FRACTURE
AND
SIZE EFFECT
in Concrete and Other
Quasibrittle Materials

Zdeněk P. Bažant
Walter P. Murphy Professor of Civil Engineering
and Materials Science
Northwestern University
Evanston, Illinois

Jaime Planas
Professor of Materials Science
E.T.S. Ingenieros de Caminos, Canales y Puertos
Universidad Politécnica de Madrid
Madrid, Spain

CRC
CRC Press
1998
Contents

Preface

1 Why Fracture Mechanics?
 1.1 Historical Perspective
 1.2 Classical Linear Theory
 1.3 Continuum-Based Theories
 1.4 Trends in Fracture of Quasibrittle Materials
 2 Reasons for Fracture Mechanics Approach
 2.1 Energy Required for Crack Formation
 2.2 Objectivity of Analysis
 2.3 Lack of Yield Plateau
 2.4 Energy Absorption Capability and Ductility
 2.5 Size Effect
 3 Sources of Size Effect on Structural Strength
 4 Quantification of Fracture Mechanics Size Effect
 4.1 Nominal Stress and Nominal Strength
 4.2 Size Effect Equations
 4.3 Simple Explanation of Fracture Mechanics Size Effect
 5 Experimental Evidence for Size Effect
 5.1 Structures with Notches or Cracks
 5.2 Structures Without Notches or Cracks

2 Essentials of LEFM
 2.1 Energy Release Rate and Fracture Energy
 2.2 LEFM and Stress Intensity Factor
 2.2.1 The General Energy Balance
 2.2.2 Elastic Potentials and Energy Release Rate
 2.2.3 The Linear Elastic Case and the Compliance Variation
 2.2.4 Graphical Representation of Fracture Processes
 2.2.5 Rice’s J-Integral
 2.2.6 Fracture Criterion and Fracture Energy
 2.2.7 The Center Cracked Infinite Panel and the Near-Tip Fields
 2.2.8 The General Near-Tip Fields and Stress Intensity Factors
 2.2.9 Relationship Between K_I and \mathcal{G}
 2.2.10 Local Fracture Criterion for Mode I: K_{Ic}
 2.3 Size Effect in Plasticity and in LEFM
 2.3.1 Size Effect for Failures Characterized by Plasticity, Strength, or Allowable Stress
 2.3.2 General Forms of the Expressions for K_I and \mathcal{G}
 2.3.3 Size Effect in LEFM
 2.3.4 Structures Failing at Very Small Cracks Whose Size is a Material Property

3 Determination of LEFM Parameters
 3.1 Setting up Solutions from Closed-Form Expressions
 3.1.1 Closed-Form Solutions from Handbooks
 3.1.2 Superposition Methods
 3.2 Approximate Energy-Based Methods
 3.2.1 Examples Approximately Solvable by Bending Theory
 3.2.2 Approximation by Stress Relief Zone
 3.2.3 Hermann’s Approximate Method to Obtain \mathcal{G} by Beam Theory
 3.2.4 Subsurface Cracking in Compression by Buckling
 3.3 Numerical and Experimental Procedures to Obtain K_I and \mathcal{G}
 3.3.1 Numerical Procedures
 3.3.2 Experimental Procedures
 3.4 Experimental determination of K_{Ic} and G_I
 3.5 Calculation of Displacements from K_I-Expressions
 3.5.1 Calculation of the Displacement
 3.5.2 Compliance, Energy Release Rate, and Stress Intensity Factor for a System of Loads
 3.5.3 Calculation of the Crack Mouth Opening Displacement
 3.5.4 Calculation of the Volume of the Crack
 3.5.5 Calculation of the Crack Opening Profile
 3.5.6 Bueckner’s Expression for the Weight Function

