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Foreword

Up to the 1980s, all the experimentally observed size effects in solid mechan-
ics were generally attributed to material strength randomness. BaZant revisited
the scaling theory beginning with his 1984 discovery of the scaling law for the
size effect caused by the release of stored energy due to stable growth of large
fractures or large damage zones prior to failure. Using asymptotic matching ar-
guments, he derived a deceptively simple law of surprisingly broad applicability,
bridging the power scaling laws of classical fracture mechanics and plasticity.
With his assistants, he experimentally verified his law for various materials,
and showed how to use the scaling law to identify the cohesive fracture charac-
teristics from experiments. Later, using extreme value statistics, he formulated
a probabilistic generalization describing the transition to the classical statis-
tical size effect in very large structures failing at fracture initiation. He also
extended his size effect law to compression fracture, including kink band prop-
agation in fiber composites. Recently, he used similar asymptotic arguments
to show that the currently accepted dislocation-based strain-gradient theory
of metal plasticity for micron scale needs a fundamental revision because of
unreasonable asymptotic properties on approach to nanoscale.

Scaling of structural strength remains, however, a topic that many re-
searchers in solid mechanics seem to have temporarily set aside. It is indeed
striking to see that scaling and dimensional analysis have a tendency to dis-
appear from curricula and from the scientific literature in solid mechanics. Is
it because computers are allowing large size calculation today that scale ex-
trapolations have become useless? This topic reflects upon the relationship
between the experiments, material characteristics and structural engineeering.
As in statistical physics, ‘it sheds new lights on the existing theories and helps
in building new, consistent engineering models. Above all, I am sure that when
reading the conclusion of the book, the reader will be convinced that scaling
ought to play a pivotal role into the understanding new problems such as earth
dynamics and nanomechanics (to mention just two extremes).

I am very glad that Zdenék Bazant agreed to take the time to write this
volume. It is an excellent and condensed presentation of the author’s pioneering

X Scaling of Structural Strength

works in this field. Zdenék decided also to include some new, unpublished
results in his manuscript. I am indebted to him for this mark of esteem and
trust.

Finally, thanks should also be extended to my graduate student Bruno Zuber
who helped in the preparation of the final manuscript.

Nantes, November 2001 Gilles Pijaudier-Cabot



Author’s Preface

In 1973, while browsing in the library, one paper in the Indian Concrete
Journal caught my eye. P.F. Walsh, a young Australian then unknown to me,
was reporting remarkable experiments. They revealed, in concrete specimens,
a strong size effect. But that size effect did not conform to a power law and
thus was in conflict with the Weibull statistical theory, then reigning supreme
and sacrosanct.

At about the same time, luckily, the late Stanley Fistedis invited me to con-
sult his group at Argonne National Laboratory in matters of failure analysis of
concrete vessels and containments under various hypothetical scenarios of nu-
clear accidents in a liquid-metal-cooled breeder reactor. The objective was reli-
able extrapolation from normal-scale laboratory specimens to these very large
(and politically very sensitive) structures. In view of dense distributed rein-
forcement, it was necessary to somehow take realistically into account the dis-
tributed cracking, for which it seemed unavoidable to postulate strain-softening.
This phenomenon, as we know today, gives rise to a deterministic size effect.

Then, in the early 1970s, there was the luck of my getting to teach ad-
vanced topics in structural stability to some very inquisitive students in our
solid mechanics program at Northwestern, who argued about stability of soft-
ening structures, and of hearing a great seminar by Jim Rice on the triggering of
localization instability by geometrically nonlinear plastic deformations, which
is analogous to the strain-softening trigger.

Somehow all these stimuli set me at the beginning of the 1970s on an initially
controversial but exciting path which has not yet reached its end. It has been
struggle and fun—struggle because most solid mechanics sages regarded at
that time the strain softening (the cause of deterministic size effect) as a lowly
crime of ignorants (fortunately, I was no longer behind the Iron Curtain where
the mechanics bosses actually managed to get any funding for strain-softening
models proscribed by a ruling of the academy)—and fun because it led at NSF
Workshops to all these lively polemics about improperly posed boundary value
problems, uniqueness, regularization, mesh sensitivity, material stability, etc.
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In my efforts leading to this monograph, I am indebted to many. I wish
to thank my friend Jacky Mazars for advising Pijaudier-Cabot to become my
doctoral student. Gilles often dropped to my office cheerfully but debated
forcefully and gave me hard time. He contributed some key ideas of the nonlocal
damage concept and its stability foundations, which finally made the concept
of strain softening noncontroversial. Aside from Gilles, I have been blessed in
my studies of size effect and localization with the collaboration of a long line of
bright and hard-working doctoral students —E. Becg-Giraudon, S. Beissel, M.
Brocca, F.C. Caner, G. Cusatis, M. Cyr, R. Desmorat, R. Gettu, Z. Guo, M.
Jirdsek, M.E. Karr, M.T. Kazemi, J.-J. H. Kim, J.K. Kim, Z. Li, F.-B. Lin, G.
de Luzio, B.-H. Oh, P.A. Pfeiffer, P.C. Prat, W.F. Schell, M. Thoma, S. Sener,
Y. Xi, K. Xu, Q. Yu, Y. Zhou and G. Zi, as well as postdoctoral associates
and visiting scholars—I. Carol, L. Cedolin, J. Cervenka, D. Ferretti, Y.-N. Li,
P. Kabele, Y.W. Kwon, D. Novak, J. Ozbolt, J. Planas and J. Vitek. Their
enormous help to my research leading to this monograph is deeply appreciated.

I cannot thank enough my esteemed colleague Isaac Daniel for his invaluable
advise and help in fracture testing of fiber composites, sandwiches and foams.
To John Dempsey, aside from provocative discussions, I am indebted for the
truly unique experience of taking part of his ‘expedition’ to the Arctic Ocean
in which size effect tests of sea ice specimens, up to the record-breaking size
of 80 m, were successfully carried out. The great research environment that
we have at Northwestern University has been a big plus, but my escapes to
the calm atmospheres of hotels Maria in Sils, Le Calette in Cefalt, Paraiso del
Mar in Nerja, Parador Aiguablava on Costa Brava and others were conducive
to thinking through some more challenging sections of this monograph.

Thanks are further due to E.-P. Chen for funding, from his applied me-
chanics program at Sandia National Laboratories, my work on a review of
scaling on which much of this book is based. The present monograph would
not have happened had Gilles not pressed me gently but persistently. It cer-
tainly would not have happened without generous financial support for my
research at Northwestern, which was initially granted by the National Science
Foundation and Air Force Office of Scientific Research,”and during the 1990s
came mainly from the solid mechanics program directed at the Office of Naval
Research by Yapa D.S. Rajapakse. I am grateful to Yapa for inducing me to
take more fundamental viewpoints and pushing me to shift my focus from the
scaling problems of concrete and geomaterials to those of sea ice and, more
recently; fiber composites, rigid foams and sandwich structures for ships.

Evanston, September 2001 Zdenék P. BaZant



