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Abstract: This paper demonstrates the size effect on the shear strength of reinforced concrete (RC) beams with stirrups and does so in two
separate and independent ways: (1) by fracture mechanics, based on finite-element analysis calibrated by a large beam test; and (2) by purely
statistical analysis in which a newly assembled database of 234 tests is filtered to eliminate spurious size effects caused by nonuniformity of
secondary influencing parameters. Both ways show that stirrups, whether minimum or heavier, cannot suppress the size effect completely,
although they can mitigate it significantly for beam depth d < 1 m (39.4 in.). The effect of stirrups is to push the size effect curve in
logarithmic scale into sizes larger by about one order of magnitude. For beam depths d < 0:5 m, 1, 2, and 6 m (19.7, 39.4, 78.7, and
236.2 in.), the percentages of beams whose shear strength is below the code limit are calculated as 3.5, 6.5, 15.7, and 55.1%, respectively.
The corresponding failure probabilities are 10�6, 10�5, 10�4, and 10�3, whereas 10�6 is the generally accepted standard for a tolerable
maximum in risk analysis. It follows that, for beams with stirrups having depth > 1 m (39.4 in.), the size effect cannot be neglected.
DOI: 10.1061/(ASCE)ST.1943-541X.0000295. © 2011 American Society of Civil Engineers.
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Introduction

Beginning with the pioneering tests of Kani (1967) and Bhal
(1968), significant size effect on the shear strength of geometrically
scaled reinforced concrete (RC) beams without stirrups has been
experimentally demonstrated by many studies, particularly Iguro
et al. (1985), Bažant and Kazemi (1991), Walraven and Lehwalter
(1994), Shioya and Akiyama (1994), Podgorniak-Stanik (1998),
Angelakos et al. (2001), and Lubell et al. (2004). Furthermore, indi-
rect experimental evidence of size effect in absence of stirrups
has been statistically extracted from large databases (Bažant and
Kim 1984; Bažant and Sun 1987; Bažant and Yu 2005a, b, 2008)
assembled from tests which were not motivated by size effect and
were performed in various laboratories using various concretes,
shear spans and steel ratios. Parallel theoretical studies led to a size
effect formula for the shear strength of beams without stirrups
(Bažant 1984; Bažant and Kim 1984) justified by fracture mechan-
ics and asymptotic matching.

Early on, Okamura and Higai (1980) proposed for beam shear a
size effect formula justified by Weibull statistical theory (Weibull
1939, 1951). Because Weibull’s theory was the only theory of size
effect available at that time, the formula was promptly adopted for
the Japanese design code (JSCE 1986). This theory, however, was
later shown (Bažant and Xi 1991; Bažant and Planas 1998; RILEM

2004; Bažant 2005) to be inapplicable to failures occurring after
stable growth of large cracks, typical of shear failure of RC beams,
and to greatly underestimate the size effect for large beams. On a
purely empirical basis, the European Concrete Committee (CEB,
later “fib”) adopted in 1990 (CEB 1990) another simple formula
that was later also found to greatly underestimate the size effect
for very large beams.

Until a few years ago, the rationale for not introducing the size
effect into the ACI code was that no tests of three-point loaded
beams had shown a strength less than that required by the code.
In other words, the safety margins implied by the design code were
thought to provide adequate protection from the size effect. What
further helped was the covert understrength factor (Bažant and Yu
2006), consisting in the little known fact that the shear design
formula for beams without stirrups was set at about 55% below
the mean of the test data. However, two recent findings undermined
this rationale:
1. It was shown that, if the size effect is ignored, an increase of

beam depth from 0.3 m (12 in.) to 1 m (39.4 in.) raises the
shear failure probability of beams without stirrups from
10�6 to 10�3 per lifetime (Bažant and Yu 2009). 10�6 is a value
generally considered by safety experts as the maximum toler-
able for buildings, bridges, aircraft, and ships (NKB 1978;
Melchers 1987; Duckett 2005). But 10�3 means that one
among 1,000 very large beams is expected to fail, which is
unacceptable.

2. Increasing the beam depth above 1 m, the failure probability, of
course, gets still higher. So it is no surprise that one test of a
1.89 m (74.4 in.) deep beam without stirrups at the University
of Toronto (Podgorniak-Stanik 1998; Angelakos et al. 2001),
showed a shear strength that was 50% lower than the prediction
of the current ACI code (ACI 2008).
After these alarming findings, it was generally agreed that some

change in ACI-318 chapter 11 was inevitable. However, diverse
conflicting proposals were put forward. One was the proposal
unanimously endorsed in 2006 by ACI Committee 446 (Fracture
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Mechanics; see Bažant et al. 2007). Several other proposals for
taking the size effect in beam shear into account were made by
members of ACI Committee 445 (1998) (Shear and Torsion).

In the face of unresolved conflict, it was simply decided to
introduce into ACI 318 (ACI 2008) [Sec. 11.4.6.1(d)] a mandatory
requirement that RC beams deeper than 25 cm (10 in.) must contain
at least the specified minimum amount of stirrups. A tacit premise
was a widespread conviction that the use of stirrups, even the
minimum stirrups, eliminates the size effect (Lubell et al. 2004).
However, is this conviction justified? Answering this question is
the objective of this paper.

Providing the answer solely by targeted experiments is not prac-
tically feasible because no realistic funding would suffice for test-
ing a statistically significant number of beams with stirrups within
the entire size range of interest (up to at least 6 m depth, possibly
15 m). The answer is sought here in two separate ways:
1. By computational simulation using a theoretically well-

founded material model that agrees with broad experimental
evidence—particularly, microplane model M4 (Bažant et al.
2000; Caner and Bažant 2000), combined with the crack-band
model, which takes into account in an objective manner the
localization of distributed damage caused by cracking and
eliminates the spurious mesh sensitivity. A computer program
using this method will be calibrated by the only available test
of a large beam with stirrups.

2. By statistical analysis of a new large database properly filtered
to overcome a bias caused by nonuniform sampling of the
influencing parameters.
To justify the optimistic view that stirrups eliminate the size

effect, it has been thought that the stirrups prevent the loss of stress
transfer by aggregate interlock. On the basis of small beam tests, it
has been believed that because the diagonal shear crack cannot
open widely, significant stresses must be transferred across the
diagonal crack (ACI 1998). However, the computations that follow
show that, for large beams, this is true only at macrocrack initiation,
which occurs far below the maximum load. By the time the maxi-
mum load is reached, the stresses transmitted across the diagonal
crack in beams of depth d > 6 m or 236.2 in. support less than 5%
of the total shear force.

Current Design Approach and Size Effect

The current standard ACI 318 (ACI 2008) specifies for RC beams
with shear reinforcement, whether minimum or heavier, a size-
independent shear strength:

vn ¼
Vn

bd
¼ vc þ vs ¼ 2

ffiffiffiffi
f 0c

p
þ Avf yt

bs
ðsinαþ cosαÞ ð1Þ

(valid in the units of lb, psi, and in.). Here, Vn = total shear capacity
of the beam; vc, vs = shear strength provided by concrete and by
shear reinforcement (stirrups), respectively; f 0c = specified compres-
sive strength of concrete; Av = cross section area of the shear
reinforcement with spacing s; f yt = specified yield strength of shear
reinforcement, b = width of the concrete beam, d = beam depth
measured from the top surface to the centroid of the flexural
reinforcement at the bottom, and α = angle between the stirrups
and longitudinal axis. For vertically positioned stirrups,
vs ¼ Avf yt=bs ¼ ρsf yt. The shear reinforcement ratio is defined
as ρs ¼ Av=bs.

Eq. (1) neglects the size effect. But the size effect is endemic to
concrete. This is a quas-ibrittle material in which a fully developed
fracture process zone (FPZ) is approximately 0.6 m (2 ft.) long.
When the structure is so small that this length is comparable to

the cross section dimensions, the failure is ductile (or quasi-plastic),
with no size effect. On the other hand, when the structure is so large
that the FPZ length is negligible, the failure is almost perfectly
brittle, with a strong size effect (Bažant and Planas 1998; RILEM
2004; Bažant 2005).