4 Advanced Aspects of LEFM
 4.1 Complex Variable Formulation of Plane Elasticity Problems
 4.1.1 Navier’s Equations for the Plane Elastic Problem
 4.1.2 Complex Functions
 4.1.3 Complex Form of Hooke’s and Navier’s Equations
 4.1.4 Integration of Navier’s Equation: Complex Potentials
 4.2 Plane Crack Problems and Westergaard’s Stress Function
 4.2.1 Westergaard Stress Function
 4.2.2 Westergaard’s Solution of Center-Cracked Infinite Panel
 4.2.3 Near-Tip Expansion for the Center-Cracked Panel
 4.3 The General Near-Tip Fields
 4.3.1 In-Plane Near-Tip Asymptotic Series Expansion
 4.3.2 The Stress Intensity Factors
 4.3.3 Closer View of the Near-Tip Asymptotic Expansion for Mode I
 4.3.4 The Antiplane Shear Mode
 4.3.5 Antiplane Near-Tip Asymptotic Series Expansion
 4.4 Path-Independent Contour Integrals
 4.4.1 Path Independence of the J-Integral
 4.4.2 Further Contour Integral Expressions for \mathcal{G} in LEFM
 4.4.3 Further Proof of the Irwin Relationship
 4.4.4 Other Path-Independent Integrals
 4.4.5 Exercises
 4.5 Mixed Mode Fracture Criteria
 4.5.1 Maximum Energy Release Rate Criterion
 4.5.2 Maximum Principal Stress Criterion
 Appendix: Strain Energy Density Criterion
5 Equivalent Elastic Cracks and R-curves
5.1 Variability of Apparent Fracture Toughness for Concrete ... 101
5.2 Types of Fracture Behavior and Nonlinear Zone ... 103
5.2.1 Brittle, Ductile, and Quasibrittle Behavior .. 104
5.2.2 Irwin's Estimate of the Size of the Inelastic Zone ... 104
5.2.3 Estimate of the Fracture Zone Size for quasibrittle Materials 106
5.3 The Equivalent Elastic Crack Concept .. 108
5.3.1 Estimate of the Equivalent LEFM Crack Extension .. 109
5.3.2 Deviation from LEFM .. 109
5.3.3 Intrinsic Size .. 110
5.4 How Large the Size Must Be for LEFM to Apply? ... 111
5.5 Fracture Toughness Determinations Based on Equivalent Crack Concepts 112
5.5.1 The Basic Equations of Jeng-Shah Model ... 117
5.5.2 Experimental Determination of Jeng-Shah Parameters ... 119
5.6 R-Curves .. 121
5.6.1 Definition of an R-Δε Curve .. 121
5.6.2 Description of the Fracture Process .. 123
5.6.3 The Peak Load Condition ... 124
5.6.4 Positive and Negative Geometries .. 126
5.6.5 R-Curve Determination from Tests .. 126
5.6.6 R-CTOD Curves ... 128
5.7 Stability Analysis in the R-Curve Approach ... 130
5.7.1 Stability under Load-Control Conditions ... 130
5.7.2 Stability under Displacement-Control Conditions .. 131
5.7.3 Stability under Mixed-Control Conditions ... 131
6 Determination of Fracture Properties From Size Effect .. 135
6.1 Size Effect in Equivalent Elastic Crack Approximations .. 135
6.1.1 Size Effect in the Large Size Range .. 135
6.1.2 Size Effect in the Jeng-Shah Model .. 136
6.2 Size Effect Law in Relation to Fracture Characteristics .. 138
6.2.1 Defining Objective Fracture Properties ... 138
6.2.2 Determination of Fracture Parameters from Size Effect .. 138
6.2.3 Determination of Fracture Parameters from Size and Shape Effects and Zero Britteness Method .. 139
6.2.4 Intrinsic Representation of the Size Effect Law ... 139
6.3 Size Effect Method: Detailed Experimental Procedures .. 140
6.3.1 Outline of the Method ... 140
6.3.2 Regression Relations ... 140
6.3.3 RILEM Recommendation Using the Size Effect Method: Experimental Procedure 143
6.3.4 RILEM Recommendation Using the Size Effect Method: Calculation Procedure 144
6.3.5 Performance of the Size Effect Method ... 147
6.3.6 Improved Regression Relations ... 147
6.4 Determination of R-Curve from Size Effect ... 150
