=1, 2 or 3, m=material constant Weibull modulus

sumed to occupy a boundary layer at the tensile face of laminafg, |5 of test data of broad enough size range, the valie of
having a certain fixed thickness denotedl py The corresponding cannot be determined experimentally and, therefore, we assume
stress distribution is sketched in Fig. 1. The result of such a cgl‘rf_l ' :

; . . RS =0. Note that form—o (and s=0) Eq. (5) becomesoy
culation [6,27] is a formula that coincides withoy=f(1 =f2(1+rD,/D), which coincides with the foregoing energetic

— D, /D)™ up to the second term of the asymptotic expansion @fieterministi formula 2; ForD>Dy,, or D=0 (ands=0), Eq.
oy as a power series in @/ provided that one set§=Dy/2, (5) pecomes

differences being found only in the third and higher order terms.
A more general and more fundamental approach, pursued in crN:f?(Db/D)”d’m (6)

[10,11,27, is an asymptotic analysis based on expanding the €hd thus one recovers the classical formula for Weibull size effect

ergy release functiom(a) of fracture mechanicsa=relative 0 jimit caséexperience with concrete, however, showed that
crack length. As far as the first two terms of the asymptotiq
Z%K:\

1r

O'N:f?

expansion of the size effect are concemed, the result of s e statistical part of the size effect on flexural strength is not

X - ! ignificant except for extremely thick structures such as arch
analysis happens to be again the same, except that a slight e 3
of specimen geometry is brought about through funcgoa). i

As a further improvemen(2) may be modified as follows: A detailed derivation of the deterministic and energetic-
P y *  statistical size effect formulas can be found 210,11.

1
b . . . . .
on="1lq(D), q(D)= 1+—D+rsDb) (3) Reinterpretation of Previous Experimental Studies of
_ _ _ L Size Effect in Laminates
where s is a non-negative constari2,26]. This modification ) ) o
achieves that, unliké2), the size effect formula gives a finite 10 check and calibrate the energetic-statistical theory of flex-
strength forD—c while remaining, for large sizes, asymptoti-Ural strength of laminates, a systematic study of the numerous test
cally equivalent to the original formulay, = f%(1— D, /D)~ * up data that exist in the Iiteraturﬁélf_i—lﬂ has been initiated. The
to the second term of power series expaﬁsion D.10ne can SPecimen dimensions and stacking sequences are listed in Tables

verify it by the following approximations, which are accurate u _.3 (jn WhiCh t.he scale factor represents the ratio of thg charac-
to the second term of the asymptotic power series in terms of eristic dimensions of the scaled specimen and the full-d&rg-

with é=D, /D: es) specimein The corresponding mean values of flexural
' strengthf, for different test data are summarized in Table 4. There
f2 1+rsé )1” 1+sé (1+sE)[1(s+1)¢] are two points that need to be explained.
= ~ ~(1+s —(s+ First, in Wisnom's[17] four-point bending test, only the failure
on 1Hr(s+1) 1+(s+1)¢ strains were reportedas listed in Table ¥ Nevertheless, the
Dy, present analysis can use the strains rather the stresses because the
~l-5 (4)  material behaves almost linearly up to the peak load, i.e., the

nonlinear effects which cause deviation from the elastic stress-
Combined Energetic-Statistical Size Effect on Flexural strain curve may be neglected. Conseguently, the stress at failure
- can be inferred from the reported strain.

Strength of Laminates Second, in Jackson’s experimeh®&5], the testing method was

Because the local strength of material elements is random a@hvenient but the maximum bending moment was not measured.
the minimum of random strength encountered in the structure déery slender laminate strips were loaded by axial force causing
creases with the structure size, the Weibull statistical size effébem to buckle, and the deflections were so la@ethe average
must also play some role. A general and fundamental approachatmut 40 percent of the specimen lengthat the laminate was
the combined energetic-statistical size effect is the nonlocalmost under pure bendirithe maximum compressive and tensile
Weibull theory[2,10,11,32—3%—a theory in which the material strains almost equal The axial shortening and the axial force

