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INTRODUCTION

The ultimate usefulness of any particular constitutive relationship is
dictated in large part by a proper balance among (a) the versatility of the
theory to characterize experimental data obtained from a variety of different
tests, (b) the ability of the resulting relationship to predict behavior for
conditions other than thoée which were used to 'calibrate" the model, and
(c) the ease with which the formulation can be adopted to the solution of
practical boundary value problems, Exercises in fitting data and predicting
response patterns therefore provide valuable comparisons among different the-
ories and serve to identify and clarify the advantages and disadvantages of
each.

However, when undertaking such comparisoms, it must be recognized that
most data sets are rather limited and frequently do not include the types of
tests that would be required to pass judgment on the fundamental hypotheses
and concepts of various constitutive models, and this is indeed the case here.
As explained in a companion paper (5), a proper comparison of the basic ideas
underlying different constitutive models would require (a) tests for which the
stress path in stress space is highly nonproportional, including "loading to
the side" (which 1s difficult to achieve experimentally), and (b) tests which
involve unloading and cyclic loading. Since such data are not included in the
set provided for this study, it will be impossible to adequately evaluate the
validity and utility of various theories. 1In fact, the predictions requested
for this study are primarily interpolations between extreme cases that were
given for the same type of test, rather than for a basically different type of
test.

In particular, the selected types of tests comprise a data set that

happens to be unfavorable for an examination of endochronic theory and favors
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other theories. This is because endochronic theory was developed primarily to
represent the response for unloadi'ng and cyclic loading and is most effective
in such cases. Other theories which were developed mainly to model monotonic
proportional loading response are favored by the data set prov;ded and their
performance under conditions of cyclic loading 1s not tested. This must bg
taken into account when forming judgments on the relative merits of the vari-
ous theories based on the present data set. For the types of tests used
(which do not include "loading to the side" or cyclic loading), it is, in
principle, possible to adequately describe all of the given data and obtain
reasonable predictions with nearly all available t:heories,' and the closeness
of the fits and predictions 1s lafgely a measure of the skill, intuition, ex-
perience, and persistence of the predictor rather than the features of the

model,

SUMMARY OF BASIC EQUATIONS

The basic concept of endochronic theory is that of an intrinsic time
scale, which is formulated to account for the dissipative effects of inelastic
strain, Intrinsic time is defined as a monotically increasing scalar function

of strain and time, and one suitable definition (9) is

(dz) = |:—d§—-ilz + [:ﬁ-—]z (1a)
2 LY

dg = F(g, ) dg (1b)

dg = " ] deij deij (c)

where eij is the strain tensor in cartesian coordinates xi(i = 1,2,3); z, and
T, are constant material parameters; € -6,.¢ is the deviator of gij;

S5 T €13 i3
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€ = ckk/3 18 the volumetric (mean) strain; is Kronecker delta; and P is

Gij
a strain hardening-softening function.
Assuming that the source of inelasticity in soils is the irreversible
rearrangement of grain configurations associated with deviatoric strains, it
is convenient to characterize the accumulation of grain rearrangements’ by an
appropriate variable, "l’;, termed the rearrangement measure, which is expressed
in terms of the distortion measure, £, as given in Equations 1b and lc. Since
the increments of irreversible.(inelastic) strain are caused by interparticle
rearrangements, they must be proportional to the increments of the rearrange-
ment feasure, and the proportionality coefficient may, in general, depend om
both the state of stress and strain. However, it has been observed in both
quasi-static and cyclic tests (2,7) that these irreversible rearrangements
diminish with the number of cycles. To express this phenomenon, it is suit-
able to consider the strain hardening-softening relationship as a composite

function, such as
F(e» L, £)dg = dN/£(T) (2a)

an = Fn(;,, a)dg (2b)

The introduction of a new parameter, 7, in terms of the function F, adjusts
the rate of accumulation of inelastic strains, and the fumction £(N) serves as
a hardening function which causes a stiffening of the response for repeated
loading (that is, contraction of hysteresis loops and an increase of their

slope as the number of load cycles increases).

INTRINSIC MATERIAL FUNCTIONS

The forms of the material functions are assumed to be the same for

both isotropic and anisotropic soils, and the anisotropy is accounted for by
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replacing the stress and strain invariants in these relationships with-the
appropriate transversely isotropic or orthotropic invariants (3). The mate-
rial functions were introduced so as to reflect various obvious governing

factors. 1In particular, Fn is assumed to have the form (1, 2).
= € g ¢
Fole = B ADFL, ADF (D) 3

Since a change in interparticle distances,reflected as a change in
volume, must result in a change in both deviatoric and volumetric stiffnesses,
the softening-hardening function should increase as the volume increases.