6.4.1 Determination of R-Curve from Size Effect .. 150
6.4.2 Determination of R-Curve from Bazant's Size Effect Law 152
6.4.3 Determination of the Structural Response from the R-Curve 154
7 Cohesive Crack Models ... 157
7.1 Basic Concepts in Cohesive Crack Model ... 157
7.1.1 Hillerborg's Approach: The Cohesive Crack as a Constitutive Relation 158
7.1.2 Other Approaches to Cohesive Cracks .. 160
7.1.3 Softening Curve, Fracture Energy, and Other Properties .. 162
7.1.4 Extensions of the Cohesive Crack Model ... 164
7.1.5 Cohesive Cracks with Tip Singularity .. 165
7.1.6 Cohesive Cracks with Bulk Energy Dissipation .. 166
7.2 Cohesive Crack Models Applied to Concrete .. 167
7.2.1 Softening Curves for Concrete .. 167
7.2.2 Experimental Aspects .. 170
7.2.3 Computational Procedures for Cohesive Crack Analysis .. 172
7.2.4 Size Effect Predictions .. 175
7.2.5 Cohesive Crack Models in Relation to Effective Elastic Crack Models 177
7.2.6 Correlation of Cohesive Crack with Bazant's and Jeng and Shah's Models 178
7.3 Experimental Determination of Cohesive Crack Properties .. 180
7.3.1 Determination of the Tensile Strength ... 181
7.3.2 Determination of the Initial Part of the Softening Curve .. 182
7.3.3 Determination of Fracture Energy G_f .. 184
7.3.4 Determination of a Bilinear Softening Curve .. 188
7.4 Pseudo-Boundary-Integral Methods for Mode I Crack Growth 190
7.4.1 The Underlying Problem .. 190
7.4.2 Peterson's Influence Method ... 191
7.4.3 Improved Solution Algorithm of Planas and Elices ... 192
7.4.4 Smearred-Tip Method .. 193
7.4.5 Scaling of the Influence Matrices .. 195
7.4.6 Inclusion of Shrinkage or Thermal Stresses ... 196
7.4.7 Inclusion of a Crack-Tip Singularity .. 197
7.4.8 Computation of Other Variables .. 198
7.4.9 Limitations of the Pseudo-Boundary Integral (PBI) Methods 199
7.5 Boundary-Integral Methods for Mode I Crack Growth .. 199
7.5.1 A Basic Boundary Integral Formulation .. 199
7.5.2 Size-Dependence of the Equations ... 202
7.5.3 The Dugdale and Rectangular Softening Cases ... 203
7.5.4 Eigenvalue Analysis of the Size Effect ... 204
7.5.5 Eigenvalue Analysis of Stability Limit and Ductility of Structure 206
7.5.6 Smearred-Tip Superposition Method ... 207
7.5.7 Asymptotic Analysis ... 209
8 Crack Band Models and Smeared Cracking ... 213
8.1 Strain Localization in the Series Coupling Model .. 213
8.1.1 Series Coupling of Two Equal Strain Softening Elements: Imperfection Approach ... 214
8.1.2 Series Coupling of Two Equal Strain Softening Elements: Thermodynamic Approach ... 215
8.1.3 Mean Stress and Mean Strain .. 215
8.1.4 Series Coupling of N Equal Strain Softening Elements .. 216
8.2 Localization of Strain in a Softening Bar ... 217
8.2.1 Localization and Mesh Objectivity .. 217
8.2.2 Localization in an Elastic-Softening Bar ... 218
8.2.3 Summary: Necessity of Localization Limiters ... 219
8.3 Basic Concepts in Crack Band Models ... 220
8.3.1 Elastic-Softening Crack Band Models .. 220
8.3.2 Band Models with Bulk Dissipation ... 222
8.3.3 Unloading and Reloading ... 223
8.3.4 Fracture Energy for Crack Bands With Prepeak Energy Dissipation 224
8.4 Uniaxial Softening Models
8.4.1 Elastic-Softening Model with Stress Degradation .. 228
8.4.2 Elastic-Softening Model with Strength Degradation 229
8.4.3 Elastic-Softening Model with Stress and Strength Degradation 229
8.4.4 A Simple Continuum Damage Model .. 230
8.4.5 Unloading Inelasticity Prior to the Peak ... 231
8.4.6 Crack Closure in Reverse Loading and Compression 231
8.4.7 Introducing Other Inelastic Effects .. 232