Table 1 Jackson’s (1992) AS4/3502 beam-column test

Scale factor Beam dimensigmm)  Unidirectional Angle-ply Cross-ply Quasi-isotropic
1/6 1x12.7x127 [0]gr [45,/-45,]s  [0,/90,]s [—45/0/45/9Q¢
1/4 1.5 19.5<190.5 [01zr [45;/—45]s  [0,/90;]s -

1/3 2X 25.4X 254 [0]16r [45,/—45]s [0490,]s [—45/0,/45,/90,]5
1/2 3x38.1x 381 [0]oar [45;/—45]s [06/90s]s [ —455/05/45,/90]
2/3 4x50.8<508 [0]a5r [455/—455]s  [0g/905]s [ —454/04/45,/90,]5
3/4 4.5¢57.15x571.5 [0]36r [455/—455]s  [0g/90g]g -

5/6 5X 63.5¢ 635 [OJaor [4510/~4510]s  [01990i]s [ —455/05/455/905] s
6/6 6X76.2<762 [0]4er [455/ —4515]s  [0199015]s [ —455/06/456/905] s
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Table 2 Wisnom’s (1991,1997) four-point bending test

Unidirectional,E glass/913 Unidirectional, carbon XAS/913
Scale factor Beam dimensiorimm)  Stacking sequence = Beam dimensiomm)  Stacking sequence
1/4 2Xx5x45 [0]46 3.175<10x 102 [0],s5
2/4 4X 10X 90 [0]5 6.350< 20x 204 [0]so
4/4 8x20x 180 [O]64 12.70<40x 408 [0]100

were measured but the maximum deflection was not. FortunatelyThe efficient Levenberg-Marquardt nonlinear optimization al-
this is not too serious a problem because, from the stregfrithm has been applied to fit the test data by minimizing the
deformation curve reported by Jacks[85], it may be inferred sum of squared errors of the formula. First, the energeliter-

that the specimens behaved almost linearly up to failure. In thgfnistic) formula (2) is fitted to test data, separately for each of

case, the deflection_curve must have_ been the w_ell-known .“e!"’lﬁ'e data sets listed in Table 4. This yields the optimum values of
tica” (Fig. 5), for which the exact ordinates are given by elliptic

integrals according to a classical solution due to Kirchleffy., constoantsDb a:)nd f? for each case. Then t.he relative strengths
[36]]. Buckling in the form of elastica was previously introduced~/f; (or f,/f;) are plotted versus the relative si2éDy,, where
for laminate testing by Bamt and Skupiti37,38,% and a table of the optimum values of? and Dy, different for each case, are
this curve computed by them can be used h@able 5 and used. It is seen that these data agree with the optimized energetic
exploited to calculate the maximum bending moments in Jackgrmula quite well; see Fig. (@), in which » is an unbiased esti-
fglg’t?vgeenrgdszligsIz];rcoernwet?]%;(reepgEggemﬁxgngfmthaemg#(;?(;%se aNflate of the coefficient of variation corresponding to the standard
“ £ i e — Y 12 o
deformation is agsumed to be nearly elagstic up to the peak logd_" of regression, i.ex=[2(y;~¥)7(n—2] "y, wherey;

From the bending moment, the flexural strengthis calculated ?hre the ordlna(;gs (;f meellsuredd.d?ta pmm_tzé,%, i n), y; are
for each specimen tested. e corresponding formula predictions, ayd 3§, /n.

Subsequently the same fitting procedure is repeated with the

2In these works, the table of elastica was used for developing a very simple testlrrpgore general energe“c-Statlsucal formtﬂﬁ). The resultlng opt-

method of long-timgmulti-yea stress relaxation in polymeric laminates in variousmum fit is shown in Fig. ). As seen from the values ab
aggressive environments. In this method, a laminate strip is strongly bent and its ejiidicated in the figures, the more general formula yields no no-

are supported on a fixed base that keeps the chord length of the arc constant. De: ; : - : .
stress relaxation, the shape of the deflection remains approximately constant, becm}s%able |m_provemfent of the fit this data set. In view of the pt'QVI
of the linearity of viscoelastic behavior. At periodic intervals, the axial force i©US experience with concrete, as well as the fact that Weibull
measured as the force needed to effect a very small increase of the shortening figory must theoretically apply fdd —co, the lack of improve-
placement between the ends. This method has been widely used in Czech Rep

since the 1960s to measure the differences in environmental degradation betv\ﬂgnt 1S dqubtless due tf) the fact that the size range is too !'mlted
stressed and unstressed laminates of various types. in comparison to the width of the scatter band. A broadening of