According to quasibrittle (or cohesive) fracture mechanics, con-
crete exhibits size effects of two types: (1) The size effect in failures
occurring at macro-crack initiation, which is typical of plain con-
crete and does not apply here; and (2) the size effect in failures
occurring after large stable crack growth, which is typical of
reinforced concrete, especially beam shear. According to fracture
mechanics, the latter is caused by the energy release associated with
stress redistribution caused by a large crack and approximately
follows Bažant’s (1984) energetic size effect law:

v ¼ v0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ d=d0Þ
p ð2Þ

in which parameters v0 and d0 depend only on structure geometry.
This formula has been shown to apply to beams without stirrups
(Bažant and Yu 2005a, b; Bažant et al. 2007) and may logically
be expected to apply also to beams with stirrups, albeit with very
different parameters.

Current Knowledge of Behavior of Beams with
Stirrups

Depending on the shear span ratio a=d (where d = beam depth, and
a = shear span which, for 3-point loading, coincides with the half
span), two categories of reinforced concrete beams with signifi-
cantly different failure behaviors are distinguished: (1) deep (or
short) beams, and (2) slender beams. The transition between these
two categories is continuous, centered approximately at a=d ¼ 2.

The deep beams act, at maximum load, similarly to a tied arch.
The error of the hypothesis of plane cross sections is much greater
than it is for slender beams, partly because large diagonal cracks
emanate from the supports. It is generally accepted (ACI-ASCE
1998) that the shear capacity of deep beams can be predicted
according to the strut-and-tie model (STM), previously called
the “truss model” (Ritter 1889; Mörsch 1922). But this can be true
only as long as the stress in the imagined “compression strut” is
much less than the compressive strength of concrete, f 0c. If the deep
beam fails by compression crushing of concrete, the compressive
strength of the “strut” exhibits a strong size effect (Bažant 1997).
This size effect, well evidenced by tests (Walraven and Lehwalter
1994; Tan and Cheng 2006), is yet to be incorporated into design
codes, as well as into the usage of strut-and-tie model.

Stirrups or other shear reinforcement are known to significantly
enhance the shear strength of deep beams, thanks to strengthening
of the so-called compression strut. However, this enhancement is
not unlimited and the concrete compression strut eventually fails by
compression-shear crushing, which has been shown to exhibit size
effect (Bažant 2005; Bažant and Xiang 1997). In the test series con-
ducted by Walraven and Lehwalter (1994), a marked size effect is
documented for geometrically similar deep beams with stirrups
heavier than the minimum requirement.

The present study deals only with slender beams having mini-
mum or heavier stirrups. Compared with the deep beams, the fail-
ure mechanism of slender beam is more complicated and less
understood (e.g., ACI-ASCE 1998). Although fracture mechanics
of a modified classical strut-and-tie model can explain the size ef-
fect in concrete beams with stirrups if the energy release caused by
the growth of a compression crushing band in the compression
strut is taken into account (Bažant 1997), the inclination and the
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effective cross section of the strut cannot be determined easily,
which takes away the usefulness for prediction. The experimental,
as well as computational, evidence (Frosch 2000; Angelakos et al.
2001; Tompos and Frosch 2002; Bažant and Yu 2005b) shows that
the compressive resultant in the concrete ligament between the
diagonal crack tip and the top face in slender beams has a steeper
slope than what is assumed in the simple, classical version of the
strut-and-tie model (Lampert and Thürlimann 1969).

The uncertainty of the correct slope and cross section area of the
compression strut in slender beams under shear is compounded by
the inclusion of shear reinforcement. It makes it difficult to obtain
simple formulas for the stress redistribution and fracture energy
release during crack propagation. However, it has been established
(Bažant and Yu 2005a, b) that the shear failure of slender beams is
triggered by compression-shear crushing of concrete in the liga-
ment above the tip of the main diagonal crack. The size effect
caused by concrete crushing could be avoided only if the concrete
above this tip were provided with a strong triaxially confining
reinforcement such as a spiral. But such design measures seem
too laborious and expensive. So the size effect must be taken into
account.

Some researchers discussed the size effect on the basis of
average shear stress vi at the initiation of the primary shear crack
(Tompos and Frosch 2002). However, what is needed for design is
the average shear stress vn at maximum load, whose correlation to
vi is unknown and certainly not unique. Therefore, what must be
tested is the maximum loads of beams of significantly different
sizes. Because of inevitable scatter, the beams should ideally have
the size range> 8∶1. The beams should be geometrically scaled, so
as to separate the size effect from the effects of changing geometry
(e.g., changing a=d, longitudinal steel ratio ρw, etc.). Changes of
geometry from one size to the next would obfuscate the evaluation.

Only two relevant series of tests, with an almost geometrical
scaling but a relatively narrow size range, could be found in the
literature:
1. Tests of normal concrete beams by Bhal (1968) in which the

size range was slightly less than 4∶1. The stirrup ratio was
0.15%, which was higher than the minimum required by
ACI 318 (ACI 2008). The shear span ratio was a=d ¼ 3.

2. Tests of high strength concrete beams by Kong and Rangan
(1998), in which the size range was only 3∶1. The stirrup ratio
was 0.157%, higher than the required minimum. The shear
span ratio was a=d ¼ 2:4. Although this value is slightly less
than 2.5, the code limit for slender beams, the beams failed by
typical diagonal shear, and so they may generally be treated as
slender beams (Zararis 2003).
Plots in the logarithmic scales (Fig. 1) show that, in both

Bhal’s and Kong and Rangan’s tests, the shear strength markedly

decreases as the beam depth increases. The asymptotic size effect
trend of slope �1=2, derived on the basis of fracture mechanics,
does not disagree with these test results. Nonlinear least-square
regression based on Levenberg–Marquardt algorithm has been used
to obtain the optimum values of the size effect law parameters
[Eq. (2)]. It is found that v0 ¼ 1:88 MPa (273 psi) and d0 ¼
3893 mm (153 in.) for Bhal’s tests, and v0 ¼ 4:32 MPa
(626 psi) and d0 ¼ 324 mm (12.8 in.) for Kong and Rangan’s tests.
No comparison tests of identical beams without stirrups were made,
and so the influence of reinforcement on the size effect, and par-
ticularly on the transitional size d0, cannot be appraised from these
tests directly.

Based on the ACI 445F database of 398 data points (Reineck
et al. 2003), an empirical formula for estimating d0 of slender
beams without stirrups has been developed (Bažant and Yu
2005b). In the units of psi and inch, it reads

d0 ¼ κf 0�2=3
c where κ ¼ 3800

ffiffiffiffiffi
da

p
if da is known;

κ ¼ 3300 if not
ð3Þ

in which da is the maximum aggregate size. With da ¼ 30 mm
(1.18 in.) and f 0c ¼ 26 MPa (3769 psi), Eq. (3) gives d0 ¼
433 mm (17 in.) for Bhal’s tests. For Kong and Rangan’s tests with
da ¼ 7 mm (0.3 in.) and f 0c ¼ 87:3 MPa (12671 psi), Eq. (3) gives
d0 ≈ 93 mm (3.7 in.).

Thus, it appears that, in Bhal’s tests, the effect of shear
reinforcement is to push the onset of size effect to larger sizes, rais-
ing the transitional size d0 by almost one order of magnitude. In
Kong and Rangan’s tests, the stirrups also help to mitigate the size
effect by increasing d0 but to a lesser extent. The reason may be that
Kong and Rangan’s beams were made of high strength concrete,
which is more brittle than normal concrete.

A similar effect of stirrups is found for deep beams. Walraven
and Lehwalter (1994) conducted three series of tests of deep beams,
which were scaled almost geometrically. The shape was the same
for each depth d and all the three series, but one series had no stir-
rups, and the other two had stirrups heavier than the minimum re-
quired. Data fitting showed that d0 is 117 mm (4.6 in.) and 143 mm
(5.6 in.) for the two series with stirrups, and d0 ¼ 15:5 mm (0.6 in.)
for the series without stirrups, which is about 10 times smaller.

Finite-Element Fracture Analysis

Size Effect Calibrated by Existing Test Data

Recently, another series of size effect tests of RC beams was
conducted at the University of Toronto (Podgorniak-Stanik
1998; Angelakos et al. 2001; Lubell et al. 2004). First, the size
effect was tested on slender beams without stirrups, using geomet-
rically similar specimens with depths d ranging from 0.11 to 1.89 m
(4.3 to 74.4 in.). Then one beam identical to the largest one, but
strengthened by minimum stirrups with ρs ¼ 0:08%, was tested
for the sake of comparison. For the beam without stirrups, the mea-
sured shear strength was about 50% lower than the prediction on
the basis of ACI 318 (ACI 2008); but for the beam with stirrups a
significant improvement was observed, the strength was just above
the ACI code requirement.