8.5 Simple Triaxial Strain-Softening Models for Smeared Cracking
8.5.1 Cracking of Single Fixed Orientation: Basic Concepts 234
8.5.2 Sequential Approach to Cracking of Fixed Orientation 235
8.5.3 Scalar Damage Model for Cracking of Fixed Orientation 237
8.5.4 Incremental Approach to Cracking of Fixed Orientation 238
8.5.5 Multi-Directional Fixed Cracking .. 239
8.5.6 Rotating Crack Model .. 240
8.5.7 Generalized Constitutive Equations with Softening .. 242
8.5.8 Mazars’ Scalar Damage Model .. 243
8.5.9 Rankine Plastic Model with Softening .. 243
8.5.10 A Simple Model with Stress and Strength Degradation 244

8.6 Crack Band Models and Smeared Cracking
8.6.1 Stress-Strain Relations for Elements of Arbitrary Size 246
8.6.2 Skew Meshes: Effective Width ... 248
8.6.3 Stress Lock-In ... 250
8.6.4 Use of Elements of Large Size ... 251
8.6.5 Energy Criterion for Crack Bands with Sudden Cracking 252

8.7 Comparison of Crack Band and Cohesive Crack Approaches
8.7.1 Localized fracture: Micro Point Computationally ... 255
8.7.2 Nonlocalized Fracture: Third Parameter .. 255
8.7.3 Relation of Micromechanics of Fracture ... 257
8.7.4 Fracture of Arbitrary Direction ... 258

9 Advanced Size Effect Analysis
9.1 Size Effect Law Refinements .. 261
9.1.1 The Generalized Energy Balance Equation ... 261
9.1.2 Asymptotic Analysis for Large Sizes .. 263
9.1.3 Matching to the Effective Crack Model ... 263
9.1.4 Asymptotic Analysis for Small Sizes and Its Asymptotic Matching with Large Sizes ... 264
9.1.5 Asymptotic Aspects of Bazant’s Extended Size Effect Law 265
9.1.6 Size Effect for Failures at Crack Initiation from Smooth Surface 266
9.1.7 Universal Size Effect Law for Cracked and Uncracked Structures 268
9.1.8 Asymptotic Scaling Law for Many Loads .. 269
9.1.9 Asymptotic Scaling Law for a Crack with Residual Bridging Stress 270

9.2 Size Effect in Notched Structures Based on Cohesive Crack Models
9.2.1 The General Size Effect Equation .. 271
9.2.2 Asymptotic Analysis for Large Sizes .. 273
9.2.3 Asymptotic Analysis for Small Sizes .. 274
9.2.4 Interpolation Formula ... 275
9.2.5 Application to Notched Beams with Linear Softening 277
9.2.6 Application to Notched Beams with Linear Softening 277
9.2.7 Experimental Evidence .. 279
9.3 Size Effect on the Modulus of Rupture of Concrete 280
9.3.1 Notation and Definition of the Rupture Modulus .. 280
9.3.2 Modulus of Rupture Predicted by Cohesive Cracks 281

9.4 Compression Splitting Laws of Tensile Strength
9.4.1 Cracking Process in Stable Splitting Tests .. 292
9.4.2 Modified Bazant’s Size Effect Law ... 294
9.4.3 Size Effect Predicted by Eng-Shah Model ... 295
9.4.4 Size Effect Predicted by Cohesive Crack Models 296

9.5 Compression Failure Due to Propagation of Splitting Crack Band
9.5.1 Concepts and Mechanisms of Compression Fracture 297
9.5.2 Energy Analysis of Compression Failure of Column 300
9.5.3 Asymmetric Effect for Large Size ... 305
9.5.4 Size Effect Law for Axial Compression of Stocky Column 305
9.5.5 Effect of Buckling Due to Stiffness ... 307
9.5.6 Comparison with Experimental Data .. 308
9.5.7 The Question of Variation of Micrarcrack Spacing with Size D 310
9.5.8 Special Case of Compression with Transverse Tension 310
9.5.9 Distinction Between Axial Splitting and Failure Appearing as Shear 311

9.6 Scaling of Fracture of Sea Ice
9.6.1 Derivation of Size Effect for Thermal Bending Fracture of Ice Plate 314
9.6.2 General Proof of 3/2-Power Scaling Law .. 316