Table 3 Johnson’s (2000) AS4/3502 four-point bending test

Scale factor ~ Beam dimensigmm) Angle-ply Quasi-isotropic Cross-ply
1/4 2X5X 45 [45/— 45/45/ 45/] 54 [45/—45/0/90 55 [90/0/90/Q
2/4 4x 10X 90 [45,/—45,/45,/—45,],s  [45,/—45,/0,/90,],s  [90/0/90/Q,¢
4/4 8x20x 180 [45,1—45,/45,1—45,],s  [45,/—45,/0,/90,],s [90/0/90/Qgg

Table 4 Means of flexural strength for various test data used in study

SizeD, mm Mean, MPa  Siz®, mm Mean, MPa &f SizeD, mm  Mean, MPa &¢
Jackson, unidirectional Jackson, angle-ply Jackson, cross-ply
1 1886 1 215 1 1858
15 2044 15 198 15 1514
2 1729 2 154 2 1523
3 1751 3 99 3 1060
4 1882 4 84 4 932
4.5 1923 4.5 83 45 801
5 1785 5 69 5 763
6 1534 6 62 6 546
Jackson, quasi-isotropic Johnson, quasi-isotropic Johnson, angle-ply
1 77 2 566 2 1772
15 - 4 547 4 1339
2 634 8 342 8 902
3 619
4 511
4.5 -
5 471
6 452
Johnson, cross-ply Wisnorg, glass/913 Wisnom, carbon XAS/913
2 2814 2 198 4.395% 3.175 83 1.848%
4 2736 4 190 4.221% 6.350 77 1.703%
8 2674 8 167 3.711% 12.70 71 1.582%
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Table 5 Geometrical properties of elastica  (after Baz ant and Skupin [29,30])

lo/p A(llp) f/l, o 9 d(1/15)/d(15/p) lo/p o filo 9 d(1/15)/d(15/p)
1.000 0.204 0.100 0.975 18.20 0.050 5.100 0.3772 0.480 87.80 0.157
1.207 0.207 0.120 0.963 20.94 0.061 5.355 0.3842 0.440 91.65 0.158
1.418 0.211 0.140 0.948 25.75 0.072 5.608 0.3899 0.400 95.37 0.158
1.634 0.216 0.160 0.932 29.63 0.082 5.860 0.3945 0.360 98.99 0.157
1.856 0.222 0.180 0.912 33.60 0.091 6.116 0.3981 0.320 102.57 0.155
2.086 0.230 0.200 0.891 37.69 0.100 6.382 0.4007 0.280 106.20 0.151
2.325 0.239 0.220 0.866 4101 0.108 6.649 0.4023 0.240 109.75 0.148
2.575 0.250 0.240 0.838 46.30 0.115 6.921 0.4030 0.200 113.25 0.145
2.839 0.264 0.260 0.806 50.89 0.120 7.202 0.4027 0.160 116.75

3.121 0.282 0.280 0.772 55.48 0.128 7.498 0.3988 0.120 120.32

3.427 0.306 0.300 0.734 60.94 0.125 8.445 0.3913 0.000 130.72

3.765 0.338 0.320 0.692 66.58

4.148 0.383 0.340 0.648 72.85

4.602 0.454 0.360 0.602 80.11

the size range to much thicker laminates, or a reduction of scateome testgcases c2, ¢3 and c¢5 in Fig) &hile m=30 of some
or both, would be needed to see any significant improvement ather testgcases c1, d8, d9and therefore both values are used in
data fit with the more general theory. columns ¢ and d to fit all the data.