One test, of course, does not validate the safety of design. Sim-
ilar to a recent statistical analysis (Bažant and Yu 2006, 2007,
2009), one could show that a test at the limit of code requirement
gives a failure probability orders of magnitude higher than 10�6,
which is unacceptable for structural design. Nonetheless, this result
was perceived by many researchers as an experimental evidence

Fig. 1. Size effect tests of slender beams with stirrups; (a) concrete
beam with a=d ¼ 3 by Bhal (1968); (c) concrete beam with a=d ¼
2:4 by Kong and Rangan (1998)
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that the size effect in large beams under shear can be eliminated by
stirrups (Lubell et al. 2004).

This perception is not sound. The unsoundness will be con-
firmed by deterministic computations on the basis of nonlinear
fracture mechanics. A finite-element model that was previously
verified by fitting the results for beams without stirrups (Bažant
et al. 2007) has now been enhanced in a well-known standard
way to include the effect of stirrups. This model has been calibrated
so as to fit the data on the single existing test of a large beam with
stirrups, recently conducted at the University of Toronto. After such
calibration, this model is now used to examine the size effect in
geometrically similar beams with stirrups.

It must be emphasized that the failure loads for different sizes
cannot be obtained by direct application of popular commercial
finite-element codes on the basis of critical stress or strain. These
codes might give correct results for small structures with quasi-
ductile behavior but cannot capture brittle behavior with its size
effect. To avoid spurious mesh sensitivity, to prevent excessive
localization of cracking damage, to ensure correct energy dissipa-
tion by cracking zones and to capture the size effect, one must use
either the nonlocal or the crack-band approach (Bažant and Jirásek
2002). The latter is simpler and is implemented in the commercial
code ATENA (2005), which is adopted here (Bažant and Oh 1983;
Bažant and Planas 1998).

The beam geometry in these computer simulations is the same
as in the Toronto tests. Computations are run for scaled geometri-
cally similar beams of depths 0.47 m (18.6 in.) and 1.89 m
(74.4 in.), which is the size of the Toronto tests, 3.78 m
(148.8 in.) and 7.56 m (297.6 in.). The width of all the beams
is b ¼ 300 mm (11.8 in.), i.e., the beams are similar in two dimen-
sions. The stirrups and longitudinal bars are modeled by two-node
bar elements and are assumed not to slip at the finite-element nodes
(this assumption was verified by checking that, if the bars are
detached from some nodes to allow free bond slip, the size effect
would get intensified only slightly).

In all the simulations, the constitutive model for concrete is
microplane model M4 (Bažant et al. 2000; Caner and Bažant
2000) with concrete strength f 0c ¼ 33:6 MPa (4,870 psi), elastic
modulus Ec ¼ 28 GPa (4,060 ksi) and Poisson’s ratio ν ¼ 0:18;
and the steel bars are modeled by a simple bilinear law with elastic
modulus Es ¼ 210 GPa (30,450 ksi), yield strength f yt ¼ 470 MPa
(67.9 ksi) for stirrups and f yt ¼ 457 MPa (66.3 ksi) for tensile
reinforcement. The mesh and the computed cracking pattern at
maximum load are shown for the Toronto size beam in Fig. 2(a).

The plots of the simulated strength versus the dimensionless
deflection (i.e., the midspan deflection divided by the span) are pre-
sented in Fig. 2(b), for all the sizes. In Fig. 2(b), the diamonds
represent the measured results for 1.89 m (74.4 in.) deep beam with
minimum stirrups, and the circles the results for the same beam
without stirrups.

Unfortunately, the numerical simulations of these beams
showed that not all of them fail in shear. Instead, the failure mode
is changing as the size increases. As suggested by the computed
load-deflection diagrams having a long plateau before the onset
of softening, the beams fail in flexure for sizes d ¼ 0:47 and
1.89 m (18.6 and 74.4 in.). The simulations indicate that, at peak
load, the flexural reinforcement at the bottom of these two beams is
yielding, which is a flexural failure.

The diagram for d ¼ 1:89 m (74.4 in.), the size tested in
Toronto, shows a peak load of Vn ¼ 0:63 MN (142 kips). This
agrees well with the value recorded in the Toronto test, which is
Vtest
n ¼ 0:65 MN (146 kips) and is close to the shear force corre-

sponding to the flexural load capacity calculated from the design
code. The yield plateau observed in the Toronto test is also well

reproduced by the simulation; see the diamond points in Fig. 2(b)
measured in the test. The same close agreement between the test
and the simulation is also obtained for the beam without stirrups.
This corroborates the effectiveness of the microplane model and
crack-band model to simulate concrete fracture under shear
loading.

By contrast, the simulations for the beams of sizes d ¼ 3:78 and
7.56 m (148.8 and 297.6 in.) show shear failure. At maximum load,
the stress in the flexural reinforcement in both of these beams is still
far below the yield strength. Also, the yield plateau disappears and
the load descends steeply right after the peak.

Fig. 2(c) shows the size effect on shear strength vc in the bilo-
garithmic scale. In the size range from d ¼ 0:47 to 1.89 m (18.6 to
74.4 in.), the size effect is seen to be very weak (a drop of less than
7%). This is no surprise since the beams fail by flexure. However,
for the larger sizes from d ¼ 1:89 to 7.56 m (74.4 to 297.6 in.), at
which the beams fail by shear, the size effect is strong (representing
a 35% drop).

Fitting the measured vc for all the sizes by the size effect
law [Eq. (2)], one obtains d0 ¼ 2;400 mm (94.5 in.). However,
the use of size effect law for this particular data set is unjustified
because of the flexural failure of the smaller beams. Nevertheless,
the reason that the two smaller beams failed by flexure is that
their shear strength values were higher. This implies that the size
effect for shear is stronger than what is seen in Fig. 2(c) and that

Fig. 2. Computational simulations of Toronto beam with minimum
stirrups: (a) mesh and cracking pattern at failure; (b) load-deflection
curves generated by simulations; (c) size effect fitting of the shear
strength; (d) (e) size effect fitting of the shear strength after doubling ρw
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the correct transitional size d0 for size effect in shear is
< 2;400 mm (< 94:5 in:).

To get complete information on the size effect in shear, all the
beams must fail in shear. This can be achieved by doubling the
flexural reinforcement ratio for all the beams. Figs. 2(d) and 2(e)
presents a plot of the shear strength computed in the sameway when
the flexural reinforcement ratio is doubled to 1.48%. Fig. 2(d)
shows the dependence of the total beam shear strength vn ¼
Vn=bwd on the beam depth d, and Fig. 2(e) shows the same for
the portion of shear strength vc ¼ Vc=bwd contributed by concrete
(Vc ¼ Vn � Vs, Vs ¼ Avf ytd=s; Av, s ¼ stirrup area and spacing).

Compared to the concrete beams without stirrups tested at the
same laboratory with the same concrete, the transitional size d0
shown in Fig. 2(e) gets greatly increased—from 274 mm
(10.8 in.) to 2,100 mm (82.7 in.). Nevertheless, despite a much
larger d0, these plots still display a strong size effect for very large
sizes. Thus, it may now be clearly recognized that the effect of
stirrups is not to eliminate the size effect but to push it to much
larger sizes.

The simulation results show that a 50% reduction of shear
strength would happen if the depths of the Toronto beams ranged
from 0.47 to 7.56 m (18.6 to 297.6 in.), which is still in the practical
range of interest. When plotted in the logarithmic scale, the asymp-
totic slope of �1=2 is seen to remain.

Discussion of Numerical Simulations

For slender beams, computational simulations show that the failure
of concrete beams without stirrups is caused by the compression-
shear crushing of concrete in the ligament above the diagonal
crack tip (Bažant and Yu 2005a, b). Such crushing is generally
accepted as the cause of shear failure in deep beams (Walraven
and Lehwalter 1994; Tan and Lu 1999; Tan and Cheng 2006).

When the stirrups are placed into slender concrete beams, the crack
propagation path changes and the development of a compressive
strut becomes more complicated. This is exemplified by the vari-
ability of the slope of the inclined crack in the tests by other
researchers (Frosch 2000; Tompos and Frosch 2002). However,
the stirrups cannot provide the confinement necessary to prevent
compression-shear crushing of concrete in the ligament above
the diagonal crack tip. This insufficiency of stirrups is confirmed
by the present calculations of the compressive stress in the liga-
ment. For the beams with minimum stirrups and depths d ¼
3:78 and 7.56 m (148.8 and 297.6 in.), the simulations show that,
at the peak load, the maximum principal compressive stress within
the ligament between the diagonal crack tip and the top face
approximately equals the compressive strength f 0c of concrete
[see Fig. 3(a)].