10 Britteness and Size Effect in Structural Design
10.1 General Aspects of Size Effect and Britteness in Concrete Structures 319
10.1.1 Conditions for Extending Bazant’s Size Effect Law to Structures 320
10.1.2 Britteness Number .. 321
10.1.3 Britteness of High Strength Concrete ... 323
10.1.4 Size Effect Correction to Ultimate Load Formulas in Codes 323
10.1.5 Size Effect Correction to Strength-Based Formulas 324
10.1.6 Effect of Restraint ... 325
10.2 Diagonal Shear Failure of Beams .. 326
10.2.1 Introduction ... 326
10.2.2 Bazant-Kim-Sun Formulas ... 327
10.2.3 Gustafsson-Hillerborg Analysis .. 330
10.2.4 LEFM Analysis of Jenq and Shah of Karhulainen 331
10.2.5 Finite Element Solutions with Nonlocal Microplane Model 334
10.2.6 Influence of Prestressing on Diagonal Shear Strength 334

10.3 Fracturing Tension Model for Shear Failure of Beams
10.3.1 Basic Hypotheses of Fracturing Tension Model .. 335
10.3.2 Analysis Based on Stress Relief Zone and Strain Energy for Longitudinally Reinforced Concrete Beams Without Stirups ... 336
10.3.3 Analysis Based on Stress Relief Zone and Strain Energy for Longitudinally Reinforced Concrete Beams With Stirups ... 341
10.3.4 Analysis Based on Stress Redistribution and Complementary Energy 344
10.3.5 Size Effect on Nominal Stress at Cracking Load 346
10.3.6 Conclusions .. 349

10.4 Reinforced Beams in Flexure and Minimum Reinforcement
10.4.1 Lightly Reinforced Beams: Overview ... 349
10.4.2 Models Based on LEFM .. 350
10.4.3 Simplified Cohesive Crack Models .. 356
10.4.4 Models Based on Cohesive Cracks ... 357
10.4.5 Formulas for Minimum Reinforcement Based on Fracture Mechanics 363
CONTENTS

10.5 Other Structures .. 365
10.5.1 Torsional Failure of Beams 365
10.5.2 Punching Shear Failure of Slabs 366
10.5.3 Anchor Pullout ... 367
10.5.4 Bond and Slip of Reinforcing Bars 368
10.5.5 Beam and Ring Failures of Pipes 371
10.5.6 Concrete Dams ... 372
10.5.7 Footings .. 375
10.5.8 Crack Spacing and Width, with Application to Highway Pavements .. 376
10.5.9 Keyed Joints .. 377
10.5.10 Fracture in Joints .. 377
10.5.11 Break-Out of Boreholes 379
10.5.12 Hilleberg’s Model for Compressive Failure in Concrete Beams .. 380

11 Effect of Time, Environment, and Fatigue

11.1 Phenomenology of Time-Dependent Fracture 384
11.1.1 Types of Time-Dependent Fracture 384
11.1.2 Influence of Loading Rate on Peak Load and on Size Effect .. 385
11.1.3 Load Relaxation ... 386
11.1.4 Creep Fracture Tests 388
11.1.5 Sudden Change of Loading Rate 388
11.1.6 Dynamic Fracture .. 389
11.2 Activation Energy Theory and Rate Processes 390
11.2.1 Elementary Rate Constants 391
11.2.2 Physical Rate Constants 391
11.2.3 Fracture as a Rate Process 394
11.2.4 General Aspects of Isothermal Crack Growth Analysis .. 395
11.2.5 Load-Controlled Processes for Power-Law Rate Equation .. 396
11.2.6 Displacement-Controlled Processes for Power-Law Rate Equation .. 397
11.3 Some Applications of the Rate Process Theory to Concrete Fracture .. 398
11.3.1 Effect of Temperature on Fracture Energy of Concrete .. 398
11.3.2 Effect of Humidity on the Fracture Energy of Concrete .. 399
11.3.3 Time-Dependent Generalization of the R-Curve Model .. 401
11.3.4 Application of the Time-Dependent R-Curve Model to Limestone .. 403

11.4 Linear Viscoelastic Fracture Mechanics 404

11.4.1 Uniaxial Linear Viscoelasticity 404
11.4.2 Compliance Functions for Concrete 407
11.4.3 General Linear Viscoelastic Constitutive Equations .. 408
11.4.4 The Correspondence Principle (Elastic-Viscoelastic Analogy) .. 409
11.4.5 Near-Tip Stress and Displacement Fields for a Crack in a Viscoelastic Structure .. 409
11.4.6 Crack Growth Resistance in a Viscoelastic Medium .. 412
11.4.7 Steady Growth of a Cohesive Crack with Rectangular Softening in an Infinite Viscoelastic Plate .. 413
11.4.8 Crack Growth in a Viscoelastic Plate 416
11.4.9 Crack Growth Analysis at Controlled Displacement .. 417