Thus, F may be expressed in terms of the first strain invariant as Fnl(If) =

7l
Il - a Ifl , in which a }s a positive material parameter. The frictiomal
aspect of soils suggests that the deviatoric strain softening and hardening
should depend on the effective confining stress, and this dependency is a-
chieved by using the first invariant of the effective stress in the from
Fnz(la) = [0.01 + az(I?/Pa) ]_1, in which a, is a positive material parameter
and P, is atmospheric pressure (expressed in the same units as the stress in-
variant and introduced to achieve a dimensionless relationship). The effects
of shear strains are introduced into the relationship in terms of the second
deviatoric strain invariant, Jf, in the form F,ﬂ_2 (Jg) = 1 + ang, in which a,
is a material parameter.

Aside from the foregoing factows that control strain softening and
hardening, there is an upper limit for softening and hardening, and this up-
per limit depends on the accumulated inelastic strains but seems ?o be essen-
tially independent of the factors that cause them. This limit corresponds to
what is known as the critical state, for which both strain ha;dening and

strain softening diminish. A general limiting relation which incorporates

this phenomenon can be formulated in terms of the accumulated grain rearrange-
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ments, and this formulation is developed by considering another variable, 1,
which represents continuous rearrangements, such that
[1-a 18] (1 +a3)
1 1 a2

do = [a,+ — dg ()
i 0.01 + a,(17/p,)

in which a 1s a positiva'material parameter that is necessary to determine the
irreversible strain increment for the critical case (where there is no harden-

ing or softening). This limiting function is chosen as
M =1+p0/1+pM (5)

in which ﬁl and ﬁz are positive material parameters that depend on the stress

history.

Most soils also manifest inelastic volumetric strains, termed densifi-
cation or dilatancy, as a result of shear. It is assumed here that the in-
elastic volume changes due to shear and those due to changes in the hydrosta-
tic stress can be treated separately. The inelastic volume change (volumetric
strain) due to shear is denoted A and is called the densification and dilat-
ancy measure. It can be expressed as a function of the stress and strain in-

variants and the accumulated value of )\ as follows:
dh = L(g, g, A)dE , (6)
The major factors affecting dilatancy and densification can be expressed as
LG 20 N = L (IHL L GHL () - <7>

Following arguments similar to those outlined for the strain hardening-
softening relationship, the increment of inelastic volumetric strain due to

shear can be expressed as
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r ¢ (1+c18)
dx:l_ e % (8)

) €
(1 + CI7/P (1 + €I (1 +C0)

in which coefficients C, are material parameters. Inmelastic volume changes

i
are algso produced by changes in the effective volumetric stress. This phenom-
enon is taken into account by defining a second intrinsic time, z, which in-

volves a term called the compaction measure, é, that is expressed in terms of

volumetric strains as

dg =|de, + de, + desi (9a)
&

an [T [T | o)
-] 2

4f = di/mcl) (9¢)

dafl = H(Z)dE (9d)

in which h(fi) is the compaction hardening function and H(Z) is the compaction
softening function. Following a line of reasoning similar to that outlined

before, Equation 9d can be written in an analogous form (8), where

b, |10/P
dﬁ - 1l 1/-a\ dE (10a)
1+ bzllg/Pa[
B(M = 1+ b0 +b,7 (106)

in which b1’ by, ba’ and b‘ are constant material parameters.

The concept of a two-phase medium is a natural choice for analyzing
the undrained behavior of saturated soils. Since the compressibility of the
soil grains is about thirty times less than the compressibility of water, the

assumption of incompressible soil grains will not introduce any significant
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error. On the other hand, the fluid phase (pore water) must be treated as
compressible, and the solid structure (matrix of soil particles) is even more
compressible than the pore water, The tendency of the solid structure to
change volume is coupled with the pere pressure, and the solid structure will
deform only as much as the pore water permits. If no drainage is allowed, the
volume change of the solid structure will equal the volume change of the pore
fluid, and the total volumetric strain of the pore water can be expressed in
terms of the total volumetric strain of the soil structure; thus, the pore

pressure increment can be expressed as (1, 2)
du = B(de, + de, + de ) /n (11)

where n is the porosity of the soil and Bw is the bulk modulus of water.

