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any finite element programs including standard commercial
oftware such as ABAQUS use an incremental finite strain formula-
ion that is not fully work-conjugate, i.e., the work of stress incre-
ents on the strain increments does not give a second-order ac-

urate expression for work. In particular, the stress increments
ased on the Jaumann rate of Kirchhoff stress are work-conjugate
ith the increments of the Hencky (logarithmic) strain tensor but
re paired in many finite element programs with the increments of
reen’s Lagrangian strain tensor. Although this problem was
ointed out as early 1971, a demonstration of its significance in
ealistic situations has been lacking. Here it is shown that, in
uckling of compressed highly orthotropic columns or sandwich
olumns that are very “soft” in shear, the use of such nonconju-
ate stress and strain increments can cause large errors, as high
s 100% of the critical load, even if the strains are small. A
imilar situation may arise when severe damage such as distrib-
ted cracking leads to a highly anisotropic tangential stiffness
atrix, or when axial cracks between fibers severely weaken a
niaxial fiber composite or wood. A revision of these finite element
rograms is advisable, and will in fact be easy—it will suffice to
eplace the Jaumann rate with the Truesdell rate. Alternatively,
he Green’s Lagrangian strain could be replaced with the Hencky
train. �DOI: 10.1115/1.4000916�

Introduction
The finite strain tensors used in practice all belong to the class

f Doyle–Erickson tensors �= �FTFm/2−I� /m, where I and F are
he unit tensor and the deformation gradient tensor, respectively,
nd m is a parameter, which is equal to 2 for the Green’s Lagrang-
an strain tensor, equal to 1 for Biot strain tensor, equal to −2 for
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Almansi Lagrangian strain tensor, and tends to 0 for the logarith-
mic �Hencky� strain tensor �1,2�. The work-conjugate objective
stress rates, giving the correct second-order incremental work, are
the Truesdell rate for m=2, Biot rate for m=1, Jaumann rate of
Kirchhoff stress for m→0, and Lie derivative of Kirchhoff stress
for m=−1 �Table 1 in �1�, Table 11.4.1 in �2��. The transition
between the formulations for one or another m value was shown
to require that the tangential moduli tensor Cijkl be transformed
�1,2� as follows:

Cijkl
�m� = Cijkl

�2� +
1

2
�2 − m��Sik� jl + Sjk�il + Sil� jk + Sjl�ik� �1�

where the subscripts refer to Cartesian coordinates �i=1,2 ,3�, Sij

is the Cauchy stress tensor, �ij is the unit tensor �Kronecker delta�,
and the superscripts �m� and �2� refer to the m-value. In particular,
if the tangent moduli are constant in one formulation, they vary
linearly with Sij in all other formulations.

For several decades before 1971, there were arguments regard-
ing the proper formulation of incremental deformations and sta-
bility criteria for three-dimensional bodies under initial stress. The
arguments were resolved in 1971 by showing that various formu-
lations are equivalent provided that work-conjugate increments of
stress and finite strain are used �2� and the transformation in Eq.
�1� is observed. The different mathematical formulations were
thus unified in a general treatment of the infinitesimal elastic sta-
bility problem �1�. It was shown that when a certain finite strain
measure is selected to describe the incremental deformation, then
the associated conjugate incremental stress and the corresponding
constitutive model must be used in order to recover the same end
result that is independent of the choice of the objective stress
increment and the finite strain measures. The tangential elastic
moduli transformations that are necessary for the equivalence of
the different formulations were presented �1�. Through an ex-
ample, the apparent difference between the well-known Engesser
and Harringx formulas for shear buckling of beam-columns was
reconciled. Recently, the problem of buckling of soft-in-shear
structures such as sandwich plates with very soft cores or general
highly orthotropic bodies under triaxial initial stress has been
clarified �3,4� and the conditions under which the incremental
moduli can be assumed to be constant have been delineated.