11.5 Rate-Dependent R-Curve Model with Creep 418

11.5.1 Basic Equations ... 418
11.5.2 Approximate Solution for Small Crack Extensions .. 419
11.5.3 Comparison with Tests 419
11.5.4 Rate-Dependence of Process Zone Length 420
11.5.5 Sudden Change of Loading Rate and Load Relaxation .. 420
11.5.6 Summary .. 422

11.6 Time Dependent Cohesive Crack and Crack Band Models 423

11.6.1 Time-Dependent Softening in a Viscoelastic Body .. 423
11.6.2 Time Dependent Softening in an Elastic Body 424

12 Statistical Theory of Size Effect and Fracture Process 437

12.1 Review of Classical Weibull Theory 439
12.1.1 The Weakest-Link Discrete Model 439
12.1.2 The Weakest-Link Model for Continuous Structures under Uniaxial Stress .. 440
12.1.3 The Weibull Statistical Probability Distribution .. 441
12.1.4 Structures with Nondeterministic Uniaxial Stress .. 443
12.1.5 Generalization to Triaxial Stress States 445
12.1.6 Independent Failure Mechanisms: Additivity of the Concentration Function .. 446
12.1.7 Effective Uniaxial Stress 447
12.1.8 Summary: Nondeterministic States of Stress 447
12.2 Statistical Size Effect due to Random Strength 449
12.2.1 General Strength Probability Distribution and Equivalent Uniaxial Volume .. 449
12.2.2 Statistical Size Effect Laws 451
12.2.3 Divergence of Weibull Failure Probability for Sharply Cracked Bodies .. 452
12.2.4 The Effect of Surface Flaws 454
12.3 Basic Criticisms of Classical Weibull-Type Approach 456
12.3.1 Stress Redistribution .. 456
12.3.2 Equivalence to Uniaxially Stressed Bar .. 457
12.3.3 Differences between Two- and Three-Dimensional Geometric Similarities .. 458
12.3.4 Energy Release Due to Large Stable Crack Growth .. 459
12.3.5 Spatial Correlation ... 460
12.3.6 Summary of the Limitations 460
12.4 A Simplified Approach to Weibull-Type Theory 460

12.4.1 A Simplified Approach to Crack Tip Statistics 461
12.4.2 Generalization of the Thickness Dependence of the Crack Tip Statistics .. 462
12.4.3 Asymptotic Size Effect 463
12.4.4 Extending the Range: Bulk Plus Core Statistics 463
12.5 Approximate Equations for Statistical Size Effect 465

12.5.1 Bažant-XI Empirical Interpolation Between Asymptotic Size Effects .. 465
12.5.2 Determination of Material Parameters 465
12.5.3 The Question of Weibull Moduli μr for the Fracture-Process Zone .. 466
12.5.4 Comparison with Test Results 466
12.5.5 Barenblatt’s Empirical Interpolation Between Asymptotic Size Effects .. 467
12.5.6 Limitations of Generalized Weibull Theory 470
12.6 Another View: Crack Growth in an Elastic Random Medium .. 470

12.6.1 The Strongest Random Barrier Model 471
12.6.2 The Statistical R-Curve 472
12.6.3 Finite Bodies ... 472
12.6.4 Fréchet’s Failure Probability Distribution 474
12.6.5 Random R-curve ... 476
12.6.6 Limitations of the Random Barrier Model 479

12.7 Fractal Approach to Fracture and Size Effect 479

12.7.1 Basic Concepts on Fractals 480
CONTENTS

12.7.2 Invasive Fractal and Multifractal Size Effect for G_F 482
12.7.3 Lacunary Fractal and Multifractal Size Effect for G_N 482
12.7.4 Fractal Analysis of Fractal Crack Propagation 483
12.7.5 Bao's Analysis of Fractal Crack Initiation 485
12.7.6 Is Fractality the Explanation of Size Effect? 486