The variations of the elastic moduli along the stresslpaﬂh are taken
into consideration and formulated as functions of the initial'magnitudes of
the moduli and the ratios of the changes that take place in certain important
parameters. Two major factors that change along a given stress path are the
void ratio and the effective normal stress. These variables, in turn, depend
on the accumulated densification-dilatancy measure, ), and the first effec-
tive stress invariant, which is adopted to represent the change in the elastic

moduli, and all of the independent elastic moduli are expressed in the form

(1
E_ = E, [1 +1 (1% - 1%/15 + 3M2>\r/x] (12)

where Eo is the initial modulus; I?O is the initial first effective stress

invariant; and b& and M, are empirically determined material comstants which

are assumed here to be 0.1.
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STRESS-STRAIN RELATIONS

The endochronic constitutive model was originally developed for iso-
tropic soils (2, 4, 6), and the stress-strain relations involved only two in-
dependent elasticity coefficients; however, it appears more realistic to com-
sider most soils to be transversely isotropic or orthotropic. An endochronic
constitutive model for transversely isotropic clays has been developed (3) and
involves five elasticity coefficients. This approach is extended here to mod-
el the behavior of orthotropic soils and the following stress-strain relations

are proposed

de,; = ¢,,d5,, + ¢, 280, + ¢, 80, + dey (13a)
dey, = cladE'11 + c"d&az + caad&33 + dejy (13b)
de,, = cud&11 + czadaaz + caad&aa +degy (13c)
de, = ¢, 40, +dey (139)
de,, = c 0, + de/y (13e)
degy = Cyqday, + degs (136)

Here, superimposed bars denote effective stresses; aij are components of the

1]

are. elasticity coefficients. The inelastic

effective stress tensor; ¢ are the strain components; ¢ are components

1j
of the inelastic strains; and ¢

1]

strain increments are assumed to have the same form as previously derived for

transversely isotropic soils (3) and are introduced as

de/y =D (3,,-5,,)dz + D, (5,,~G,5)dz + de”*/(1 + 1, +1,) (14a)
.. T =z .. 4b
de/; = D, (5,0, )z + D,(8,,-5,,)dz + 1, de”?/( 1+ 71 +71,) (14b)
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deyy = D, (§,,6,,)dz + D, (5,,-G,,)dz + ryde” " /(1 + 1, + 1) (l4c)

ds1a = c.4°1zdz (14d)
dels = csscladz (1lbe)
degy = cssc_‘,?dz (14£)

where it is assumed that D1 = c4‘/3, D, = c55/3, and D, = C56/3; coefficients
r, and r, characterize anisotropy; and d¢”’ represents the inelastic volume

change, expressed as

.. o
de’” = d) + 3 0% (15)

}

where dA is the inelastic volume change increment due to deviatoric distortion

and (9dZ/3K) is the inelastic volume change due to a change in the effective
volumetric stress. The stress-strain relations for the simpler case of a

transversely isotropic soil are listed %n the Appendix.

FITTING OF TEST DATA

When fitting test data with the foregoing constitutive equations, the
test specimens are assumed to be in a homogeneous state of stress and strain.
Due to the complex nature of the differential equations, a step-by-step pro-
cess is employed and strains or stresses are increased in small increments.
Values from each previous step provide initial estimates, and inner iterations
within a step are used to obtain improved response increments within the step.
For the initial iteration of the first loading increment, all incremental val-
ues must be estimated (can be taken as zero). Experience indicates that this
step-by-step integration method is reasonably stable, and, provided loading
steps are sufficiently small, convergence is usually achieved after a couple

of iterations for strain-controlled tests. For the stress-controlled tests



296 STRESS STRAIN FOR SOILS

convergence is also achieved after a couple of iteratioms during the initial
stage of loading, but, as the stress:strain curve approaches its peak point,
it is necessary to decrease the loading increment continuously in order to
prevent instability.

The final form of the equations and the values of the material para-
meters were obtained by using a mathematical optimization procedure to mini-
mize the differences between observed and calculated responses. A finite
difference Levenberg-Marquart subroutine for solving nonlinear least squares
problems (developed by T. J. Aird of International Mathematical and Statisti-
cal Library package) was utilized for this purpose. Due to Ehe complex non-
linear form of the constitutive relations, it is probably possible to have
different sets of material parameter values that give fairly good results;
however, the optimization routine only identifies local optimums in the vicin-
ity of the initial estimates.