The computations help to understand the strength reduction.
In large beams, unlike the small ones, the inclined compressive
stresses transmitted across the ligament localize. The width of
the stress localization zone is essentially constant and thus repre-
sents in larger beams a smaller portion of the ligament. During
loading, the zone in which the compressive stress reaches strength
limit f 0c travels across the ligament. At some points, f 0c is reached
before peak load, at other points after the peak load [this behavior is
similar to beams without stirrups; see Fig. 3(b)].

Thus, in contrast to small beams, the compressive strength of
concrete is in large beams prevented from being mobilized at all
points of the ligament simultaneously. This fact intuitively explains
the size effect and explains why the plastic limit analysis does
not apply.

As for the stresses transmitted by aggregate interlock across the
diagonal crack, simulations show them to be important only for the
initiation of diagonal crack long before the maximum load is

Fig. 3. (a) Compressive strength distribution in the concrete above the main diagonal crack for d ¼ 3:78 m (148.8 in.) and 7.56 m (297.6 in.);
(b) profile of compressive stress along uncracked ligament; (c) effect of spacing s on the shear strength; (d) effect of spacing s on the crack pattern;
(e) effect of shear reinforcement vs on shear strength
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reached. At maximum load, the vertical resultant of these stresses
contributes in large beams (e.g., d ¼ 6 m or 236.2 in.) only about
5% of the total shear force.

To separate the size effect from other influences, the present
simulations adhere to geometric similarity of beams scrupulously,
through the entire size range. This leads to stirrup spacing s ¼
2:32 m (91.3 in.) for the beam of depth d ¼ 7:56 m (297.6 in.).
This spacing exceeds the maximum spacing allowed by the current
design codes (ACI 2008, 11.4.5.1). According to the code, the
maximum stirrup spacing must be s < 610 mm (24 in.), regardless
of the beam depth. Hence, did the excessive stirrup spacing
enhance the size effect?

To answer this question, two more beams with the same stirrup
ratio (0.08%) and the same depth d ¼ 7:56 m (297.6 in.) have been
simulated in the same way for stirrup spacings s ¼ 0:58 m
(22.8 in.), which satisfies the requirement of ACI code, and
1.16 m (45.6 in). The results show that the changes of the total shear
strength vn caused by these changes of stirrup spacing are within
6% [see Fig. 3(c)]. So, the influence of stirrup spacing on size effect
is not too important.

The low influence of stirrup spacing is corroborated by the
experiments of Tompos and Frosch (2002). They loaded to failure
two 851 mm (33.5 in.) deep beams that had the same geometry,
same concrete mixture and strength, same steel ratio and same stir-
rup ratio but different stirrup spacings s ¼ 165 mm (6.5 in.) and
s ¼ 371 mm (14.6 in.). The total shear strength vn of the beam with
denser stirrups was only 5% lower, which is within the range of
random scatter and thus not significant. So, the spacing does
not play an important role in the shear strength vn. This conclusion
agrees with the computer simulations.

The tests of Tompos and Frosch (2002) nevertheless revealed
that an increase of stirrup spacing makes the overall inclination
of the main diagonal shear crack steeper. This effect of stirrup spac-
ing is further captured by the computer simulations [see Fig. 3(d)].

The effect of stirrup ratio ρs on the shear strength has also been
investigated. Generally, increasing ρs will improve the total shear
strength vn, although it is well recognized that the linear relation
in Eq. (1) is oversimplified and cannot realistically represent the
interaction between concrete and stirrups. Kong and Rangan con-
ducted in 1998 three relevant test series on high strength concrete
beams. The results recorded from beams with a=d ¼ 2:5 under
four-point bending are scattered and show no systematic relation
between the stirrup ratio ρs and the shear strength vn. On the other
hand, the results obtained from beams with a=d ¼ 3:3 under three-
point bending are consistent and document a clear trend. With ρs
varying from 0.1 to 0.26%, vn increases from 2.95 MPa (428 psi) to
4.22 MPa (611 psi), which is accompanied by a decrease of the
slope of the vnðρsÞ curve.

It has been checked that this trend is also captured numerically.
Simulations for beams with d ¼ 7:56 m (297.6 in.) are carried out
for stirrups of vs ¼ 0:34, 0.69, 1.38, and 2.76 MPa (50, 100, 200,
and 400 psi), which all satisfy the condition vs ≤ 8

ffiffiffiffi
f 0c

p
(psi) re-

quired by the ACI code. The same stirrup spacings, s ¼ 2:32 m
(91.3 in.), are chosen for all the beams since the influence of s
has already been shown to be very small.

As seen from Fig. 3(e), vn increases when heavier stirrups are
used. However, the increase of vn is quite mild and levels off after vn
reaches 0.69 MPa (100 psi). This noteworthy phenomenon is clari-
fied by the numerical observation that, at maximum load, the stress
in the stirrups that cross the main diagonal crack decreases as they
become heavier. Light stirrups, with vs ¼ 0:34 and 0.69 MPa (50
and 100 psi), reach at maximum load their yield strength. But
heavier stirrups reach their yield strength only after the peak load
of the beam, i.e., their yield strength cannot be mobilized at

maximum load. For vs ¼ 2:76 MPa (400 psi), the stress in stirrups
at maximum load drops as low as one half of their yield strength.

So, as it is shown, the vertical confinement that can be contrib-
uted by stirrups to resist the compression-shear crushing of con-
crete is limited by a certain critical value, beyond which the
shear failure occurs even if the stress in stirrups is much below their
yield strength. Raising the stirrup ratio above the critical value con-
tributes nothing to the shear strength. Calculations also show that
this critical value of vs can be much smaller than vs ¼ 8

ffiffiffiffi
f 0c

p
(psi),

especially for large beams.

Purely Statistical Analysis of Experimental Database

Safety Margins and Failure Probability When Size
Effect Ignored

Because many engineers accept only experimental evidence, let us
focus in this section on the test data alone. In contrast to the beams
without stirrups, no committee-endorsed database for beams with
stirrups exists. Nevertheless, hundreds of tests have been reported
in the literature over the past 50 years (Becq-Giraudon 2000;
Zararis 2003; Russo et al. 2004). But most of them dealt with
small beams and explored factors other than the size effect.
Becq-Giraudon (2000) collected 295 tests, among which 182 tests
were slender beams and the rest deep beams. Zararis (2003) set up a
database with 174 beams, all of them slender, and Russo et al.
(2004) collected data of 116 beams, all of them made with high
strength concrete.

For the purpose of this study, a database of 234 vn data has been
collected from 26 papers. It is more comprehensive and gives a
more detailed information than the aforementioned data sets
(Leonhardt and Walther 1962; Bresler and Scordelis 1963, 1966;
Krefeld and Thurston 1966; Bhal 1968; Rajagopalan and Ferguson
1968; Placas and Regan 1971; Swamy and Andriopoulos 1974;
Mattock andWang 1984; Mphonde and Frantz 1985; Elzanaty et al.
1986; Johnson and Ramirez 1989; Anderson and Ramirez 1989;
Roller and Russell 1990; Sarzam and Al-Musawi 1992; Xie et al.
1994; McGormley et al. 1996; Yoon et al. 1996; Kong and Rangan
1998; Zararis and Papadakis 1999; Karayiannis and Chalioris 1999;
Frosch 2000; Angelakos et al. 2001; Tompos and Frosch 2002;
Lubell et al. 2004; Shah and Ahmad 2007; the database is down-
loadable at http://www.iti.northwester.edu). All the data are for
slender beams under 3- or 4-point bending. For each test, the
database gives the required mean strength of concrete f 0cr , relative
shear span a=d, longitudinal steel ratio ρw, stirrup steel ratio ρs,
and except for 71 tests for which the information was missing,
maximum aggregate size da. In this database, 183 data points
satisfy the minimum stirrup requirement of ACI code,
vs ≥ maxð50; 0:75

ffiffiffiffi
f 0c

p
Þ psi, and only those can be used in the

statistical analysis that follows.
Although, as shown in the preceding section, the stirrups in very