The lack of work-conjugate stress and strain increments never-
theless remains to be an aspect that plagues various finite element
�FE� programs, including commercial software such as ABAQUS.
The present objective is to show that the consequences can be
serious. This is done by the example of a two-dimensional �2D�
analysis of buckling of a uniaxially compressed orthotropic col-
umn in plane strain that is very soft-in-shear, i.e., has a shear
modulus that is very small compared with the axial modulus,
which is a realistic situations for sandwich structures typified by
laminate sandwich plates made with Divynicell 100 foam. To this
end, the proper FE equations for the buckling problem are de-
rived, and different FE formulations for the equilibrium equation
governing the bifurcation instability of the orthotropic column are
discussed. The predictions from the different formulations are mu-
tually compared. Subsequently, the results obtained when the cor-
rect conjugate relationships are not preserved are examined and it
is shown that large errors �as high as 100%� can be incurred.

2 Numerical Example Demonstrating Error
Magnitude

Let us compare two finite element models �FEMs� for the ei-
genvalue problems of bifurcation buckling. The first corresponds
to the Green’s Lagrangian strain measure �m=2�, Eq. �A20�, while
the second uses the Jaumann stress rate with a constant modulus.
The latter case is deliberately chosen to show the errors that can
be incurred by incorrect choices of stress and strain increments

that are not work-conjugate.
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The example chosen for study �Fig. 1� is an orthotropic column
onsisting of an elastic 2D orthotropic continuum. Four-noded
ilinear elements are used to generate a sufficiently fine mesh. The
aterial properties of the column are listed in Table 1. It is noted

hat the axial modulus is 2000 times the shear modulus, which is
n the range of values encountered in typical sandwich panels. The
ommercial finite element analysis �FEA� package ABAQUS is also
sed in the present study for the purpose of comparison. In the
umerical analysis of the eigenvalue problem with ABAQUS, the
olumn is meshed with CPE8, eight-node plane strain elements.

The results from various FE models are compared in Fig. 2. The
nalytical results for m=2 are also shown in Fig. 2 in order to
alidate the results from the finite element models. The analytical
esult that corresponds to the buckling of an axially loaded ortho-
ropic column according to the formulation with m=2 has been
btained by using the methods outlined in Ref. �5�. In that paper,
he global periodic buckling and local buckling �as well as the
onperiodic edge buckling� of a sandwich beam in plane strain is
reated analytically using 2D elasticity for modeling the face sheet
nd the core. The buckling loads in Fig. 2 are normalized by
xxI /L2, where I is the centroidal moment of inertia.
The buckling loads obtained from “FEM �m=2�” and “analyti-

al solution �m=2�” are virtually identical, which is expected
ince they are based on the same formulation. Note that the buck-
ing loads from “FEM �Jaumann stress rate with the constant

oduli�” and ABAQUS are identical and different from the first two
uckling loads for different column lengths. Furthermore, the lat-
er buckling loads are consistently higher than the present analyti-
al buckling loads and the corresponding FE results. The differ-
nces in buckling loads are seen to increase as the slenderness
atio �L / t� of the column decreases.

When the relative errors between the buckling loads from FEM
m=2� and FEM �Jaumann stress rate with the constant moduli�
re compared in Fig. 3, it is clearly seen that the error becomes

ig. 1 „a… Finite element model of a orthotropic column and „b…
ypical deformed shape of the column in the eigenbuckling
roblem

Table 1 Material properties of the orthotropic column

aterial property Value

xx 2000�Gxy GPa

yy 2�Gxy GPa

xy 7.17 GPa

xy 0.29
10 mm
44504-2 / Vol. 77, JULY 2010
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large when the slenderness ratio of column is small, i.e., the errors
become large in the regime where the shear deformations cause a
large reduction in the buckling load.

As described in its theoretical manual, ABAQUS uses the tangen-
tial moduli Cijkl

�J� =Cijkl for Cijkl
�J� appearing in the first term of Eq.

�A27�, instead of Cijkl
�J� =Cijkl

�0� −�kl�ij. Consequently, in the ABAQUS

FE formulation, the terms associated with the volume integral
�V�ij

0 ėik�ėkjdV and �V�ij� ėik�ėkjdV in K0 and K� of Eq. �A20� are
nonvanishing. When the body is in compression, these extra terms
produce, through the matrices K0 and K�, additional stiffness
compared to Eq. �A20�. This leads in the eigenvalue problem to
buckling loads that are much too high, as shown in Fig. 2. A
switch from the Jaumann rate to the Truesdell rate is required.