Finally, the same data are optimally fitted using the purely sta- Comparing columns and b in Fig. 3, note that, similar to Fig. 2,
tistical Weibull size effect formulagy=f,=f2(D,/D)"'™ see the fits in these two columns are about equally good. This con-
Fig. 2(c,d). It is found that the complete data set cannot be fittefirms again that the existing test data do not suffice to document
well using the same value of Weibull modulus(shape param- any advantage of the energetic-statistical theory over its special
etep for all the tests. For some tests, the optimum fit is obtainezhse, the purely energetic theory. The likely reason is that the size
with Weibull modulus,m=5 (column 9, and for others with 30 range of the existing data is not broad enough in relation to the
(column d. It is seen that the match of the purely statisticaécatter band width, causing that the different curvatures of the
Weibull theory with the complete data set is quite poor if the energetic and energetic-statistical formulas in the logarithmic plot
value is kept the same for all the test. Each of the twealues is  (Fig. 2 top cannot be distinguished due to data scatter within the
suitable just for some part of the data and not for the rest. limited size range. The energetic-statistical theory so far rests en-

Figure 3 presents the optimum fits of various theories to ningely on theoretical arguments.
individual size effect data for various types of laminates, obtained Because laminates with various ply arrangements are macro-
in different laboratories. The data are the same as those shoygdpically different materials, there is, in principle, no reason why
(and listed in the same sequen@e Fig. 2; column a pertains to m, as an effective property of the laminate, could not be different
the purely energetic theory, column b to the energetic-statistiqat each. Even though the cross-ply and angle ply laminates may
theory, and columns ¢ and d to the purely statistical Weibue identical, they are loaded in different directions, and this could,
theory. The valuem=5 was found to give the optimum fit of jn theory, also cause differencesrirbecausen can depend on the

loading direction in anisotropic materials. However, the differ-
ences in the optimunm-values seen in Fig. 2 are irrational, for

two reasons:
% +  Jackson unidirectional 0 +  Jackson unidirectional
o ey o e ety 1. First, the strength of an angle-ply laminate depends strongly
o Jackson quasi-isatropic ©  Jacksan quasHsotropic f . . . .
o 5 domson st o 5 domon st iscpc on the polymeric matrixand its bond to fibejs while the
] o fhmsoncossilt ot 3 Lo cossly e strength of an axially loaded unidirectional laminate depends
?._\L ] " o caron uridectora) ] " anom carbon widrectors) mainly on the fibers. Since the failure of fibers is more
o T sl 3 [ el brittle than the failure of matrix, one would expect for a
*] r=1.0 r=1.0,m=30 unidirectional laminate thatn=30 should give a better fit
| @ w=0.113 (b) w=0.119 thanm=5 but the opposite is seen in Fig. 3, cases c1, d1,
i c8, d8, c9 and d9. Likewise, for an angle-ply laminate, one
3 , SRS A — . s T would expect a higher optimum value than for a cross-ply
01 ! 1 o 1000 o1 ! 1 o0 000 laminate, bgt the opposite is seen comparing cases c6, d6,
1 ] +  Jackson unidirectional 1o 1 +  Jackson unidirectional C71 and 08 Ir_] Flg 3 ) . ..
] 3 Ve o ncooncrsay 2. Second, unlike the energetic and energetic-statistical theo-
o] pivctetoniiod % Johnaon aenssactope ries, the purely statistical Weibull theory is characterized by
]  Jomenony 5  men ey a unique relationship between the size effect exponent and
% v Vamimeiisrcoes | . &ﬁ%"m;::ﬁ%“;- the coefficient of variationw,, of the random scatter of the
— — Welbull size fomula size effect fonmula . . . . .
o - M_(5I B m = 30,=0.226 strength values for identical specimeffppendix 2. This
,\'_"0"128 14 ~ R relationship is given by the well-known formula
T ] \ T(1+2/m)
(c) 1 (@) _ itz ;
o ] ° W= NT2(1+ 1/m) 7)
i T AT . T 1000 [e.g., G.1n p_rlr_mlple, Iamlnat_es of different layups c_:ould, of_
D/D, D/D, course, exhibit differences in scatter, corresponding to dif-
ferent ® and m. However, the values for the optimum
Fig. 2 Optimum fits of existing test data on modulus of rup- obtained by data fitting with formul&) differ far too much:
ture versus relative s[ze, in dimensionless coord_inates', py (a) wyw=22.8 percent for m=5 )
deterministic energetic formula; (b) energetic-statistical for-
mula; (c) Weibull size effect formula with m=5; and (d) Weil- wy=4.18 percent for m=30 )
bull size effect formula with  m=30 Although the standard deviation of the strength tests has not
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Fig. 3 Optimum fits of individual data sets by different formulas. (a) deter-

ministic energetic size effect formula; (b) energetic-statistical size effect for-
mula; (c) Weibull theory for m=5; and (d) Weibull theory for m=30. Numbers
from 1 to 9 correspond to the data sets showed in Fig. 2.