13 Nonlocal Continuum Modeling of Damage Localization 489
13.1 Basic Concepts in Nonlocal Approaches 490
13.1.1 The Early Approaches 490
13.1.2 Models with Nonlocal Strain 491
13.1.3 Gradient Models 492
13.1.4 A Simple Family of Nonlocal Models 493
13.1.5 A Second-Order Differential Model 495
13.1.6 An Integral-Type Model of the First Kind 496
13.1.7 An Integral-Type Model of the Second Kind 497
13.1.8 Nonlocal Damage Model 498
13.2 Triaxial Nonlocal Models and Applications 501
13.2.1 Triaxial Nonlocal Smearing Crack Models 502
13.2.2 Triaxial Nonlocal Models with Yield Limit Degradation 502
13.2.3 Nonlocal Microplane Model 506
13.2.4 Determination of Characteristic Length 506
13.3 Nonlocal Model Based on Micromechanics of Crack Interactions 507
13.3.1 Nonlocality Caused by Interaction of Growing Microcracks 507
13.3.2 Field Equation for Nonlocal Continuum 510
13.3.3 Some Alternative Forms and Properties of the Nonlocal Model 511
13.3.4 Admissibility of Uniform Inelastic Stress Fields 513
13.3.5 Gauss-Quadrature Iteration Applied to Nonlocal Averaging 514
13.3.6 Statistical Determination of Crack Influence Function 515
13.3.7 Crack Influence Function in Two Dimensions 517
13.3.8 Crack Influence Function in Three Dimensions 520
13.3.9 Cracks Near Boundary 522
13.3.10 Long-Range Decay and Integrability 523
13.3.11 General Formulation: Tensorial Crack Influence Function 523
13.3.12 Constitutive Relation and Gradient Approximation 524
13.3.13 Localization of Oriented Cracking into a Band 525
13.3.14 Summary 525

14 Material Models for Damage and Failure 527
14.1 Microplane Model 528
14.1.1 Macro-Micro Relations 529
14.1.2 Volumetric-Deviatoric Split of the Microstrain and Microstress Vectors 532
14.1.3 Elastic Response 533
14.1.4 Nonlinear Microplane Behavior and the Concept of Stress-Strain Boundaries 535
14.1.5 Numerical Aspects 537
14.1.6 Constitutive Characterization of Material on Microplane Level 538
14.1.7 Microplane Model for Finite Strain 540
14.1.8 Summary of Main Points 542
14.2 Calibration by Test Data, Verification and Properties of Microplane Model 543
14.2.1 Procedure for Delocalization of Test Data and Material Identification 545
14.2.2 Calibration of Microplane Model and Comparison with Test Data 545
14.2.3 Torsional Effects 545
14.2.4 Other Aspects 547
14.3 Nonlocal Adaptation of Microplane Model or Other Constitutive Models 548
14.4 Particle and Lattice Models 550
14.4.1 Truss, Frame, and Lattice Models 552

CONTENTS

14.4.2 Directional Bias 554
14.4.3 Examples of Results of Particle and Lattice Models 555
14.4.4 Summary and Limitations 559
14.5 Tangential Stiffness Tensor Via Solution of a Body with Many Growing Cracks 560

References 565
Reference Citation Index 599
Index 607
Preface

Our book is intended to serve as both a textbook for graduate level courses in engineering and a reference volume for engineers and scientists. We assume that the reader has the background of the B.S. level mechanics courses in the departments of civil, mechanical, or aerospace engineering. Aside from synthesizing the main results already available in the literature, our book also contains some new research results not yet published and many original derivations.

The subject of our book is important to structural, geotechnical, mechanical, aerospace, nuclear, and petroleum engineering, as well as materials science and geophysics. In our exposition of this subject, we try to proceed from simple to complex, from special to general. We try to be as concise as possible and use the lowest level of mathematics necessary to treat the subject clearly and accurately. We include the derivations or proofs of all the important results, as well as their physical justifications. We also include a large number of fully worked-out examples and an abundance of exercise problems, the harder ones with hints. Our hope is that the reader will gain from the book true understanding rather than mere knowledge of the facts.

A special feature of our book is the theory of scaling of the failure loads of structures, and particularly the size effect on the strength of structures. We present a systematic exposition of this currently hot subject, which has gained prominence in current research. It has been only two decades that the classical model of size effect, based on Weibull-type statistical theory of random material strength, was found to be inadequate in the case of quasi-brittle materials. Since then, a large body of results has been accumulated and is scattered throughout many periodicals and proceedings. We attempt to bring it together in a single volume. In treating the size effect, we try to be comprehensive, dealing even with aspects such as statistical and fractal, which are not normally addressed in the books on fracture mechanics.