Due partly to the versatility of endochronic theory and partly to the
large number of material parameters used in the constitutive relatioms, it is
ialways possible to get fairly accurate fits (2, 3, 7). However, the purpose
here was to find a set of values which would give reasonable fits for all of
the given stress paths and which would yield logical correlations with mate-
rial properties and the stress and strain state of the soil. This set is not
necessarily the global optimum. Many stages of optimization were required to
determine the effects of different parameters and to achieve realistic fits
and correlations. Although the process of accomplishing this task is based
somewhat on previous knowledge about the behavior of soils and the character-

istics of the model, it is still largely a trial-and-error procedure.

EXPRESSIONS FOR DATA FITS

Essentially four different soils were investigated in this study.
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The first two were sensitive clays which appear to have very similar index
properties; however, the tests were performed under different initial| confin-
ing stresses such that the overconsolidation ratio, p/po, was less than unity
for one of the clays. For these two clays, which were termed "X" and "Y', the
reported response indicated anisotropy with respect to all three axes. To be
able to model such a behavior it was necessary to extend the previously de-
veloped formulation to handle orthotropic stress-strain relations, which re-
quire nine elasticity coefficients. The expressions were developed using ar-
guments previously outlined for transversely isotropic soils (3).

The third soil was a laboratory prepared kaolinite clay which was as-
sumed to be transversely isotropic due to the Ko consolidation that was used in
sample preparation, The fourth soil was a dry Ottawa sand, which also showed
transversely isotropic response in one test (which was the only test that
could reflect this property of the sand). The transversely isotropic stress-
strain relation outlined in the Appendix was adopted to predict the stress-
strain behavior.

Even though these four soil types are very different from one another,
all of the given test data were modeled by using the same material functionms,
and no attempt was made to modify the general form of the material relation-
ships to improve the accuracy of the fits for each type of soil separately.
This demonstrates the generality and versatility of the endochronic constitu-

tive equations. The chosen material functions are given below in incremental

form:

1-500 16 | (1 + a ¢ "
dan = 4 + ! ‘( ~ 2a’2) P dg (16)
0.01 +0.75 12/p, J ’
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an
dz = " , 7))
z, [1 +p,1/(1 +f.‘-,m)]

c1|1+250011€I

a = - (18)
(1 + 3000 J£)(1 + 0.25IT/P,)(1 + ;1)

b |15/
dq = —#‘i— dg , (19)
1+ TI‘f/Pa[
e
dz = ! (20)

z, (1 + 25007 + 10007?)

Only eight soil-specific material parameters were used to model the given test
data; all others were held comstant for all soils and all stress or strain
histories. These eight parameters were initially determined separately for
each test; then, trial-and-error procedures were employed to identify a suit-
able set that would yield realistic fits for all of the tests performed under

the same consolidation stress, and the predictions were based on these values.

ANALYSTS OF TEST DATA

Clays X and Y

As mentioned earlier, orthotropic stress-strain relations were used to
model the behavior of these clays; these relations required nine elasticity
coefficients and two material coefficients to define the appropriate stress-
strain invariants. An attempt was made to decrease the number of elasticity
coefficients by assuming that (a) values for Poisson's ratio in all three di-

rections are equal (},j,_\,.1 =4 ) and the other values in the corresponding

az ~ M3y

planes (“'12’ Lag > “‘13 can be determined from the symmetry condition of the

stiffness matrix, and (b) compression and shear moduli in the minor and inter-
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mediate principal planes can be expressed in terms of compression and shear
moduli in the major plane, where the proportionality constants are the same
for both moduli. With these assumptions it was possible to express elasticity

coefficients in terms of five parameters as

bay = HBgp = kg, = b (21)
E, =rE ; E, = r,E (22)
G, =16 ; G =16 (23)

where G is the shear modulus; E is the compression modulus; p is Poisson's
ratio; and r, and r, are proportionality constants which characterize the an-
isotropy of the material. The variations of the major principal elastic mod-
uli, E1 and Gl, along a particular stress path were formulated as given by
Equation 12, and variations of the other moduli were calculated by Equations
22 and 23,

It was also necessary to express the strain and stress invariants
with two proportionality constants in order to include the effect of aniso-
tropy and establish invariance with respect to the orthogonal transformations.
As ih the case of transversely isotropic clays (3), it was assumed that the
first stress invariant retains the same form and the strain invariants are de-

fined in terms of two proportionality constants as

€ =
1f e tr,e; tre (24)

Jae = [<€1 TTae)? + (e v & + (Toe —r4€3)2} /6 @

where r, = 1/r and r o= 1/r2. With the introduction of two proportionality or

anisotropy constants (rl, r?), three elasticity coefficients ()‘::1 s G w), and
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eight material constants (ad, b, G5 Cas Zys 2y, B 52), thirteen constants
must be determined.