been reported for the test data considered, such huge differFig. 2(c,d). It is seen that the small-size and large size data are
ences in scatter go against all experience and are impossiblell fitted by Weibull statistical theory wittm=5 and m= 30,
Were the statistical Weibull theory applicable, the coefficientespectively. This implies that the coefficient of variation would
of variation of scatter for the angle ply laminate would havee 22.8 percent for small sizes and 4.16 percent for large sizes.
to be about 23 percent and for the unidirectional laminatgych a huge difference is not verified by experiments. Anyway,
about 4 percent, but this is not the case. The angle-ply lame purely statistical theory could be valid only if the coefficient
nate, due its greater ductilitfower brittlenesy would be  f variation of strength were independent of the size.

Noting that Weibull theory is well established for flexure of
LH:ne-grained ceramics, which are very homogeneous, one might
nQuspect whether a different conclusion might result if one would
specifically take into account the fact that, according to the lami-
Therefore, the classical hypothesis that the size effect is purelgtion theory, the stresses change discontinuously between the
statistical is untenable. lamina and have different nonlinear distributions for different lay-

Similar observations can be made by returning to the overall fitps. However, exponent n/m of Weibull size effect is inde-

the opposite is systematically noted in Fig. 3 by compari
case c2 with d1 and c6 with d5 and d7.
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Fig. 4 Energetic-statistical formula of Jackson’s angle-ply For the sake of illustration, Fig. 4 shows the energetic-statistical
data (actual scale ) size effect for angle-ply specimens in the actual linear scales. The

size range of Jackson({€992 data is indicated in the figure.
It may be concluded that the size effect in the tests studied here
pendent of the stress distribution across the laminate, as long %St.be p(lm_arlly determlnlstl_c energetic, cgused b_y stress redis-
m ution within the cross section of the laminate, with the corre-

the stress distributions across the laminates of different thic : X .
nesses are similgwhich is assured because the lay-ups in Jac pondmg energy release_. The influence of §tr_ength randomness in
this size range of data is small, although it is likely to become