large beams begin to yield only a long way into the postpeak soft-
ening, the need to make comparisons with Eq. (1) compels us to
calculate from the database points a nominal value, vc ¼ vn � vs, as
if the stirrups were always yielding at peak load. The database
points are displayed in Fig. 4(a). The scatter is large and a down-
ward size effect trend may barely be discerned. The logarithmic
scale of y ¼ ln vn or ln vc makes the data set approximately homo-
scedastic, i.e., achieves approximately uniform variance [Figs. 4(a)
and 4(b)], which is required for meaningful regression statistics
(Ang and Tang 1976). Note, however, that if the data were
plotted in the linear scale of vn or vc, they would be strongly
heteroscedastic, which means that the linear scale is inappropriate.
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Fig. 4(a) documents that shear reinforcement enhances the shear
strength of beams significantly. With f 0cr (i.e., the required average
compressive strength of concrete, which implies, for normal con-
cretes, f 0c ≈

ffiffiffiffiffiffiffi
0:7

p
f 0cr in psi), the mean (normalized) total shear

strength is vn ¼ 5:02
ffiffiffiffiffiffi
f 0cr

p
. This value considerably exceeds the

size-independent shear strength vc ¼ 2
ffiffiffiffi
f 0c

p
based on the ACI code

equation 1 and is much greater than the mean shear strength
vc ¼ 3:1

ffiffiffiffiffiffi
f 0cr

p
obtained from the ACI 1962 database for beams

without stirrups (Bažant et al. 2007).
However, this shear strength enhancement does not mean that

the current building code would provide the necessary safety mar-
gin. For depth d ≤ 500 mm (19.7 in.), 6 beams among 155 failed at
vc < 2

ffiffiffiffiffiffi
f 0cr

p
. For d > 500 mm (19.7 in.), it gets worse; 8 beams

among 28 failed at vc < 2
ffiffiffiffiffiffi
f 0cr

p
, and it may be emphasized that

some 1 m (39.4 in.) deep beams had shear strength as low as
vc ≈ 1:1

ffiffiffiffiffiffi
f 0cr

p
. Overall, about 30% of the large beams tested does

not provide adequate safety margin if designed according to ACI
code equation 1. This fact cannot be ignored.

To calculate the safety margins, we may proceed similarly to a
recent study of beams without stirrups (Bažant and Yu 2009). First,
the probability distribution function (PDF) of beam strength cannot
be obtained by population (or ensemble) statistics of the entire data-
base because there is too much scatter (Bažant et al. 2007; Bažant
and Yu 2007, 2009). However, if we isolate the small-size range of
the database for d ≤ 500 mm (19.7 in.), the data are still plentiful
and the size effect trend is seen to be weak. So the data in this range
can be treated as a statistical population. We plot a cumulative
histogram of the vc values from the small-size range and do so
in various types of probability papers to decide which PDF fits best;
see Fig. 4(c), which shows that the cumulative histogram fits quite
closely a straight line on the log-normal probability paper, much
closer than it does on the normal probability paper. Similar to a

recent study (Bažant and Yu 2009), this observation may be
checked by the goodness-of-fit tests, e.g., the widely used K-S test
(Chakravarti et al. 1967) and the chi-square test (Snedecor and
Cochran 1989). Note the difference from the strength distribution
for identical specimens with a single type of material, which cannot
be log-normal (Bažant and Pang 2007) because what dominates the
database scatter are the differences among various concretes, f 0c,
a=d, ρw, ρs, rather than the randomness of one concrete per se.

Fig. 4(b) shows the log-normal PDF of normalized strength
vc=

ffiffiffiffiffiffi
f 0cr

p
positioned at the mean depth �d ¼ 315 mm (12.4 in.) of

the beams with stirrups in the small-size range. Its coefficient of
variation (CoV) is ω ¼ 0:30 (and the parameters are λ ¼ 1:22
and ζ ¼ 0:29 where λ and ζ are the mean and standard deviation
of the natural logarithm of the normalized strength). By using stat-
istical distribution tables or programs, one finds from these param-
eters that the probability that small beams with d ≤ 500 mm
(19.7 in.) would have vc < 2

ffiffiffiffiffiffi
f 0cr

p
is only 3.5%. This small

infringement on the code limit seems to be acceptable for design.
The question now is how to determine the PDF of vc of large

beams with stirrups, for which the data are limited to one type of
beam, whereas test data for many different concretes and different
f 0c, a=d, ρw, and ρs are lacking. If such test data were available, the
variation of these parameter would cause about the same relative
changes in vc. For this reason, and in similarity to the statistical
analysis of beams without stirrups (Bažant and Yu 2009), we must
expect that if many large beams for many different concretes and
different f 0c, a=d, ρw and ρs could be tested, the log-normal distri-
bution of their vc would have the same shape in the log-scale, and
particularly the same CoV as that for the small-size range,
i.e., ω ¼ 0:30.

Given the size independence of the shape of the log-normal pdf,
the only further information needed is the location of the mean of

Fig. 4. (a) Distribution of concrete shear strength versus size of beam; (b) failure probability of shear beam versus size of beam; (c) cumulative
histogram of data on normalized beam shear strength beams with d ≤ 500 mm (19.7 in.) plotted on both normal and log-normal probability paper, and
their straight-line fit
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the PDF of vc of large beams. To this end, the size effect data of Bhal
(1968), represented by the diamond points in Figs. 4(a) and 4(b),
may be used. The normalized mean shear strength �vc=

ffiffiffiffiffiffi
f 0cr

p
¼

3:52 of the small-size beams is located above the vc value for
the small beam of Bhal’s series (with d ¼ 300 mm ¼ 11:8 in.).
As seen in Figs. 4(a) and 4(b), the mean is shifted upward by
24%, i.e., by distance a ¼ log 1:24 ¼ 0:093. Because the concrete
type, f 0c, a=d, ρw, and ρs were, in Bhal’s series, kept nearly the
same for all the beam sizes, the distance of upward shift (in the
log-scale) of the PDF mean from the vc value measured by Bhal
on his largest beam (d ¼ 1:2 m ¼ 47:2 in:) must be about the
same and approximately equal to the upward shift a for small
beams. [There are some other subtle points in this kind of argu-
ment, e.g., the randomness of a, but they were already discussed
before and were demonstrated to have a negligible effect on the
final results (Bažant and Yu 2009).]

Similar to the study of RC beams without shear reinforcement
(Bažant and Yu 2009), consider now beams with stirrups about 1 m
(39.4 in.) deep. When the mean of the log-normal PDF is shifted up
by distance a from the size effect curve measured by Bhal (1968),
one finds that the percentage of the tests of 0.9 m (35.4 in.) deep
beams made with different concretes and different f 0c, a=d, ρw, and
ρs, would fall below the code limit vc ¼ 2

ffiffiffiffiffiffi
f 0cr

p
is 5.7%. For beams

1.2 m deep, which is the depth of the largest beam of Bhal, this
percentage rises to 8.6%. For deeper beams, the percentages are,
of course, still larger (e.g., for 2 m deep, it would be 15.7%,
and 6 m deep, 55.1%).

Similarly, one may further combine the beam strength distribu-
tion with the load distribution and calculate probability Pf of
failure. For the beams of Bhal’s type, one gets Pf ¼ 10�6, 10�5,
10�4, and 10�3 for d ¼ 0:3 m, 1, 2, and 6 m, respectively [for
the calculation procedure, see Bažant and Yu (2009)]. Note also
that 10�6 is considered by reliability experts as the maximum tol-
erable (Melchers 1987; Duckett 2005) and the higher Pf values as
intolerable.

The foregoing arguments, which were deliberately based on the
statistics of experimental data alone, suffice to show that the size
effect on beams with stirrups must be taken into account in practice.

Regression of Size Effect Data after Minimizing
Statistical Bias

There are two types of statistical bias in the compiled database:
(1) a nonuniform distribution of secondary influencing factors;
and (2) unequal numbers of data points in different size ranges.
As illustrated in Figs. 4(a) and 4(b), most of the data points are
crowded in the small-size range; 85% of the beams have a depth
d < 0:5 m (19.7 in.), 99% have d < 1:2 m (47.2 in.), and no beam
has a depth d > 1:89 m (74.4 in.). If statistical regression with uni-
form weights were conducted, the statistics would be dominated by
small-size beams for which the size effect is very weak, and the
beams with d > 1:2 m would be irrelevant. At the same time,
the size effect on shear strength is obscured by enormous scatter
in the database [Figs. 4(a) and 4(b)], which stems mainly from
the variability of secondary, although significant, influencing fac-
tors, such as f 0c, a=d, ρw, ρs, da, concrete composition and curing.
Both types of bias must be minimized.