Alternatively, the Jaumann rate of Krichhoff stress could be
retained if Green’s Lagrangian strain were replaced by the Hencky
�logarithmic strain�, which has the advantage of directly giving
the principal stretch logarithms called the “true” strains, which are
finite strain measures favored in materials science. Computation
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f the Hencky strain tensor used to be an obstacle but a highly
ccurate easily computable approximation has been presented in
ef. �6�.

Comment on Jaumann Rate of Cauchy Stress
In addition to the extra terms that have been discussed, one
ore aspect deserves attention. Bazant �1� showed that the Jau-
ann rate of Cauchy stress is not energetically conjugate to any

dmissible finite strain measure. This deficiency causes the equi-
ibrium equations expressed in terms of the Jaumann rate of
auchy stress to be not suitable for evaluating stability, unless the
aterial is incompressible �1,2�. The Jaumann rate of Cauchy

tress can be regarded as a special case of the objective stress rate
orresponding to the Biezeno–Hencky formulation m=0,

�̂ij
�0� = �̇ij − �kj�̇ik + �ik�̇kj + �ijvk,k �2�

f the last term �ijvk,k is omitted. The Jaumann stress rate consid-
rs only the rotations of the coordinate frame and neglects coor-
inate scaling. This is analogous to the rotation-based expression
or finite strain sometimes used for thin-walled structures �7�. For
uch structures, however, no error arises compared with the
reen’s Lagrangian formulation.

Orthotropically Damaged Material and Practical
ituations With Conjugacy Problem
Material damage such as a system of dense parallel microcracks

an also lead to a highly orthotopic or anisotropic trangential stiff-
ess matrix of the macroscopic homogenizing continuum. With a
igh degree of damage, the elastic modulus in the direction nor-
al to the microcrack planes and the shear moduli on these planes

an be one or several orders of magnitude smaller than the elastic
oduli in the directions parallel to the microcrack planes. This

ituation commonly arises with realistic constitutive models for
uasibrittle materials, e.g., concretes, rocks and ceramics. In uni-
irectional fiber composites or wood under axial compression,
icrocracks form parallel to the fibers, and the action of com-

ressed fibers further increases the degree of orthotropy of the
acroscopic homogenizing continuum.
These situations, which are not uncommon in numerical simu-

ations of failure of these materials, are similar to the previous
xample of a soft-in-shear sandwich. The use of non-work-
onjugate stresses and strains may then lead to errors of a similar
agnitude.

Closing Comment
Significant errors due to the use of nonconjugate stress and

train increments in finite element programs are, of course rare,
nd get manifested only in special situations. One such situation,
hich is of practical significance, is addressed in this short paper.
ther cases, such as the critical load for shear buckling of a sand-
ich plate with a very soft core �Divinycell foam cores� or of an

lastomeric bearing for bridges or seismic isolation, consisting of
lternating lamina of steel and soft elastomer, have also shown
arge errors. Further similar situations arise in isotropic or ortho-
ropic materials when they are highly damaged by a system of
arallel microcracks, rendering their tangential stiffness matrix
ighly orthotropic. Such situations often occur on approach to the
eak load of structures made of concrete, rock, ceramics, fiber
omposites or wood.

Consequently, caution must be exercised in the use of commer-
ial programs such as ABAQUS in such special situations. On the
ther hand, the switch to a fully work-conjugate formulation
ould be easy and is recommended.
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Appendix: Analytical Formulation of the Problem
To provide a more detailed understanding, it is helpful to

present the general 3D formulation of the buckling problem of the
2D column with the details of the associated FE formulation. The
general form of the equilibrium equations in the buckled state may
be obtained from the principle of virtual work as

�
V

Sij

��vi

�Xj
dV =�

�

ti�vid� +�
V

bi�vidV �A1�

where Sij is the first Piola–Kirchhoff stress, �vi is the virtual ve-
locity field, ti is the nominal traction on the boundary � of the
initial state, bi is the body force per unit volume of the base state,
and V is the volume of the body in its reference configuration. The
corresponding rate form of Eq. �A1� is

�
V

Ṡij

��vi

�Xj
dV =�

�

ṫi�vid� +�
V

ḃi�vidV �A2�

The left hand side of Eq. �A2� can be expressed in terms of the
rate of Kirchhoff stress, �̇ so that it is written as