son’s tests were similgrsee Appendix 2 where a proof of this .
point is given. strong for much larger sizes.
The ambiguity of data interpretation due to scatter and limit ; ; i
size range may be clarified by Baat and Nov&'s study of simi- “revious Viewpoints
lar but much more extensive data for concrgt8,11]. It docu- 1. Johnson et al.16] pointed out that the failure of a flexed
ments how the fitting of individual data can yield wide-rangingaminate may start in the secofar nexd ply from the surface if
results. Instead of separate fitting of each data set for one carnis sufficiently weaker that the first ply. This may for example be
crete, one must simultaneously optimize the fit of the combinatiahe case for a ply with fibers in a transverse direction because the
of all the available data in one plot while the value of Weibultransverse tensile strength of fiber-polymer lamina is much lower
modulusmis forced to correspond to a common asymptotic valugian the longitudinal strength. Such behavior, however, is not in
for very large sizesp/Dy,—). In the energetic-statistical for- conflict with the nonlocal theory because this theory in intended to
mula, the quasibrittle behavior implies a decrease of the modulpovide only a homogenized macroscopic description of a micro-
of rupture with the size, while the pure statistical Weibull sizgcopically irregular failure process in a heterogeneous medium.
effect line of slope—ny4/m is approached asymptoticall@s in 2. Wisnom[39] listed several possible factors that may influ-
Fig. 2(b)). Such apparent Weibull modulusrepresents the large- ence the size effect in unnotched fiber composités:material
size asymptotic Weibull modulus. It was shown that its value mayefects;(2) free-edge effects(3) stress gradient{4) specimen
be considered as common for all the data sets for concrete. Theranufacture and preparation; afj testing procedure. The last
in the overall plot of the data, the individual data sets are posiwo effects cannot be covered by any material model and require
tioned in the relative size range &f/Dy, corresponding to their a separate consideration. The material defects are what gives rise
“individual” apparent Weibull modulus—those with a small ap-to randomness of strength in the homogenizing macroscopic con-
parentm-value in the individual Weibull fit will be close to the tinuum and leads to the statistical part of size effect, which is
small-size asymptote, while those with a large appanentill be included in the present formulation. The stress gradient effect is
close to the large-size asymptote in the overall combined sipart of the present theory and represents a simplified way to look
effect plot such as Fig.(B). at the energetic size effect—simplified, because what matters is
Because the available data are mainly limited to the range thle energy release rate which depends on the entire stress field in
small sizes, the automatic iterative fitting procedure that was usg@ structurgand thus also on the free-edge efféctmd not just
for concretd 11] to identify parameter could not be applied here. the local gradient. Referring to the classical tests of Daniel and
To avoid the arbitrary guessing ofind of the asymptotic Weibull Weil [40] and his own[41], Wisnom argued that the stress gradi-
modulusm, we choose a set oh values, namely 5, 15, 25, 30, ent effect(in our approach, the energetic effeaeed not be the
which include the(so fap widely accepted value of 25 for carbonprimary cause of size effect. This is possible but must be qualified
fiber composites and 15 for glass fiber composites, and a set dfy structure size. Indeed, according to the present theory, the size
values, namely 0.6, 0.8, 1.0, 1.2. After comparing the coefficiesifect in a large enough structure is governed primarily by statis-
of variation w of regression errors for different combinationsrof tics. Wisnom’s arguments are based on a set of mere 7 data points,
andm, the values which is far smaller set than the presently analyzed set of 45 data
r=1 m=30 (10) points. As for[40], it should_be no_ted that_these classicgl flexural
' tests were made on cerami@uminum oxide and beryllium ox-
appear to be optimum. Because of limited data, no definite cade) rather than fiber-polymer composites, and that the size range
clusion can be made about the coefficient of variation. of these tests was very limitg@.175 mm—-12.7 mim
Is is not clear whether the failure of Jackson’s specimens was3. Some researchers, doubting the applicability of Weibull
initiated by tension or compression. However, the Weibull as wetlheory to scaled fiber-polymer laminatgks,39], argued that the
as the energetic theories are valid for either case. The only conf@ilure modes for different sizes are not the same. This is of course
tion it that small and large specimens should fail in the sanpossible, but in a certain sense it is reflected in the preceding
manner. proposed energetic-statistical formula. For the small size range,
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this formula reduces to the purely deterministic formula, whichmight seem to retain a purely statistical description of the size
implies the size effect to be governed by a stable spread of craelffect, the load-sharing hypotheses of one kind or another in effect
ing. For the large size range, the size effect is due to the rand@moduce stress redistribution associated with energy release.
occurrence of defects at or near the tensile face, which produce &igorous treatment of statistics in these works has proven to be
different mode of failure—a sudden brittle collapse. mathematically very challenging and has led to high mathematical

4. Johnson et al[16] noted that the stacking sequence magophistication. Although valuable mathematical results have been
influence the size effect. This is of course valid, but all that @chieved for the statistical distribution of strength in tensioned
means is that the value @, may depend on the stacking se-arallel structural systems such as ropes, cables, yarns or fiber
guence and that the distribution of local material strength acrostsands with statistical variation of strength, this avenue of ap-
the laminate may have to be considered as nonunif@@e Ap- proach has not yet made it possible to deal specifically with the
pendix 2. No data that would suffice to assess this effect seem lmad-sharing properties governed by cohesive fracture mechanics.
exist. In particular, it is not yet clear how various load-sharing con-

5. Jackson[15] compared the normalized failure loads to aepts could be generalized to capture the multi-dimensionality of
scale factor considering either the pure statistical Weibull theosyress redistribution caused by fracture and its fracture process
or the fracture based strength-size relation of Atkins and Caddetine, and how they could capture the disparity between the energy
[42]. The former has already been commented on. The latter dielease and energy dissipation rates, which is the physical source
not fit the test data well, which is not surprising because ttaf energetic size effect—particularly the fact that the energy re-
strength-size relation was based on linear elastic fracture mechlase rate grows with increasing structure size roughly quadrati-
ics, the applicability of which to Jackson’s experiments isally while the energy dissipation rate grows roughly linearly.

guestionable. For practical applications, it thus seems more profitable to ap-
proach the problem of stress redistribution from the opposite side,

Conclusions as a probabilistic generalization of the energetic size effect theory
[47].