To this end, we emulate a recent study of Bažant and Yu (2007,
2008), subdividing the size range into four intervals of equal widths
in log d (Fig. 5), which range from 0.15 to 0.3 m (6 to 12 in.), from
0.3 to 0.6 m (12 to 24 in.), from 0.6 to 1.2 m (24 to 48 in.), and from
1.2 to 2.4 m (48 to 96 in.). If the entire database were to be obtained
in one centrally directed testing program, a sound statistical design
of experiment would have dictated choosing the same number of
tests in each size interval and maintaining within each size interval

the same mean and the same CoV of the secondary influencing
parameters a=d, ρw, ρs, and f 0c. To approach this ideal situation
as closely as possible, the database must be filtered.

In the existing database, the means of ρw, a=d, ρs, and da vary
significantly from one interval to the next, and so the trend of the
entire database in the plot of vn versus d represents some combi-
nation of size effect with the effects of ρw, a=d, ρs, and da, rather
than the size effect alone. To identify the size effect from experi-
ments in a purely statistical way, we must filter the database so as to
retain in each size interval (Fig. 5) only those data that give about
the same mean of parameters ρw, a=d, ρs, and da.

As for the stirrup spacing s, we cannot enforce the same mean
because there would not be sufficient number of data left in the
intervals after filtering. But this is not a serious problem because
the effect of spacing s is weak. For the same reason, we cannot
filter the database to achieve the same f 0c in each interval. But the
influence of f 0c may be largely suppressed by using vc=

ffiffiffiffi
f 0c

p
as the

ordinate because it is generally agreed that vc is approximately
proportional to

ffiffiffiffi
f 0c

p
.

Compared with the previous study of beams without stirrups,
an additional problem arises in plotting vn ¼ vc þ vs because, in
determining vs, it is not known whether the stirrups yield before
or after the maximum load (this question could only be answered
by fracture-based finite-element simulation of each test in the
database). The best that can be done with the information avail-
able is to use the vs value for yielding stirrups and plot
vn=

ffiffiffiffi
f 0c

p
¼ vc=

ffiffiffiffi
f 0c

p
þ vs=

ffiffiffiffi
f 0c

p
. The implied reduction of vs for

higher f 0c happens to partially compensate for the fact that if the
concrete strength in large beams is increased, the stirrups are less
likely to yield at maximum load.

To avoid human bias, the data must be filtered from the database
by a computer algorithm with mathematical rules. The algorithm
[which need not be described here as it was presented in detail
in Bažant and Yu (2008)] removes progressively from each interval
the data points from the upper and lower margins so as to minimize
the sum of squared differences of secondary parameters ρw, a=d, ρs,
and da from their desired means �ρw, a=d, �ρs, and �da. The algorithm
is run for many possible value of the means until a data set with
minimum variation in all the secondary parameters among the in-
tervals is found, while a sufficient number of data points is retained.

In the compiled database of 183 data points which satisfy the
minimum stirrup requirement, there are 51 tests in which the con-
crete aggregate size da was not reported. In view of the influence of
da on vc, which has already been documented for beams without

Fig. 5. Statistical regression of centroids after restricting the secondary
influencing parameters in size intervals
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stirrups (Bažant and Yu 2005b; Bažant et al. 2007), these 51 data
points have been deleted. The remaining 132 data points are
divided into the aforementioned four size intervals (Fig. 5). As
seen, there is only one test falling into the size range from 1.2
to 2.4 m (48 to 96 in.). This test, made at the University of Toronto
(Lubell et al. 2004), has a steel ratio of ρw ¼ 0:74%, which is so
low that no test of similar ρw is found in the other size intervals.
Therefore, we can only consider the size range from 0.3 to 1.2 m
(6 to 48 in.), subdivided into three intervals.

If the parameter ranges are restricted by the filtering algorithm
(Bažant and Yu 2007, 2008), 9, 6, and 5 data points remain in the
first, second, and third size intervals, respectively. (Ideally, of
course, the number of data in each interval should be the same,
and the fact that it is not shows that complete elimination of stat-
istical bias is impossible; nevertheless for obtaining the means,
even 3 data points would suffice.) For the restricted parameter
ranges, the mean values of ρw are, respectively, 1.93, 1.90, and
1.91%; the mean values of a=d are 3.3, 3.6, and 3.1; the mean
values of vs are 0.59, 0.61, and 0.64 MPa (85, 88, 93 psi), and
the mean values of da are 20, 19, and 21 mm (0.79, 0.75, and
0.83 in.). This filtering yields data samples with minimum bias
in terms of ρw, a=d, ρs, and da.

The data centroids for each interval are plotted as the diamond
points in the plot of logðvc=

ffiffiffiffiffiffi
f 0cr

p
Þ versus log d (Fig. 5). Despite

enormous scatter in the database, the trend of these
centroids is quite systematic. The trend shows a negative cur-
vature and the last 2 points conform to the asymptotic slope
of �1=2.

Only statistical analysis of test data, with no mechanics, no
finite-element analysis and no human intervention, has been used
to get this result.

Assuming each centroid in Fig. 5 to have the same weight sup-
presses the second kind of bias because of unequal numbers of data
in the individual intervals. Optimum fitting of the centroids is then
used to obtain the classical size effect law [Eq. (2)]; see the solid
curve in Fig. 5, approaching an asymptote of slope�1=2. The CoV
of the errors of the fit is ω ¼ 1:0%, which is very small.

Conclusions

1. Although stirrups mitigate the size effect on the shear strength
of RC beams, they cannot suppress it completely, regardless of
the stirrup ratio.

2. The stirrups, whether minimum or heavier, do not change the
shape of the size effect curve but push it, in the bilogarithmic
scale, into larger sizes, increasing the transitional size d0 by
almost one order of magnitude. Thus the size effect of shear
strength is mitigated in the small-size range (up to about 1 m or
39.4 in. beam depth), but remains the same in the large
size range.

3. Computational simulations on the basis of a realistic damage
constitutive model and the crack-band approach of nonlinear
fracture mechanics show that RC beams with or without
stirrups fail by compression-shear crushing of the concrete
between the diagonal crack tip and the top face.

4. The simulations also imply that the effect of shear reinforce-
ment ratio on the shear strength is not linear. Large enough
beams reach their maximum load before the stirrups yield,
and then further strengthening of the shear reinforcement will
not improve the shear strength of the beam.

5. Although the spacing of stirrups significantly affects the incli-
nation of the diagonal shear crack, it has a negligible effect on
the shear strength of beam.

6. The probability distribution of beam strength identified from
the database shows that about 3.5% of beams of depth d <
0:5 m have a strength lower than required by the code. For
d ¼ 1, 2, 6 m, this percentages rises to 6.5, 15.7, and
55.1%, respectively, if the size effect is ignored. The corre-
sponding failure probabilities for d < 0:5, 1, 2, and 6 m are
10�6, 10�5, 10�4, and 10�3, respectively, if the size effect
is ignored. The first probability is acceptable, but the others
are not.

7. The size effect in the database is contaminated by the second-
ary influences of the shear span ratio and longitudinal and
stirrup steel ratios because the means of these parameters
within subsequent intervals of size vary significantly with
increasing size. Filtering the database can make these means
nearly size-independent. Then the data centroids in the subse-
quent intervals exhibit a clear size effect trend, which agrees
with the theoretical size effect.

Acknowledgments

This study was motivated by the goals of ACI Committee 446,
Fracture Mechanics, and was supported by the Department of
Transportation through the Infrastructure Institute of Northwestern
University, under Grant No. 60020778.

References

ACI Committee 326. (1962). “Shear and diagonal tension.” J. Am. Concr.
Inst., 59, 1–30, (Jan.), 277–344 (Feb.), 352–396 (March).

ACI Committee 445. (1998). “Recent approaches to shear design of struc-
tural concrete.” J. Struct. Eng., 124(12), 1375–1417.

ACI Committee 318. (2008). Building code requirements for structural
concrete (ACI 318-08) and commentary (ACI 318R-08), American
Concrete Institute, Farmington Hills, MI, 430.