The curves shown in Figure 1 for Clay X were obtained by fitting each
test separately; however, every effort was made to hold most of the material
parameters constant for the entire data set, and only four (cl, Sy El, zl) of
the thirteen parameters were allowed to vary within a limited range. The val-
ues of the constant and variable parameters used to obtain the fits are sum-

marized in Table 1.

Table 1. Variable and Coustant Material Parameters for Clay X

Constant material parameters: a; = 380, Pl = 24, B, = 5; b=10.1; z, = 50,000;

T.

3 0.8; r,

2

0.9; G, /P, = 48; y = 0.18

Variable material parameters:

z, E1/Pa <, c,
. m=0 0.0696 88 0.7500 30,000
o= Wepst 0.0861 88 0.7500 230,000
=0 0.0600 88 0.7500 500
2

oo+ Woest 0.0660 30 0.0021 230,000
- m=0 0.0600 34 0.7500 500
9. =30pest 0.1140 29 0.0021 230,000

As can be seen from the given curves, the stress-strain fits are rea-
sonably good, but the model generally yields smaller volumetric strains. It
is believed -that this is partially a result of keeping certain parameters con-
stant, as given in Equations 16 to 20, Pecause the model was.originally devel-
oped for normally consolidated clays. In the cage of sensitive clays the col-

lapse of the soil structure appears to give large volumetric strains and a more

linear stress-strain response in the initial portion followed by a sudden increase

in strain. Unlike normally consolidated imnsensitive clays, there appears to be

a distinct yield point. Due to the flexibility of endochronic theory, it is
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possible to model the stress-strain behavior of semsitive clays very accurate-
ly, but it may be necessary to increase the range of the variable parameters
or to change the valuets of the constants and even the functional forms of the
material relationships given in Equations 16 to 20.

After the workshop at McGill University, an attempt was made to im-
prove some of the fits fdf Clay X. As shown typically in Figure 2, it was pos-
sible to obtain excellent fits for the first two tests performed at uc = 10 psi,
but there were large variations in. the values of some of the variable para-
meters, even for the two tests considered. This suggests the need to modify
some of the material relationships to handle sensitive clays. The curves giv-
en in Figure 2 were calculated by changing only the values of the four variable
parameters given in Table 1 to the values presented in Table 2, while keeping

all others constant and equal to their values given in Table 1.

Table 2. Variable Parameters Used for Improved Fits for Clay X

z, E /Pa c, <,
m=20 0.038 77 0.750 30,000
Uc = 10 psi
m=1 1800 26 0.091 30,000

In the case of Clay Y the curves shown in Figure 3 were obtained by
optimizing the fits with respect to the four variable parameters given in
Table 2 to get the values summarized in Table 3, while keeping all others e-
qual to their values given in Table 1. The model appears to give better re-
sults for Clay Y than for Clay X, but there are still large differences be-
tween observed and calculated volumetric strains., The initial fits shown in
Figure 4 can be compared to the improved fits shown in Figdre 3a to evaluate
the degree of improvement that has been achieved. As can be seen, a major

improvement was realized in modeling the volumetric change.
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Table 3. Variable Parameters Used for Improved Fits for Clay Y

z, ) El/Pa c c,
m=0  0.026 136 0.042 30,000
. =23l oy o042 129 0.007 30,000
. m=0  0.028 133 1.970 30,000
o =3t oy 0.046 111 0.660 30,000
m=0  0.060 681 0.750 . 500
ge=10psl | .y  0.060 681 0.750 500

The stress-strain curves shown in Figures 5 and 6 are typical pre-
dicted tests results for Clays X and Y, respectively. Thesevpredictions have
been obtained by using the same material parameters used in the initial pre-
dictions, the only difference between these curves and those presented at the
workshop being that the loading was stopped as soon as strain softening start-
ed, because the tests were stress-controlled. Due to an error in the computer
program, strain hardening previously occurred at this point, and this defi-
ciency was corrected prior to obtaining the new plots.