Another special feature of our book is the emphasis on quasi-brittle materials. These include concrete, which is our primary concern, as well as rocks, toughened ceramics, composites of various types, ice, and other materials. Owing to our concern with the size effect and with quasi-brittle fracture, much of the treatment of fracture mechanics in our book is different from the classical treatments, which were concerned primarily with metals.

In its scope, our book is considerably larger than the subject matter of a single semester-length course. A graduate level course on fracture of concrete, with proper treatment of the size effect and coverage relevant also to other quasi-brittle materials, may have the following contents: Chapter 1, highlights of Chapters 2, 3, and 4, then a thorough presentation of the main parts of Chapters 5, 6, 7, and 8, parts of Chapters 9 and 12, and closing with mere comments on Chapters 10, 11, and 13. A quarter-length course obviously requires a more reduced coverage.

The book can also serve as a text for a basic course on fracture mechanics. In that case, the course consists of a thorough coverage of Section 1.1 and Chapters 2, 3, 4, 5, and 7.

Furthermore, the book can be used as a text for a course on the scaling of fracture (i.e., the size effect), as a follow-up to the aforementioned basic course on fracture mechanics (or to courses on fracture mechanics based on other books). In that case, the coverage of this second course may be as follows: the rest of Chapters 1 and 5, a thorough exposition of Chapter 6, the rest of Chapters 7 and 8, much of Chapter 9, followed by highlights only of Chapter 10, bits of Chapter 11, and a thorough coverage of Chapter 12.

Chapters 13 and 14, the detailed coverage of which is not included in the foregoing course outlines, represent extensions important for computational modeling of fracture and size effect in structures. They alone can represent a short course, or they can be appended to the course on fracture of concrete or the course on scaling of fracture, although at the expense of the depth of coverage of the preceding chapters.

We were stimulated to write this book by our teaching of various courses on fracture mechanics, damage, localization, material instabilities, and scaling.1 Our collaboration on this book began already in 1990, but had to proceed with many interruptions, due to extensive other commitments and duties. Most of the book was written between 1992 and 1995.

Our book draws heavily from research projects at Northwestern University funded by the Office of Naval Research, National Science Foundation, Air Force Office of Scientific Research, Waterways Experiment Station of the U.S. Army Corps of Engineers, Argonne National Laboratory, Department of Energy, and Sandia National Laboratories, as well as from research projects at the Universidade Politécnica de Madrid, funded by Dirección General de Investigación Científica y Técnica (Spain) and Comisión Interministerial de Ciencia y Tecnología (Spain). We are grateful to these agencies for their support.

The first author wishes to express his thanks to his father, Zdeněk J. Bažant, Professor Emeritus of Foundation Engineering at the Czech Technical University (ČVUT) in Prague, and to his grandfather Zdeněk Bažant, late Professor of Structural Mechanics at ČVUT, for having excited his interest in structural mechanics and engineering; to his colleagues and research assistants, for many stimulating discussions; and to Northwestern University, for providing an environment conducive to scholarly inquiry. He also wishes to thank his wife Iva for her moral support and understanding. Thanks are further due to Carol Sunna, Robin Ford, Valerie Reed and Arlene Jackson, secretaries at Northwestern University, for their expert and devoted secretarial assistance.

The second author wishes to express his thanks to his mother Maria Rosselló, and to his sisters Joana María and María for their continuous encouragement. He also wishes to thank his wife Diana for her patience and moral support. He further expresses his thanks to Manuel Elcices, professor and head of Department of Materials Science, for his continued teaching and support and for allowing the author to devote so much time to his work on this book; to assistant professor Gustavo V. Guinea for his stimulating discussions and friendly support; to Claudio Rocco, visiting scientist on leave from the Universidad de la Plata (Argentina), for providing test results and pictures for the section on the Brazilian test; to Gonzalez Ruiz, assistant professor, for providing test results and figures for the section on minimum reinforcement; and to all the colleagues, research students and personnel in the Department of Material Science, for their help in carrying out other duties which suffered from the author's withdrawal to his writing of the book.

Z.P.B. and J.P.
Evanston and Madrid
April, 1997