1. In textbooks as well as practice, the failure of fiber-polymer The size effect has also recently been analyzed on the basis of
laminates has so far been treated according to the strength themnmyonlocal continuum model enhanced by weakest-link statistics
or plastic limit analysis, which exhibits no size effect, and all thg47].
size effects have been considered as purely statistical. The present )
analysis of existing experimental data indicates that this approagppendix 2
needs to be fundamentally revised. . .

2. The size effect on the flexural strength of laminates appe rslndependgnce of Size Effect Equnent of Stress Distribu-
to be primarily energeti¢deterministi¢ rather than statistical, ex- ion.  The size effect exponent ny/m is not affected by the fact
cept possibly for very large thicknesses for which the statisticg]at the_ Ia_mm_anon theo_ry predicts a dlscontln_uous n_onllnear
size effect might also be significant. This further implies that frac €SS dlstrlbutlc_m f_or various Iay-ups. To prove It, consm_ier the
ture mechanics, rather than some strength crite(@nmaterial V\(el[-known derivation 9f We'.bu" sSize .effect in geomgtrlpally
failure criterion expressed in terms of stresses and siraieeds similar structures of various siz& in which the stress distribu-

to be used for evaluating the strength of laminates. The fract 18" S.(f) IS independent oD .(§=x/D=reIat|ve cqordmapes of
mechanics approach must take into account the quasibfittle material pointsx actual coordinatgs The structure is considered
cohesive nature of fracture as an assembly of smallest elementary voluMggor which the

3. Fitting of the existing size effect test data by the statistic pncept of stress makes sense. Derigte failure probability of

theory implies excessive and unrealistic differences in the coe e k-th elementary volume k=12,...N) and P=failure

cient of variation of strength tests. This experimentally demor'i)-Fobabi"ty.Of the structure. If the failure of one small elgmentary
strates the inapplicability of that classical theory to laminates. volumeV,, is assumed to cause the whole struciure to fail, then the

4. The improvement over the statistical theory that is achiev@n’jOb.abi"ty of ;urvival of the structure is the _joint probability of
in the fitting of the existing experimental data supports the appﬁ-urVIVaI of all its small elementary volumes, i.e.,
cability of both the energetic theory and the energetic-statistical 1-P;=(1—P,)(1—P,)---(1-Py) (11)
theory, Eq.(5). However, the available data do not suffice to dem- N N
onstrate that the energetic-statistical theory is better than the en-
ergetic theory(which is a special cageExperimental data of a or In(1- Pf)=k§_: In(1- Pk)~—k§_) Pk 12)
broader size range or lower scatter, or both, would be needed for =1 =1
that purpose. Superiority of the energetic-statistical theory so fghere we took into account the fact normafy<1. The basic

rests only on theoretical arguments. idea of Weibull[21,22 was that the tail of the cumulative distri-
] bution of strength must be a power law, i.@,=[o(x)/oo]™
Appendix 1 whereo, andm are material constants called the scale parameter

. . - . and Weibull modulugshape parametgrand o(x) is the positive
Relation to Weakest-Link Statistical Models with Load- nat of the maximum principal stress at poiatSubstituting this
Sharing. To capture the interplay of stress-redistribution an to (12) and making a transition from a discrete sum to an inte-

statistical size effects, another, more classical, avenue of apz| over structure volum¥. one gets the well-known Weibull
proach, aiming from an opposite side of the problem toward t%obability integral: ’

same objective, has been pursued in theoretical research. It con-

sists of a generalization of the extreme value statistics of the
weakest link model by introduction of various phenomenological —In(1=Pp)= fv[a(xk)/ao]de(x)/Vo (13)
hypotheses about load-sharing in some critical cluster, the sim-
plest prototype of which is Daniels’ fiber bundle modié8]. Geometrically similar structures of different sizBsare identical