�
V

Ṡij

��vi

�Xj
dV =�

V

�̇ij

��vi

�xj
− ��ik

�v j

�xk
� ��vi

�xj
dV �A3�

Equation �A3� is obtained from Eq. �A2� using the relations

Sij = �ik

�Xj

�xk

�A4�

� ��xi

�Xj
�·

=
��vi

�xk

�xk

�Xj

Since the deformation during the transition from the unbuckled to
the buckled state is infinitesimal, the Kirchhoff stress and its rate
can be approximated as

�ij = J�ij 	 �ij

�A5�
�̇ij = J�̇ij + J̇�ij 	 �̇ij + vk,k�ij

where J=1+uk,k �Jacobian of the transformation�.
It was shown �3,8� that if the elastic moduli in a column are

kept constant �i.e., stress independent�, the Green’s Lagrangian
strain and its associated formulation must be used. In this case, �̇ij
may be rewritten using Truesdell’s stress rate

�̇ij = �̂ij + �kjvi,k + �kiv j,k − �ijvk,k �A6�

where the superscript “∧” denotes the stress rate. The reason for
choosing Truesdell’s stress rate is that it is work-conjugate to the
Green’s Lagrangian strain tensor. The substitution of Eq. �A6� into
Eq. �A3� yields

�
V

Ṡij

��vi

�Xj
dV =�

V

�̂ij�vi,jdV +�
V

��kjvi,k + �kiv j,k

− �ikv j,k��vi,jdV �A7�

Using the symmetry properties of stress �ij =� ji we can simplify
the foregoing equation to

�
V

Ṡij

��vi

�Xj
dV =�

V

�̂ij�ėijdV +�
V

�kjvi,k�vi,jdV �A8�

where ėij = �1 /2��vi,j +v j,i� is the linearized small strain in terms of

the velocity fields.
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The rates of the surface tractions ti and the body forces bi in Eq.
A2� can be expressed as

ṫi =
�ti

�Fjk
Ḟjk

�A9�

ḃi =
�bi

�Fjk
Ḟjk

ince ti and bi are depend on the change of geometry through the
eformation gradient Fij. When the initial and the current configu-
ations are almost identical, we have

�ti

�Fjk
Ḟjk 	

�ti

�Fjk
v j,k

�A10�
�bi

�Fjk
Ḟjk 	

�bi

�Fjk
v j,k

ccording to Eqs. �A8� and �A10� and the constitutive model
orresponding to Truesdell’s rate of the Cauchy stress

�̂ij = Cijklėkl �A11�

quation �A2� now becomes

�
V

�ėijCijklėkldV +�
V

�kjvi,k�vi,jdV −�
�

�vi

�ti

�Fjk
v j,kd�

−�
V

�vi

�bi

�Fjk
v j,kdV = 0 �A12�

To formulate the eigenvalue problem of buckling, the stress, the
urface traction, and the body force in Eq. �A12� are decomposed
nto initial and perturbed quantities, such that

�ij = �ij
0 + 	�ij�

ti = ti
0 + 	ti� �A13�

bi = bi
0 + 	bi�

here 	 is a constant multiplier yet to be determined. By substi-
uting Eq. �A13� into Eq. �A12� and rearranging the terms, we
btain the final equation for the buckling problem

�
V

�ėijCijklėkldV +�
V

�kj
0 vi,k�vi,jdV −�

�

�vi

�ti
0

�Fjk
v j,kd�

−�
V

�vi

�bi
0

�Fjk
v j,kdV − 	
�

V

�kj� vi,k�vi,jdV

−�
�

�vi

�ti�

�Fjk
v j,kd� −�

V

�vi

�bi�

�Fjk
v j,kdV� = 0 �A14�

When the velocity fields are discretized as

v = Nq̇ �A15�

ith N being the assumed shape functions, each term of Eq. �A14�
s transformed into,

�
V

�ėijCijklėkldV = �q̇T
�
V

BTCBdV�q̇ �A16�

� �kjvi,k�vi,jdV = �q̇T
� � �N

�x
�T

�
�N

�x
dV�q̇ �A17�
V V
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�
�

�vi

�ti

�Fjk
v j,kd� = �q̇T
�

�

NT �t

�q
d��q̇ �A18�

�
V

�vi

�bi

�Fjk
v j,kd� = �q̇T
�

V

NT�b

�q
dV�q̇ �A19�

Here, B is the derivative of N with respect to x. Thus, the FE
formulation for the eigenvalue buckling problem reduces to