Kaolinite Clay

A transversely isotropic stress-strain relation was adopted for the
kaolinite clay because samples were subjected to KO consolidation before they
were sheared., It is generally accepted that Ko consolidation will result in
some particle reorientation, which is a cause of anisotropy. In the case of
transversely isotropic soils, five elasticity coefficients are needed. How-
ever, expressing these coefficients in terms of ratios makes it possible to
decrease this number. As in the case of orthotropic soils, it is assumed here

that (a) Poisson's ratio in all planes is the same (u,, = =p), and

Bia T Haa
(b) the compression modulus, E1 in the plane of isotropy can be expressed in

the terms of the compression modulus in the vertical direction, E,, in the

form E. = r E.. As a result, the number of elasticity coefficients may be
1 173

SOIL BEHAVIOR PREDICTION 303

reduced to three (u, El, Gaa)’ and r, is the proportionality parameter repre-

senting the degree of anisotropy. The transversely isotropic strain invari-

ants may be expressed (3) as

)
(]

y €, t ey, 1, €, (26)

i
¢ i 2
J: = [(en"aa)a + (e Tag9)® (e“-raess)a]/é *oept T, (62, 4l 7

where i = 3 represents the direction perpendicular to the plane of isotropy;

r, is a proportionality constant; and r, =(c1 +c, + c4)/&a + 2c4), where ¢y

are the elasticity coefficients, as given in the Appendix. The value for T,
is determined by use of the assumption that hydrostatic stress changes will not

produce any distortional inelastic strains (3). 1In the case of transversely

isotropic soils the proposed comstitutive model requires three elasticity co-

efficients (u, E1’ Gaa)’ three proportionality parameters (rl, Tys r4), and

eight material constants (ad, b, € s Gy 2, 2, §1 ﬁg), where r, is incorpo-
rated into the constitutive equations as shown in the Appendix.

These parameters were determined by trial and error, and the opti-
mization technique was used to get fits for the compression tests with ome set
of numbers and fits for the extension tests with another set of numbers.
Without further complications it was not possible to incorporate into the
formulation the differences in the test data between compression and extension
tests and obtain a single set of parameters for all four tests. It also was
not possible to obtain the shear modulus, Gaa’ in the plane of anisotfopy be-

cause no torsional test data were given; hence, Gae was estimated from the

observed degree of anisotropy and other elasticity moduli. The values of the
material constants obtained from the given compression and extension test data

are summarized in Table 4,
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Table 4. Optimized Parameters for Kaolinite Clay

Tests ay Px B, z, N c, EG/Pa T, r,

1&4 5.0 3.84 6.65 0.01660 1.4800 41,000 709 0.68 0.51

10 & 13 12.0 1.50 5.00 0.00914 0.0012 2,000 386 0.98 1.42

Note: For all tests b = 0.5, » = 0.21, z, = 10,000, and ¥, = 0.57.

The main reason for the differences in the parameters shown in

Table 4 is probably due to the difference in the behavior of kaolinite in com-
pression and tension, and it was not possible to handle this phenomenon with
the present formulation. The optimized curves for the giveﬁ test data are
shown in Figure 7, and the predictions are shown in Figures 8, 9, 10, and 1l.
The predictions were based on the average values of the parameters given in
Table 4, but, since the behavior is so different in tensionm and compression,
it did not appear realistic to use one value for the elasticity coefficient
Es. Instead, E3 was calculated separately for each test with respect to the
jnclination of the stress path compared to the stress path in a standard com-
pression test by using a quarter of an ellipse. The ellipse was drawn with
its minor radius as Es from extension tests and its major radius as Es ob-
tained from compression tests. Then, Ea for the test was determined graphi-
cally by measuring the appropriate radius of the ellipse. The value of the
shear modulus, Gaa’ was estimated from the values for Ea‘
Ottawa Sand