Anderson, N. S., and Ramirez, J. A. (1989). “Detailing of stirrup reinforce-
ment.” ACI Struct. J., 86(5), 507–515.

Ang, A. H.-S., and Tang, W. H. (1976). Probability concepts in engineering
planning and design. Vol. I. Basic principles, Wiley, New York.

Angelakos, D., Bentz, E. C., and Collins, M. P. (2001). “Effect of concrete
strength and minimum stirrups on shear strength of large members.”
J. Struct. Eng., 98(3), 290–300.

ATENA. (2005). “ATENA-nonlinear analysis software.” Červenka Consult-
ing, Prague.

Bažant, Z. P. (1984). “Size effect in blunt fracture: Concrete, rock, metal.”
J. Eng. Mech., 110, 518–535.

Bažant, Z. P. (1997). “Fracturing truss model: Size effect in shear failure of
reinforced concrete.” J. Eng. Mech., 123(12), 1276–1288.

Bažant, Z. P. (2005). Scaling of structural strength, 2nd Ed., Elsevier,
London.

Bažant, Z. P., Caner, F. C., Carol, I., Adley, M. D., and Akers, S. A. (2000).
“Microplane model M4 for concrete: I. Formulation with work-
conjugate deviatoric stress.” J. Eng. Mech., 126(9), 944–953.

Bažant, Z. P., and Jirásek, M. (2002). “Nonlocal integral formulations of
plasticity and damage: Survey of progress.” J. Eng. Mech., 128(11),
1119–1149.

Bažant, Z. P., and Kazemi, M. T. (1991). “Size effect on diagonal
shear failure of beams without stirrups.” ACI J., 88(3), 268–
276.

Bažant, Z. P., and Kim, J.-K. (1984). “Size effect in shear failure
of longitudinally reinforced beams.” J. Am. Concr. Inst., 81,
456–468.

Bažant, Z. P., and Oh, B.-H. (1983). “Crack band theory for fracture of
concrete.” Mater. Struct., 16, 155–177.

Bažant, Z. P., and Pang, S.-D. (2007). “Activation energy based extreme
value statistics and size effect in brittle and quasibrittle fracture.”
J. Mech. Phys. Solids, 55, 91–134.

JOURNAL OF STRUCTURAL ENGINEERING © ASCE / MAY 2011 / 615

Downloaded 09 May 2011 to 129.105.86.103. Redistribution subject to ASCE license or copyright. Visithttp://www.ascelibrary.org

http://dx.doi.org/10.1061/(ASCE)0733-9445(1998)124:12(1375)
http://dx.doi.org/10.1061/(ASCE)0733-9399(1984)110:4(518)
http://dx.doi.org/10.1061/(ASCE)0733-9399(1997)123:12(1276)
http://dx.doi.org/10.1061/(ASCE)0733-9399(2000)126:9(944)
http://dx.doi.org/10.1061/(ASCE)0733-9399(2002)128:11(1119)
http://dx.doi.org/10.1061/(ASCE)0733-9399(2002)128:11(1119)
http://dx.doi.org/10.1016/j.jmps.2006.05.007


Bažant, Z. P., and Planas, J. (1998). Fracture and size effect in concrete and
other quasibrittle materials, CRC Press, Boca Raton, FL.

Bažant, Z. P., and Sun, H.-H. (1987). “Size effect in diagonal shear failure:
Influence of aggregate size and stirrups.” ACI J., 84(4), 259–272.

Bažant, Z. P., and Xi, Y. (1991). “Statistical size effect in quasi-brittle struc-
tures: II. Nonlocal theory.” J. Eng. Mech., 117(11), 2623–2640.

Bažant, Z. P., and Xiang, Y. (1997). “Size effect in compression
fracture: Splitting crack band propagation.” J. Eng. Mech., 123(2),
162–172.

Bažant, Z. P., and Yu, Q. (2005a). “Designing against size effect on shear
strength of reinforced concrete beams without stirrups: I. Formulation.”
J. Struct. Eng., 131(12), 1877–1885.

Bažant, Z. P., and Yu, Q. (2005b). “Designing against size effect on shear
strength of reinforced concrete beams without stirrups: II. Verification
and calibration.” J. Struct. Eng., 131(12), 1886–1897.

Bažant, Z. P., and Yu, Q. (2006). “Reliability, brittleness, covert under-
strength factors, and fringe formulas in concrete design codes.”
J. Struct. Eng., 132(1), 3–12.

Bažant, Z. P., and Yu, Q. (2007). “Consequences of ignoring or mis-judging
the size effect in concrete design codes and practice.” Concrete Tech-
nology (Taiwan), 1(1), 29–55 (authorized republication, with updates,
from Proc., 3rd Structural Engineers World Congress, Bangalore,
2007).

Bažant, Z. P., and Yu, Q. (2008). “Minimizing statistical bias to
identify size effect from beam shear database.” ACI Struct. J., 105(6),
685–691.

Bažant, Z. P., and Yu, Q. (2009). “Does strength test satisfying code
requirement for nominal strength justify ignoring size effect in shear?”
ACI Struct. J., 106(1), 14–19.

Bažant, Z. P., Yu, Q., Gerstle, W., Hanson, J., and Ju, J. W. (2007). “Jus-
tifiction of ACI 446 proposal for updating ACI code provisions for
shear design of reinforced concrete beams.” ACI Struct. J., 104(5),
601–610.

Becq-Giraudon, E. F. (2000). “Size effect on fracture and ductility of
concrete and fiber composites.” Dissertation, Northwestern Univ.

Bhal, N. S. (1968). “Über den Einfluss der Balkenhöhe auf Schubtragfä-
highkeit von einfeldrigen Stalbetonbalken mit und ohne Schubbeweh-
rung.” Dissertation, Universität Stuttgart.

Bresler, B., and Scordelis, A. C. (1963). Shear strength of reinforced
concrete beams.” Proc., J. Am. Concr. Inst., 60(1), 51–74.

Bresler, B., and Scordelis, A. C. (1966). “Shear strength of reinforced
concrete beams—Series III.” Rep. No. 65-10, Structures and Materials
Research, Dept. of Civil Engineering, Univ. of California, Berkeley,
CA.

Caner, F. C., and Bažant, Z. P. (2000). “Microplane model M4 for concrete:
II. Algorithm and calibration.” J. Eng. Mech., 126(9), 954–961.

Chakravarti, I. M., Laha, R. G., and Roy, J. (1967).Handbook of methods of
applied statistics, Vol. I, Wiley, New York, 392–394.

Comité Euro-International du Béton (CEB). (1990). CEB-FIP model code
1990.

Duckett, W. (2005). “Risk analysis and the acceptable probability of fail-
ure.” Structural Engineer, August, 25–26.

Elzanaty, A. H., Nilson, A. H., and Slate, F. O. (1986). “Shear capacity of
reinforced concrete beams using high-strength concrete.” Proc., J. Am.
Concr. Inst., 83(2), 290–296.

Frosch, R. J. (2000). “Behavior of large-scale reinforced concrete
beams with minimum shear reinforcement.” ACI Struct. J., 97(6),
814–820.

Iguro, M., Shioya, T., Nojiri, Y., and Akiyama, H. (1985). “Experimental
studies on shear strength of large reinforced concrete beams under
uniformly distributed load.” Concrete Library Int. of JSCE,
No. 5 (translation from Proc., JSCE, No. 345/V-1, August 1984),
137–146.

Japan Society of Civil Engineers (JSCE). (1986). Standard specification
for design and construction of concrete structures, Part 1 [Design].
Tokyo.

Johnson, M. K., and Ramirez, J. A. (1989). “Minimum shear reinforcement
in beams with higher strength concrete.” ACI Struct. J., 86(4), 376–382.

Kani, G. N. J. (1967). “How safe are our large reinforced concrete beams?”
Proc., J. Am. Concr. Inst., 64(31), 128–141.

Karayiannis, C. G., and Chalioris, C. E. (1999). “Experimental investiga-
tion of the influence of stirrups on the shear failure mechanism of
reinforced concrete beams.” Proc., 13th Hellenic Conference on
Concrete, Rethymnon, Greece, 1, 133–141 (in Greek).

Kong, P. Y. L., and Rangan, B. V. (1998). “Shear strength of high-
performance concrete beams.” ACI Struct. J., 95(6), 667–677.

Krefeld, W. J., and Thurston, C. W. (1966). “Studies of the shear and diago-
nal tension strength of simply supported reinforced concrete beams.”
J. Am. Concr. Inst., April 1966, 451–476.