�K0 + 	K��q̇ = 0 �A20�
where

K0 =�
V

BTCBdV +�
V

� �N

�x
�T

�0�N

�x
dV −�

�

NT�t0

�q
d�

−�
V

NT�b0

�q
dV �A21�

K� =�
V

� �N

�x
�T

��
�N

�x
dV −�

�

NT�t�
�q

d� −�
V

NT�b�

�q
dV

�A22�

The Jaumann rate of Kirchhoff stress �̂ij
�J� has been favored for

buckling problems in various commercial FE packages such as
ABAQUS. The relation between the Kirchhoff stress rate �̇ij and �̂ij

�J�

is

�̂ij
�J� = �̇ij − �kj�̇ik + �ik�̇kj �A23�

where

�̇ij =
1

2
� �vi

�xj
−

�v j

�xi
� �A24�

Therefore, the left hand side of Eq. �A2� becomes

�
V

Ṡij

��vi

�Xj
dV =�

V

�̂ij
�J��ėij + �ij��vi,kvk,j − 2ėik�ėkj�dV

�A25�
Now with the right hand side of Eq. �A2� and with Eq. �A25�, Eq.
�A2� is rewritten as

�
V

�̂ij
�J��ėijdV +�

V

�ij��vi,kvk,j − 2ėik�ėkj�dV −�
�

�ti

�Fjk
Ḟjkd�

−�
V

�bi

�Fjk
ḞjkdV = 0 �A26�

Following the assumptions previously made for the small pertur-
bation, Eq. �A26� becomes

�
V

�ėijCijkl
�J� ėkldV +�

V

�ij��vi,kvk,j − 2ėik�ėkj�dV −�
�

�ti

�Fjk
v j,kd�

−�
V

�bi

�Fjk
v j,kdV = 0 �A27�

where Cijkl
�J� =Cijkl

�0� −�kl�ij �1�. This last equation represents the con-
stitutive model corresponding to the Jaumann rate of the Cauchy
stress. Note that Eq. �A27� is identical to Eq. �A14�. This demon-
strates that a consistent formulation of the problem must be inde-
pendent of the choice of the finite strain tensor.

References
�1� Bažant, Z. P., 1971, “A Correlation Study of Formulations of Incremental
Deformation and Stability of Continuous Bodies,” ASME J. Appl. Mech.,

Transactions of the ASME

E license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



J

Downloa
38�4�, pp. 919–928.
�2� Bažant, Z. P., and Cedolin, L., 1991, Stability of Structures: Elastic, Inelastic,

Fracture and Damage Theories, Oxford University Press, New York.
�3� Bažant, Z. P., and Beghini, A., 2005, “Which Formulation Allows Using a

Constant Shear Modulus for Small-Strain Buckling of Soft-Core Sandwich
Structures,” ASME J. Appl. Mech., 72�5�, pp. 785–787.

�4� Beghini, A., Bažant, Z. P., Waas, A. M., and Basu, S., 2006, “Postcritical
Imperfection Sensitivity of Sandwich or Homogenized Orthotropic Columns
Soft in Shear and in Transverse Deformation,” Int. J. Solids Struct., 43�18–
19�, pp. 5501–5524.
ournal of Applied Mechanics

ded 14 Apr 2010 to 129.105.86.151. Redistribution subject to ASM
�5� Ji, W., and Waas, A. M., 2008, “Wrinkling and Edge Buckling in Orthotropic
Sandwich Beams,” J. Eng. Mech., 134�6�, pp. 455–461.

�6� Bažant, Z. P., 1998, “Easy-to-Compute Tensors With Symmetric Inverse Ap-
proximating Hencky Finite Strain and Its Rate,” ASME J. Eng. Mater. Tech-
nol., 120�2�, pp. 131–136.

�7� Novozhilov, V. V., 1953, Foundations of The Nonlinear Theory of Elasticity,
Graylock, Rochester, NY.

�8� Bažant, Z. P., and Beghini, A., 2006, “Stability and Finite Strain of Homog-
enized Structures Soft in Shear: Sandwich or Fiber Composites, and Layered
Bodies,” Int. J. Solids Struct., 43�6�, pp. 1571–1593.
JULY 2010, Vol. 77 / 044504-5

E license or copyright; see http://www.asme.org/terms/Terms_Use.cfm