' As mentioned previously, transversely isotropic constitutive rela-
tions were used to model the tests on dry Ottawa sand. In particular, the
same material relationships were adopted to demonstrate the flexibility of
the approach, and, even though semsitive Clay X and dry Ottawa sand manifest
different behavioral patterns, it was possible to obtain realistic fits for

the data supplied on both soils.
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The data set included tests with unloading and reloading cycles.
Based on the method explained earlier, jump-kinematic hardening was incorpo-
rated into the formulation in terms of the deviatoric component of the stress

tensor. This was accomplished by defining the deviatoric stresses as

sij = sij "5 (28)

d z =
an dz cudz (29)

where dij and ¢, must be redefined at each load reversal point. For the given
test data e, = 1 and aij = 0 for virgin loading, . 0.5 and aij = sij
for unloading, and e, = 0.7 and aij = 0 for reloading, because loading :iﬁ re~
loading started from the hydrostatic stress state. Even though jump-kinematic
hardening is in essence just an empirical technique to improve the model, it
also reflects some of the salient features found in the stress-strain behavior
of soil under repeated loading. Most soils manifest considerable inelastic re-
sponse in the loading branch, but their response is much more elastic upon un-
loading; hence, it is logical to decrease the value of the intrinsic time in-
crement, dz, since it is the controlling factor for accumulating plastic
strains. On the other hand, it has been observed that the response in the
reloading branch up to the previous maximum stress level is more or less elas-
tic, after which the stress-strain behavior continues almost on the path ob-
tained in the virgin loading branch. Therefore, it appears logical to reset
cu and aij at these points.

The fits were obtained by using trial-and-error and the optimization

scheme, and values of the parameters and constants are summarized in Table 6.
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Table 6. Material Parameters Used to Obtain Fits for Ottawa Sand

<, ay 8, }32 z, ES/Pa (;32,/12a T, r,
crc =5 psi
CIC m = 0 0.000720 0.800 3.8 5 0.00280 1034 748 0.80 1.3
TE m=1 0.000720 0,800 3.8 5 0.00330 517 340 0.80 0.8
g, = 10 psi
CICm=20 0,000014 1.230 3.8 28 0.00510 1177 953 0,50 1.3
TC m=0 0.000014 1.230 3.8 28 0.00510 1177 953 0.35 1.3
TE m=1 0.000014 2.500 3.8 28 0,00510 1177 953 0.20 1.3
o, = 20 psi
TC m=20 0.000014 0.034 20,0 5 0.00556 734 510 0.80 0.8
TE m=1 0.057700 0.048 20.0 5 0.00313 374 210 0.80 0.8

Constants: p = 0.3; ¢, = 2,000; b= 0.01; z, = 1.7 x 1015

As can be seen, it was possible to obtain the fits shown in Figures 12, 13,
and 14 by changing the values of only a few parameters. However, in the case
of Ottawa sand it appears necessary with the present intrimsic relationships
to have different sets of values for the material parameters for each con-
fining stress. The predictions shown in Figures 15 to 21 were calculated by
using a different average set of material parameters for each confining stress,

with estimates being based on the values in Table 6.
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APPENDIX
STRESS-STRAIN RELATIONS FOR TRANSVERSELY ISOTROPIC SOILS

When the soil is transversely isotropic, the constitutive re-

lations simplify to the form:

cle11 = cldér11 + ‘:adasz + c4dd'33 + defw' (A-1)
de,, = c:,'dc'r11 + °1d&=a + c4d&aa + deg;] (A-2)
de . + c4d511 + c“da'a2 + csdc-i‘a:J + dej; (A-3)
&:Ie12 = (c:1 -c, )dc12 + dgl’z’ (A-4)
clt-::ga = c!sdz:23 + de,;a’ (A-5)
de , = c_dg , +de’’ (A-6)

Here superimposed bars denote effective stresses; eij are components of total

s

strains; eij are components of inelastic strains; and Ci are elasticity co-
efficients. Equations A-1 to A-6 are referred to cartesian axes X, X and
LI of which X, 1s normal to the plane of isotropy. The inelastic strain in-

crements can be given as

de/ = D, (8,,-8,,)dz + D, (3, -7 ,)dz + (l-r )de "~ (A-T)
des) = D, (c‘r”—a11 Ydz + D, (&Qz—éaa)dz + (l-r )de’” (A-8)
degy = D,(8,,~9,,)dz + D (3, -G, )dz + (1 + 2r,)de"’ (4-9)
def) = (¢ )0, 42 (A-10)
defy = 659,92 (A-11)
de’’ = ¢ O __dz (A-12)

23 5 203
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where D = (¢ -ca)/3, D, = (cs-c4)/3, r, 1s an anisotropy coefficient; and de*”

represents the inelastic volume char;ge as given by Equation 15.
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