Lampert, P., and Thürlimann, B. (1969). “Torsion tests of reinforced con-
crete beams (Torsionsversuche an Stahlbetonbalken).” Bericht No.
6506-2, Institut für Baustatik, ETH, Zürich, June 1968, 101, and
“Torsion-bending tests on reinforced concrete beams (Torsion-Biege-
Versuche an Stahlbetonbalken),” Bericht No. 6506-3, Institut für
Baustatik, ETH, Zürich, 116.

Leonhardt, F., and Walther, R. (1962). “Schubversuche an Einfeldrigen
Stahlbeton-Balken mit und ohne Schubbewehrung zur Ermittlung
der Schubtragfähigkeit und der Oberen Schubspannungsgrenze.” Heft
151, Deutcher Ausschuss für Stahlbeton, W. Ernst, u. Sohn, Berlin,
66 (in German).

Lubell, A., Sherwood, T., Bentz, E., and Collins, M. P. (2004). “Safe shear
design of large, wide beams.” Concr. Int., 26(1), 67–78, with discus-
sions (letter to ed.) by Bažant and Yu.

Mattock, A. H., and Wang, Z. (1984). “Shear strength of reinforced
concrete members subject to high axial compressive stress.” J. Am.
Concr. Inst., May–June, 287–298.

McGormley, J. C., Cleary, D. B., and Ramirez, J. A. (1996). “The perfor-
mance of epoxy-coated shear reinforcement.” ACI Struct. J., 93(5),
531–537.

Melchers, R. E. (1987). Structural reliability, analysis and prediction,
Wiley, New York.

Mörsch, E. (1922). “Der eisenbetonbau—Seine theorie und anwendung.”
Reinforced concrete construction—Theory and application, Wittwer,
Stuttgart, 5th Ed., Vol. 1, Part 1, 1920 and Part 2, 1922.

Mphonde, A. G., and Frantz, G. G. (1985). “Shear tests of high-and
low-strength concrete beams with stirrups.” High-strength concrete,
SP-87, H. G. Russell, ed., American Concrete Institute, Farmington
Hills, MI, 179–196.

NKB. (1978). “Nordic committee for building structures. Recommendation
for loading and safety regulations for structural design.” NKB Rep.,
No. 36.

Okamura, H., and Higai, T. (1980). “Proposed design equation for shear
strength of reinforced concrete beams without web reinforcement.”
Proc., Japanese Society of Civil Engineers, 300, Japanese Society of
Civil Engineers, Tokyo, 131–141.

Placas, A., and Regan, P. E. (1971). “Shear failure of reinforced concrete
beams.” Proc., J. Am. Concr. Inst., 68(10), 763–773.

Podgorniak-Stanik, B. A. (1998). “The influence of concrete strength,
distribution of longitudinal reinforcement, amount of transverse
reinforcement and member size on shear strength of reinforced concrete
members.” M.A.Sc. thesis, Dept. of Civil Engineering, Univ. of
Toronto, 771.

Rajagopalan, K. S., and Ferguson, P. M. (1968). “Exploratory shear tests
emphasizing percentage of longitudinal steel.” J. Am. Concr. Inst.,
August, 634–638.

Reineck, K.-H., Kuchma, D. A., Kim, K. S., and Marx, S. (2003). “Shear
database for reinforced concrete members without shear reinforce-
ment.” ACI Struct. J., 100(2), 240–249.

RILEM Technical Committee QFS. (2004). “Quasibrittle fracture scaling
and size effect—Final report.” Mater. Struct., 37(272), 547–586.

Ritter, W. (1899). “Die Bauweise Hennebique.” Schweizerische Bauzeitung
Zürich, 33(7), 59–61.

Roller, J. J., and Russell, H. G. (1990). “Shear strength of high-strength
concrete beams with web reinforcement.” ACI Struct. J., 87(2),
191–198.

Russo, G., Somma, G., and Angeli, P. (2004). “Design shear strength for-
mula for high strength concrete beams.” Mater. Struct., 37, 680–688.

Sarsam, K. F., and Al-Musawi, J. M. S. (1992). “Shear design of high-and
normal-strength concrete beams with web reinforcement.” ACI Struct.
J., 89(6), 658–664.

616 / JOURNAL OF STRUCTURAL ENGINEERING © ASCE / MAY 2011

Downloaded 09 May 2011 to 129.105.86.103. Redistribution subject to ASCE license or copyright. Visithttp://www.ascelibrary.org

http://dx.doi.org/10.1061/(ASCE)0733-9399(1991)117:11(2623)
http://dx.doi.org/10.1061/(ASCE)0733-9399(1997)123:2(162)
http://dx.doi.org/10.1061/(ASCE)0733-9399(1997)123:2(162)
http://dx.doi.org/10.1061/(ASCE)0733-9445(2005)131:12(1877)
http://dx.doi.org/10.1061/(ASCE)0733-9445(2005)131:12(1886)
http://dx.doi.org/10.1061/(ASCE)0733-9445(2006)132:1(3)
http://dx.doi.org/10.1061/(ASCE)0733-9399(2000)126:9(954)
http://dx.doi.org/10.1617/14109


Shah, A., and Ahmad, S. (2007). “An experimental investigation into shear
capacity of high strength concrete beams.” Asian J. Civil Eng. (Building
and Housing), 8(5), 549–562.

Shioya, T., and Akiyama, H. (1994). “Application to design of size effect
in reinforced concrete structures.” Size effect in concrete structures
(Proc., Japan Concrete Institute Int. Workshop, Sendai), H. Mihashi,
H. Okamura, and Z. P. Bažant, eds., Spon, London, 409–416.

Snedecor, G. W., and Cochran, W. G. (1989). Statistical Methods, 8th Ed.,
Iowa State Univ. Press.

Swamy, R. N., and Andriopoulos, A. D. (1974). “Contribution of aggregate
interlock and dowel forces to the shear resistance of reinforced beams
with web reinforcement.” Shear in reinforcement concrete, SP-42,
American Concrete Institute, Farmington Hills, MI, 129–166.

Tan, K. H., and Cheng, G. H. (2006). “Size effect on shear strength of deep
beams: Investigating with strut-and-tie model.” J. Struct. Eng., 132(5),
673–685.

Tan, K. H., and Lu, Y. (1999). “Shear behavior of large reinforced concrete
deep beams and code comparisons.” ACI Struct. J., 96(5), 836–846.

Tompos, E. J., and Frosch, R. J. (2002). “Influence of beam size, longitu-
dinal reinforcement, and stirrup effectiveness on concrete sheaer
strength.” ACI Struct. J., 99(5), 559–567.

Walraven, J., and Lehwalter, N. (1994). “Size effect in short beams loaded
in shear.” ACI Struct. J., 91(5), 585–593.

Weibull, W. (1939). “The phenomenon of rupture in solids.” Proc.,
Royal Swedish Institute of Engineering Research, 153, Stockholm,
1–55.

Weibull, W. (1951). “A statistical distribution function of wide applicabil-
ity.” J. Appl. Mech., 18, 293–297.

Xie, Y., Ahmad, S. H., Yu, T., Hino, S., and Chung, W. (1994). “Shear
ductility of reinforced concrete beams of normal and high-strength
concrete.” ACI Struct. J., 91(2), 140–149.

Yoon, Y., Cook, W. D., and Mitchell, D. (1996). “Minimum shear
reinforcement in normal-, medium-, and high-strength concrete beams.”
ACI Struct. J., 93(5), 576–584.

Zararis, P. D. (2003). “Shear strength and minimum shear reinforcement
of reinforced concrete slender beams.” ACI Struct. J., 100(2),
203–214.

Zararis, P. D., and Papadakis, G. (1999). “Influence of the arrangement of
reinforcement on the shear strength of RC beams.” Proc., 13th Hellenic
Conference on Concrete, Vol. I, Rethymnon, Greece, 110–119 (in
Greek).

JOURNAL OF STRUCTURAL ENGINEERING © ASCE / MAY 2011 / 617

Downloaded 09 May 2011 to 129.105.86.103. Redistribution subject to ASCE license or copyright. Visithttp://www.ascelibrary.org

http://dx.doi.org/10.1061/(ASCE)0733-9445(2006)132:5(673)
http://dx.doi.org/10.1061/(ASCE)0733-9445(2006)132:5(673)