The theory as well as massive Monte Carlo simulations shaw dimensionless coordinate&=x/D, and because their stress
that the composite strength distribution deviates from Weibull's bjelds must be similar, one may set(x)=o\S(£&) where oy
a concave curvature in Weibull probability paper and that the ag-nominal stress andS(£) =dimensionless stress distribution,
parent(effective) Weibull modulus increases with the critical clus-which is independent ofD. Substituting this and \A(x)
ter size, which are features resembling those of the nonlocaD"dV(£) into (13) (where ng=number of spatial dimensions
Weibull theory. Although this avenue of approach, pursued by # which the structure is scalesh=1, 2, or 3, we get, after
Leigh Phoenix and co-workefs.g.,[13,14]] and other§44—464, rearrangements,
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Scaled Fiber Composites Under Four-Point Flexural Loading,” AIABS(6),
pp. 1047-1054.
[17] Wisnom, M. R., 1991, “The Effect of Specimen Size on the Bending Strength
Samz Uamf Sm( f) dV( f)/Vo (14) of Unidirectional Carbon Fiber-Epoxy,” Composite Structuré8, pp. 47—63.
\Y

—In(1—P;)=(on/Se)"D" where

[18] Wisnom, M. R., and Atkinson, J. A., 1997, “Reduction in Tensile and Flexural
Strength of Unidirectional Glass Fiber-Epoxy with Increasing Specimen Size,”

—1_ o (oy/Sy™D" Composite Structure88, pp. 405—-412.
or Pf(‘TN) l—e ' (15) [19] Lavoie, J. A., Soutis, C., and Morton, J., 2000, “Apparent Strength Scaling in
which is the Weibull cumulative distribution of nominal strength. ~ Sontinuous Fiber Composite Laminates,” Compos. Sci. Tech6alpp. 283~
From (14)1 [20] Bullock, R. E., 1974, “Strength ratios of composite materials in flexure and
_ —n/m _ _ _ 1m torsion,” J. Compos. Mater8, pp. 200—206.
on=CoD + Co=S[ ~In(1-Py)] (16) [21] Weibull, W., 1939, “The Phenomenon of Rupture in Solids,” Proc., Royal

This equation, in whiclC, is independent ob, gives the scaling ﬁ‘;"sglifhl;?s;“t‘; gfs Engineering Resear¢tngenioersvetenskaps Akad.

of nominal strength f_OI’ a fixed failure probabllltg_.g., the median [22] Weibull, W., 1951, “A Statistical Distribution Function of Wide Applicability,”

oy for P;=0.5). Using(15), one gets the scaling of the mean ASME J. Appl. Mech. 18, pp. 293—297.

nominal strength [23] Fisher, R. A., and Tippett, L. H. C., 1928, “Limiting Frequency Distribution of
the Largest and Smallest Member of a Sample,” Proc. Cambridge Philos. Soc.,
24, pp. 180-190.

[24] Frechet, M., 1927, “Sur la loi de probabilitde I' écart maximum,” Ann. soc.

polon. math. 6, p. 93.

(17) [25] von Mises, P., 1936, “La distribution de la plus grande de n valeurs,” Rev.
math. Union interbalcaniquéd, p. 1.

The standard deviationdy is similarly obtained as 5% [26] Bazant, Z. P., 1998, “Size effect in tensile and compression fracture of con-

:féO'ﬁde—Eﬁ. The coefficient of variation of strength is then crete structures: computational modeling and desi@natturg Mephanics of
—5u /o~ . which aives formule(?) Concrete Structuresroc., 3rd Int. Conf., FraMCoS-3, held in Gifu, Japan, H.
® N/ON 9 h ' . Mihashi and K. Rokugo, eds., Aedificatio Publishers, Freiburg, Germany, pp.

The point to be noted is that the power law exponen(lip is 1905-1922.
independent of the stress distribution across the laminate as lofgj] Bazant, Z. P., and Li, Zhengzhi, 1995, “Modulus of Rupture: Size Effect due

as this distribution is the same for different sizes. The same is true to Fracture Initiation in Boundary Layer,” ASCE Journal of Structural Engi-
neering,121(4), pp. 739-746.

D—n/m

1
1+ =
m

T > dPy
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0 0
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ics, Plenum Press, New York.
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